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Abstract

In standard models of Bayesian learning agents reduce their uncertainty about

an event�s true probability because their consistent estimator concentrates almost

surely around this probability�s true value as the number of observations becomes

large. This paper takes the empirically observed violations of Savage�s (1954)

sure thing principle seriously and asks whether Bayesian learners with ambiguity

attitudes will reduce their ambiguity when sample information becomes large.

To address this question, I develop closed-form models of Bayesian learning in

which beliefs are described as Choquet estimators with respect to neo-additive

capacities (Chateauneuf, Eichberger, and Grant 2007). Under the optimistic, the

pessimistic, and the full Bayesian update rule, a Bayesian learner�s ambiguity will

increase rather than decrease to the e¤ect that these agents will express ambiguity

attitudes regardless of whether they have access to large sample information or

not. While consistent Bayesian learning occurs under the Sarin-Wakker update

rule, this result comes with the descriptive drawback that it does not apply to

agents who still express ambiguity attitudes after one round of updating.
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1 Introduction

Consider the situation of an agent who is uncertain about the probability with which

a speci�c event (e.g., a coin comes up heads) occurs. If this agent can run a statisti-

cal experiment such that the event in question occurs independently and with identical

probability across di¤erent trials, we would typically expect that he will learn the true

probability as the number of trials becomes large. More speci�cally, in the standard

framework of Bayesian learning it is assumed that the agent holds a subjective additive

probability measure de�ned on an event space that combines possible true parameter

values� here the event�s true probability� with all observations that could possibly be

made when running these trials. Bayesian learning refers to the situation in which the

agent updates his expectation about the event�s true probability in accordance with

Bayes�rule; that is, the agent�s Bayesian estimator is his expectation of the event�s true

probability with respect to a conditional additive probability measure that takes into

account the observed sample information. Well-known consistency results for Bayesian

estimators (Doob 1949; Breiman, LeCam, and Schwartz 1964; Lijoi, Pruenster, and

Walker 2004) establish that Bayesian learning of an event�s true probability converges

towards this true probability whenever the agent considers the value of this true prob-

ability as possible. In particular, Doob�s (1949) consistency theorem demonstrates that

for almost all parameter values in the support of the agent�s prior probability distri-

bution the conditional additive probability measure will concentrate around the true

parameter value almost surely if the agent observes sample information drawn from an

independently and identically distributed (=i.i.d.) process. To sum up: In the standard

framework of Bayesian learning an agent will reduce his ex ante uncertainty about the

probability of an event whereby he almost surely learns the true probability in the long

run.

This powerful concept of consistent Bayesian learning is based on the assumption that

there exists some additive probability measure de�ned on the joint space of parameter-

values and i.i.d. sample observations. According to Savage�s (1954) seminal contribution,

the existence of a unique subjective additive probability measure is guaranteed for agents

whose preferences over Savage acts (loosely speaking: bets) obey several behavioral and

technical axioms. However, starting with Ellsberg (1961), subsequent empirical studies

have collected overwhelming evidence showing that one of Savage�s key axioms� the

sure thing principle� is consistently violated by real-life decision makers. As a reaction

to the descriptive shortcomings of Savage�s subjective expected utility theory, models

of decision making under ambiguity have been developed which relax the sure thing

principle to the e¤ect that an agent no longer resolves his uncertainty in terms of a

unique additive probability measure but, for instance, in terms of a unique non-additive
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probability measure (Choquet expected utility models) or in terms of sets of additive

probability measures (multiple priors models).

The present paper takes the violation of the sure thing principle seriously and asks

what happens to Bayesian learning if the agent�s belief over the joint space of parameter-

values and i.i.d. sample observations is not expressed in terms of an additive, but rather

in terms of a non-additive, probability measure. In particular, I will address the following

question:

Q1: Does the Bayesian estimator of an agent� whose ambiguity is expressed in terms
of a non-additive probability measure� converge to the event�s true probability as

the number of sample observations becomes large?

Non-additive probability measures arise in Choquet expected utility (CEU) theory

(Schmeidler 1986, 1989; Gilboa 1987), which generalizes standard subjective expected

utility (EU) theory to allow for ambiguity attitudes as expressed in the violation of the

sure thing principle. My formal analysis restricts attention to so-called neo-additive

capacities in the sense of Chateauneuf, Eichberger and Grant (2007) according to which

an agent�s non-additive belief about the probability of an event is a weighted average

of an ambiguity part and an additive part. In particular, I develop di¤erent closed-

form models of Bayesian learning� characterized by di¤erent Bayesian update rules for

non-additive probability measures� such that the agent holds a neo-additive capacity

de�ned on the joint space of parameter-values and sample observations resulting from

i.i.d. Bernoulli trials. We can think of this stylized set-up as a situation under ambiguity

in which the agent may have some (possibly small) lack of con�dence� as expressed by

a positive ambiguity parameter of a neo-additive capacity� in the accuracy of a subjec-

tive additive probability measure which would otherwise obtain in a Savage framework

without ambiguity.

Working with neo-additive capacities is attractive for two reasons. Firstly, neo-

additive capacities reduce the potential complexity of non-additive probability measures

in a very tractable way such that important empirical features (e.g., inversely S-shaped

probability transformation functions) are portrayed (cf. Chapter 11 in Wakker 2010).

Secondly, Bayesian learning with respect to neo-additive capacities is closed in the follow-

ing sense: The neo-additive capacity de�ned on the joint parameter and i.i.d. sample

space gives rise to neo-additive priors and posteriors over possible parameter values,

which give in turn rise to a Bayesian estimator that is itself a neo-additive capacity.

Applied to a coin-�ipping example, this means that the agent expresses his uncertainty

about the probability that a coin-�ip results in heads (or tails, for that matter) in terms

of a neo-additive capacity. As it turns out, the additive part of this neo-additive estima-

tor will converge through Bayesian learning (almost surely) to the event�s true additive

3



probability so that question Q1 can be conveniently reformulated within the neo-additive

framework as follow:

Q2: Does the ambiguity part of the neo-additive Bayesian estimator converge towards
zero as the number of sample observations becomes large?

An intuitive answer to the above question is not straightforward. Since we are used

to the fact that the agent of the standard� additive� Bayesian learning model reduces

his uncertainty towards zero as the number of observation becomes large, we might

expect a similar result for the reduction of ambiguity. After all, an agent�s con�dence in

the additive part of his estimator should grow if he runs a statistical experiment with

more and more trials. Or should it not? Namely, observing more and more observations

also means observing events with smaller and smaller likelihood to the e¤ect that a

Bayesian agent who observes a lot of data updates his beliefs based on information that

looks very unlikely from his ex ante perspective. Updating beliefs in the face of unlikely

information, however, should rather increase than decrease the agent�s ambiguity.

To investigate question Q2 in an analytically rigorous way, I consider four popular

Bayesian update rules for non-additive probability measures which give rise to four dif-

ferent closed-form models of a neo-additive Bayesian estimator. In particular, I analyze

neo-additive Bayesian learning with respect to the so-called full Bayesian (Pires 2002;

Eichberger, Grant, and Kelsey 2006; Siniscalchi 2010) as well as the optimistic, the pes-

simistic (Gilboa and Schmeidler 1993) and the Sarin-Wakker (Sarin and Wakker 1998a)

update rules. As my main formal �nding I derive the following answer to the questions

Q1 and Q2, respectively:

Answer (part a) If the agent either applies the full Bayesian, the optimistic, or the
pessimistic update rule, then his ambiguity will increase rather than decrease as

the number of sample observations becomes large. As a consequence, such a neo-

additive Bayesian estimator will� in general� stay bounded away from the event�s

true probability as the number of sample observations becomes large.

Answer (part b) If the agent applies the Sarin-Wakker update rule, then his ambiguity
drops immediately to zero after one observation. As a consequence, the agent�s neo-

additive Bayesian estimator reduces to the standard additive Bayesian estimator

after one observation so that it converges to the event�s true probability as the

number of sample observations becomes large.

On the one hand, part a) gives a negative answer to questions Q1 and Q2, respec-

tively. Namely, if ambiguity is introduced into a framework of Bayesian learning, then
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there exist perfectly reasonable update rules such that Bayesian agents will never learn

their way out of ambiguity. On the other hand, part b) shows that there exists at least

one update rule for non-additive beliefs such that the agent�s ambiguity will completely

vanish when he observes new information. The problem with this seemingly �positive�

result, however, is its apparent lack of descriptive relevance. Namely, whenever agents

with neo-additive beliefs still exhibit some ambiguity attitudes after having made one

observation, their updating behavior is not consistent with the Sarin-Wakker update

rule. Under the realistic assumption that Bayesian learners still express ambiguity atti-

tudes after one observation, the Sarin-Wakker rule does not, in my opinion, o¤er a viable

answer to the question of how Bayesian agents might learn their way out of ambiguity.

It is well known in the decision theoretic literature that the two dynamic principles

of consequentialism and dynamic consistency together imply the sure thing principle for

the reductionist Bayesian framework which is relevant to this paper (Sarin and Wakker

1998b; Ghirardato 2002). That is, any dynamic decision theoretic model that satis�es

consequentialism as well as dynamic consistency within a Bayesian framework is unable

to express ambiguity attitudes. Loosely speaking, consequentialism refers to a situation

where the agent �never looks back�, i.e., where he does not care about how he has

arrived at a speci�c decision node but where he only looks forward to the future con-

sequences of his actions. Dynamic consistency refers to a situation in which all ex post

realizations of an agent will stick to the plan of actions that is optimal from the agent�s

ex ante perspective. Interestingly, the full Bayesian, the optimistic, and the pessimistic

update rule satisfy consequentialism but violate dynamic consistency whereas the Sarin-

Wakker update rule satis�es dynamic consistency but violates consequentialism. This

�nding suggests a close relationship between two seemingly unrelated concepts, namely,

consistent Bayesian learning, on the one hand, and dynamic consistency, on the other

hand. While the formal analysis of the present paper is restricted to the most popular

Bayesian update rules for non-additive probability measures used in the literature, I

plan to address this apparent relationship at a more general level in future research.

The remainder of the analysis is structured as follows. Section 2 discusses the rela-

tionship between this paper and existing literature. Section 3 recalls Choquet decision

theory and neo-additive capacities. Bayesian updating of neo-additive capacities is in-

troduced in Section 4. In Section 5 the probability space and the benchmark model

of Bayesian learning with respect to an additive probability measure are constructed.

Section 6 presents the main results for Bayesian learning with neo-additive capacities.

Finally, Section 7 concludes.
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2 Related literature and further motivation

Prospect theory and statistical information. CEU theory is formally equivalent to (cumu-

lative) prospect theory (=PT 1992) (Tversky and Kahneman 1992; Wakker and Tversky

1993) whenever PT 1992 is restricted to gains (for a comprehensive treatment of this

equivalence see Wakker 2010). PT 1992, in turn, extends the celebrated concept of

original prospect theory (=OPT 1979) by Kahneman and Tversky (1979) to the case of

several possible gain values in a way that satis�es �rst-order stochastic dominance. In a

recent review on applications of OPT 1979 and PT 1992 (in their terminology, PT and

CPT, respectively) in management science, Holmes, Bromiley, Devers, Holcomb, and

McGuire (2011) write:

�According to Web of Science, scholars have cited the Kahneman and Tver-

sky (1979) article that introduced PT more than 6,100 times. In addition,

scholars have cited Tversky and Kahneman�s (1992) article that introduced

CPT more than 1,300 times. More than 550 articles citing either of these

two studies (or both) have appeared in periodicals consistently recognized as

top academic journals for management research [:::].�(p. 1079)

Holmes et al. (2011) proceed to list applications of OPT 1979 and PT 1992 to man-

agement science, including executive compensation, negotiations, a¤ect and motivation,

human resource management, organizational risk and return, and �rm risk-taking be-

havior. Despite the huge popularity of OPT 1979 and PT 1992 as alternatives to EU

theory in applications, the present paper is, to the best of my knowledge, the �rst math-

ematically rigorous approach for addressing the question of whether the non-additive

decision weights of OPT 1979 and PT 1992 (in my context: the non-additive proba-

bility measures of CEU theory) will reduce through Bayesian learning to the additive

probabilities of EU theory or not. Since my formal �ndings answer this question in the

negative, this paper�s learning model establishes that meaningful applications of OPT

1979 and PT 1992 are not restricted to decision situations in which a Bayesian learner

lacks statistical data but that these concepts may be also relevant to situations in which

the agent takes into account statistical observations.

Bayesian learning in economic applications. Standard models of consistent Bayesian

learning have been applied to several topics in economics and management science. For

instance, in early contributions Cyert, DeGroot, and Holt (1978) as well as Tonks (1983)

apply a Bayesian learning model� formulated within a normal distribution framework�

to a �rm�s decision problem to invest in di¤erent technological processes. Viscusi (1979)
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and Viscusi and O�Connor (1984) apply a Bayesian learning model� formulated within

a Beta-distribution framework� to the risk-learning behavior of workers in injury-prone

industries whereas Viscusi (1990, 1991) applies the same learning model to the question

of how far smokers underestimate their health risk. The present paper�s learning model is

closely related to Viscusi�s formal approach in that his additive Beta-distribution model

obtains as the special case of my model whenever there is no ambiguity. In case the

agent expresses ambiguity attitudes, however, the neo-additive Bayesian estimator does

not converge to the underlying true probability and it stands to hope that my approach

may explain real-life learning that is not compatible with standard models of Bayesian

learning. For example, we argue in Ludwig and Zimper (2011a) that models of con-

sistent Bayesian learning cannot explain the age-dynamics of mortality expectations as

expressed in the health retirement study according to which objective survival probabil-

ities and subjective survival beliefs diverge rather than converge when more statistical

information becomes available.

Rational expectations in �nancial economics. While Savage�s approach establishes con-

ditions for the existence of subjective additive probability measures, Muth�s (1961)

rational expectations hypothesis stipulates that subjective estimators correctly re�ect

average objective probabilities which drive economic fundamentals. The rational ex-

pectations hypothesis is thereby justi�ed by the assumption that agents are standard

Bayesian learners whose subjective probabilities have already converged to their objec-

tive counterparts. Especially in �nancial economics, however, the rational expectations

hypothesis has come under heavy scrutiny. In particular, there exist several di¤erent

proposals for relaxing the rational expectations assumption to address so-called asset

pricing puzzles (cf., e.g., Mehra and Prescott 1985; Barberis and Thaler 2003). Along

this line, Cecchetti, Lam and Mark (2000) consider the implications of rules of thumb

with respect to estimates of the consumption growth process and Abel (2002) studies

the e¤ects of pessimism and doubt on asset returns. Related to this literature but with

less of an ad hoc �avor are robust control applications to asset pricing puzzles where

pessimism results from an agent�s caution in responding to concerns about model mis-

speci�cation (Hansen, Sargent and Tallarini 1999; Hansen and Sargent 2001; Maenhout

2004; Hansen and Sargent 2007). An apparent drawback of both approaches is, however,

their incompatibility with standard learning models with Bayesian features or overtones

by which subjective beliefs converge to their objective counterparts in the long-run, cf.

Barsky and DeLong (1993), Timmermann (1993), Brav and Heaton (2002), Cogley and

Sargent (2008) and Adam, Marcet and Nicolini (2008). As a potential contribution to

this �nancial economics literature, the non-converging Bayesian learning model of this
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paper provides a consistent theoretical foundation for why a subjective estimator may

remain biased even in the long-run. Similar to the learning models considered in this

paper, we develop and calibrate� within a normal distribution framework� in Ludwig

and Zimper (2011b) a model of Choquet Bayesian learning of the consumption growth

rate that results in a biased subjective estimator for the stochastic discount factor. As

a consequence, our approach of non-additive Bayesian learning may, at least partially,

explain the so-called risk-free rate puzzle according to which a realistically calibrated

standard consumption based asset pricing model yields a return on risk-free assets of

about 5%� 6% compared to a real-world actual risk-free rate in the range of 1� 2%.

Alternative models of learning under ambiguity. Marinacci (1999, 2002) studies a non-

Bayesian learning environment with non-additive beliefs whereby he considers a decision

maker who observes an experiment where the outcomes in each trial are identically and

independently distributed with respect to the decision-maker�s non-additive belief. In

this setup, Marinacci derives for (basically convex) capacities laws of large numbers as

counterparts to the additive case thereby admitting for the possibility that ambiguity

does not vanish in the long-run. While Marinacci�s approach may thus be regarded as

a frequentist approach towards non-additive probabilities, our approach is a Bayesian

one according to which an agent has a subjective prior belief over the whole event space

while he uses sample information from an objective process to update his subjective

belief.

Epstein and Schneider (2007) consider a model of learning under ambiguity for max

min expected utility (MMEU) preferences of Gilboa and Schmeidler (1989) which shares

with our learning model the feature that ambiguity does not necessarily vanish in the

long run. Their learning model is based on the recursive multiple priors approach of

Epstein and Schneider (2003) which goes back to Sarin andWakker (1998b, Theorem 2.1)

who consider �xed decision trees and show that updating for the information structure

of a given tree satis�es consequentialism and dynamic consistency whenever the set

of multiple priors is given as the reduced family of probability measures (=rectangular

priors in the terminology of Epstein and Schmeidler). Similar to the �xed decision

trees of Sarin and Wakker (1998b), Epstein and Schneider (2003) �x some information

structure and assume that Savage�s sure thing principle holds exactly at all observable

events. Or in the words of Siniscalchi (2010):

�Epstein and Schneider�s dynamic consistency requirement [:::] implies that

prior preferences must satisfy Savage�s Postulate P2 relative to every condi-

tioning event in the �ltration under consideration.�(p. 35)
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Linking ambiguity attitudes to a given information structure imposes strong restrictions

on the ambiguity attitudes that an agent may express. For example, an agent who

will be able to observe in the future every possible event cannot exhibit any ambiguity

attitudes within the Epstein and Schneider framework since the sure thing principle

must hold� as in Savage (1954)� at all possible events.

As one main di¤erence to Epstein and Schneider (2007), the agents of this paper�s

learning model may express ambiguity attitudes which are independent from their in-

formation partition. As another di¤erence, Epstein and Schneider establish long-run

ambiguity through the assumption that the agent permanently receives ambiguous sig-

nals formally described as a multitude of di¤erent likelihood functions at each informa-

tion stage. While this introduction of multiple likelihoods is rather ad hoc, this paper�s

axiomatically founded approach o¤ers a straightforward explanation for the possible ex-

istence of a long-run bias under Bayesian learning under ambiguity. Namely, the bias

of the neo-additive Bayesian estimator is the greater the more surprised the agent is by

the information he receives.

3 Choquet decision theory and neo-additive capaci-

ties

This section brie�y recalls basic elements of Choquet expected utility theory and neo-

additive capacities. CEU theory was �rst axiomatized by Schmeidler (1986, 1989) within

the Anscombe and Aumann (1963) framework, which assumes preferences over objec-

tive probability distributions. Subsequently, Gilboa (1987) as well as Sarin and Wakker

(1992) have presented CEU axiomizations within the Savage (1954) framework, assum-

ing a purely subjective notion of likelihood. Moreover, as a representation of preferences

over lotteries, CEU theory coincides with rank dependent utility theory as introduced by

Quiggin (1981, 1982). Within the context of CEU theory, properties of such capacities

are used in the literature for formal de�nitions of, e.g., ambiguity and uncertainty atti-

tudes (Schmeidler 1989; Epstein 1999; Ghirardato and Marinacci 2002), pessimism and

optimism (Eichberger and Kelsey 1999; Wakker 2001), as well as sensitivity to changes

in likelihood (Wakker 2004).

Consider a measurable space (
;F) with F denoting a �-algebra on the state space


 and a non-additive probability measure (=capacity) � : F ! [0; 1] satisfying

(i) � (;) = 0, � (
) = 1
(ii) A � B ) � (A) � � (B) for all A;B 2 F :
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The Choquet integral of a bounded function f : 
! R with respect to capacity � is
de�ned as the following Riemann integral extended to domain 
 (Schmeidler 1986):

E [f; � (d!)] =

Z 0

�1
(� (f! 2 
 j f (!) � zg)� 1) dz +

Z +1

0

� (f! 2 
 j f (!) � zg) dz

(1)

whereby I simply write E [f; �] for E [f; � (d!)]. For example, assume that f takes on

m di¤erent values such that A1; :::; Am is the unique partition of 
 with f (!1) > ::: >

f (!m) for !i 2 Ai. Then the Choquet expectation (1) becomes

E [f; �] =

mX
i=1

f (!i) � [� (A1 [ ::: [ Ai)� � (A1 [ ::: [ Ai�1)] : (2)

This paper focuses on non-additive probability measures that are de�ned as neo-

additive capacities in the sense of Chateauneuf, Eichberger and Grant (2007). Recall

that the set of null events, denoted N , collects all events that the decision maker deems
impossible.

De�nition. Fix some set of null-events N � F for the measurable space (
;F). The
neo-additive capacity, �, is de�ned, for some �; � 2 [0; 1] by

� (A) = � � �� (A) + (1� �) � � (A) (3)

for all A 2 F such that � is some additive probability measure satisfying

� (A) =

(
0 if A 2 N
1 if 
nA 2 N

(4)

and the non-additive probability measure �� is de�ned as follows

�� (A) =

8><>:
0 i¤ A 2 N
� else

1 i¤ 
nA 2 N .
(5)

Throughout this paper I restrict attention to sets of null-events N such that A 2 N
if and only if � (A) = 0, which implies � (A) = 0 (resp. � (A) = 1) if and only if

� (A) = 0 (resp. � (A) = 1). Call A an essential event whenever A =2 N and 
nA =2 N
(i.e., neither A nor its complement is null) and observe that, for any essential A, the

neo-additive capacity � in (3) simpli�es to

� (A) = � � �+ (1� �) � � (A) (6)
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with 0 < � (A) < 1. Neo-additive capacities can thus be interpreted as non-additive

beliefs that stand for deviations from additive beliefs such that a parameter � (degree

of ambiguity) measures the lack of con�dence the agent has in some subjective additive

probability measure �. The following observation� formally proved in the appendix�

extends a result (Lemma 3.1) of Chateauneuf, Eichberger and Grant (2007) for �nite

random variables to the more general case of random variables with a bounded range.

Observation 1. Let f : 
! R be an F-measurable function with bounded range. The
Choquet expected value (1) of f with respect to a neo-additive capacity (3) is then

given by

E [f; �] = � (� sup f + (1� �) inf f) + (1� �)E [f; �] . (7)

According to Observation 1, the Choquet expected value of a random variable f

with respect to a neo-additive capacity is a convex combination of the expected value

of f with respect to some additive probability measure � and an ambiguity part. If

there is no ambiguity, i.e., � = 0, then the Choquet expected value (7) reduces to the

standard expected value of a random variable with respect to an additive probability

measure. In case there is some ambiguity, however, the second parameter � measures

how much weight the decision maker puts on the least upper bound of the range of

f: Conversely, (1� �) is the weight he puts on the greatest lower bound. For high
(resp. low) values of �, the Choquet expected value E [f; �] is greater (resp. less) than

the corresponding additive expected values E [f; �] whenever the agent expresses some

ambiguity, i.e., � > 0. This formal feature gives rise to the possibility of over-estimation

(resp. under-estimation) with respect to the rational benchmark case.

4 Bayesian updating of neo-additive capacities

The Bayesian framework that I consider in this paper satis�es the so-called reduction

principle (cf., e.g., Siniscalchi 2010), that is, it reduces dynamic decision situations in

the standard way to a static Savage framework such that ex ante and ex post preferences

over Savage acts are well-de�ned. Whenever the reduction principle is satis�ed, the dy-

namic principles of consequentialism and dynamic consistency imply Savage�s sure thing

principle (Sarin and Wakker 1998b; Ghirardato 2002). As a consequence, any Bayesian

update rule that allows the expression of ambiguity attitudes cannot simultaneously

satisfy both principles.
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At �rst, I explain in some detail the relationship between consequentialism and dy-

namic consistency, on the one hand, and the sure thing principle, on the other hand.

In a next step, I am going to present the four most popular (in terms of appearances

in the literature) Bayesian update rules for non-additive probability measures whereby

the optimistic, the pessimistic as well as the full Bayesian update rule satisfy conse-

quentialism but violate dynamic consistency whereas the converse statement is true for

the Sarin-Wakker update rule. As this section�s main formal result I derive a proposi-

tion that applies all considered update rules to neo-additive capacities to obtain formal

expressions for conditional neo-additive capacities.

4.1 Consequentialism, dynamic consistency, and the sure thing
principle

As in the previous section, consider some state space 
 and some �-algebra F on 
.

Recall that a Savage act f is an F-measurable function that maps the state space 
 into
an arbitrary set of consequences X, i.e., f : 
 ! X. The event space F is supposed

to be rich enough to cover all aspects of uncertainty relevant to the decision maker.

Whenever ! 2 
 is the (unique) true state of the world and the agent has chosen Savage
act f , he ends up with the consequence f (!) after the uncertainty is resolved. Given

two Savage acts f; g, let B;:B 2 F denote two complementary events and de�ne the

Savage act fBg : 
! X as follows:

fBg (!) =

(
f (!) for ! 2 B
g (!) for ! 2 :B.

(8)

Ex ante preferences over Savage acts, denoted �, are interpreted as the decision
maker�s preferences before he receives any information. In contrast, ex post preferences

over Savage acts, denoted �B, are interpreted as preferences conditional on B, i.e., after
the decision maker has observed the occurrence of some essential event B 2 F .

De�nition: Consequentialism. For all Savage acts f; g; h; h0; h00; h000 and all essential
events B 2 F , the following condition holds for ex post preferences:

fBh �B gBh0 , fBh
00 �A gBh000. (9)

The notion of consequentialism in the context of decision trees under risk goes back

to Hammond (1989) and Machina (1989) whereas the above de�nition is closest to

Machina�s interpretation once the reduction principle is applied to decision trees:
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�The philosophy behind this approach [=consequentialism; the author] is

that the uncertainty that was involved in the rest of the tree, as represented

by the probabilities at the snipped-o¤ chance nodes and the planned choices

at the snipped-o¤ choice nodes, is now irrelevant and should be treated as if

it never existed.�(p. 1641)

In other words, (9) states that it should not matter for ex post preferences conditional

on observation B whatever consequences, governed either by h; h0; h00, or h000, might have

happened outside of B.

De�nition: Dynamic consistency. For all Savage acts f; g; h and all essential

events B 2 F , the following condition holds for the relationship between ex ante
and ex post preferences:

fBh � gBh , fBh �B gBh. (10)

In a nutshell, dynamic consistency means that a decision maker who ex ante prefers

for event B the consequences of act f to the consequences of act g will not change his

mind after the observation of B and vice versa. Finally, recall the formal de�nition of

Savage�s sure thing principle

De�nition: Sure thing principle. For all Savage acts f; g; h; h0 and all events B 2
F , the following condition holds for ex ante preferences:

fBh � gBh ) fBh
0 � gBh0. (11)

The following �nding restates� for our slightly di¤erent de�nitions of (9) and (10)� a

formal result which is already implied by Theorem 1 in Ghirardato (2002).

Observation 2. Consequentialism (9) combined with dynamic consistency (10) implies
the sure thing principle (11).

Proof: Consider any essential B 2 F . Observe that

fBh � gBh

) fBh �B gBh by (10)
) fBh

0 �B gBh0 by (9)
) fBh

0 � gBh0 by (10),

which proves the claim.�
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4.2 Bayesian update rules

A Bayesian update rule speci�es how the ex ante preference ordering � determines, for
all essential B 2 F , the ex post preference orderings �B. At �rst, I consider Bayesian
update rules such that for every essential B 2 F and every pair of Savage acts f; g there
is some Savage act h satisfying

fBh � gBh implies fBh0 �B gBh00 for all h0; h00. (12)

Such update rules obviously satisfy consequentialism since the ex post preferences are

independent of consequences that happened outside of observation B.

Gilboa and Schmeidler (1993) introduce the class of so-called h-Bayesian update rules

such that, for all non-null B and some �xed act E 2 F , h in (12) is given as

h = (x�; E;x�;:E) (13)

whereby x� denotes the best and x� denotes the worst consequence possible, which exist

by assumption. (Note that my framework uses sup and inf rather than max and min,

which is possible by Observation 1.) The di¤erent possible speci�cations of E in (13)

can result in a multitude of di¤erent h-Bayesian update rules. For example, for the so-

called optimistic (=naive) update rule, h is the constant act where E = ;. That is, under
the optimistic update rule the null-event becomes associated with the worst consequence

possible. Gilboa and Schmeidler (1993, p.41) o¤er the following psychological motivation

for this update rule:

�[...] when comparing two actions given a certain event B, the decision maker implicitly

assumes that had B not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given B [...] exhibits �happiness�that B

has occurred; the decisions are made as if we are always in �the best of all possible

worlds�.�

The corresponding optimistic Bayesian update rule for conditional beliefs of
CEU decision makers is given by

�opt (A j B) = � (A \B)
� (B)

: (14)

For the pessimistic (=Dempster-Shafer or maximum likelihood) update rule h is the

constant act where E = 
, associating with the null-event the best consequence possible.

Gilboa and Schmeidler (1993, p.41):
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�[...] we consider a �pessimistic�decision maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.�

The corresponding pessimistic Bayesian update rule for CEU decision makers is

�pess (A j B) = � (A [ :B)� � (:B)
1� � (:B) : (15)

A further updating rule, which does not belong to the class of h-Bayesian update rules

but satis�es (12) and therefore consequentialism, is the so-called full (or generalized)

Bayesian update rule. The full Bayesian update rule is popular in the literature because

it avoids the extreme updating behavior of the optimistic and pessimistic update rules.

More speci�cally, suppose that, for all acts f; g,

f �B g if and only if fBh � gBh (16)

such that h is the conditional certainty equivalent of g, i.e., h is the constant act such that

g �B h. The corresponding full Bayesian update rule for non-additive probability
measures is then given as follows (Eichberger, Grant, and Kelsey 2006):

� (A j B) = � (A \B)
� (A \B) + 1� � (A [ :B) (17)

for A;B 2 F such that B 6= ;.

Finally, I consider the Sarin-Wakker update rule (Sarin and Wakker 1998a),
which violates consequentialism but satis�es dynamic consistency. Let Df [A] 2 F
denote an event that dominates event A with respect to f in the sense thatDf [A]\A = ?
and f (!) � f (!0) � f (!00) for all ! 2 Df [A], !0 2 A, and !00 2 : (Df [A] [ A). The
Choquet expected value (2) can then be rewritten as

E [f; � (d!)] =
X
!2


f (!) � ~� (Ai) (18)

where the decision weight ~� is given by

~� (Ai) = � (Ai [Df (Ai))� � (Df (Ai)) . (19)

Sarin and Wakker (1998a) propose the following act-dependent update rule in terms of

conditional decision weights

~�f (A j B) =
� ((A \B) [Df [A \B])� � (Df [A \B])

� (B [Df [B])� � (Df [B])
(20)
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for essential A;B 2 F , whereby

E [f; ~�f (d! j B)] =
X
!2


f (!) � ~�f (A j B) . (21)

The following proposition is proved in the appendix.

Proposition 1: Let �; � 2 [0; 1] and consider essential events A;B.

(i) An application of the full Bayesian update rule (17) to a prior belief (6) results
in the posterior belief

�FB (A j B) = �FBB � �+
�
1� �FBB

�
� � (A j B) (22)

such that

�FBB =
�

� + (1� �) � � (B) . (23)

(ii) An application of the optimistic update rule (14) to a prior belief (6) results
in the conditional belief

�opt (A j B) = �optB +
�
1� �optB

�
� � (A j B) (24)

with

�optB =
� � �

� � �+ (1� �) � � (B) . (25)

(iii) An application of the pessimistic update rule (15) to a prior belief (6) results
in the conditional belief

�pess (A j B) = (1� �pessB ) � � (A j B) (26)

with

�pessB =
� � (1� �)

� � (1� �) + (1� �) � � (B) . (27)

(iv) An application of the Sarin-Wakker update rule (15) to a prior belief (6)
results in the conditional decision weight

~�SWf (A j B) = � (A j B) . (28)

Remark 1. While the question �Which Bayesian updating rules are actually used
by real-life individuals?�is ultimately an empirical one, I know (thanks to an anonymous

referee) of only one experimental investigation which directly addresses this question.

16



Namely, Cohen, Gilboa, Ja¤ray, and Schmeidler (2000) investigate the question whether

the pessimistic� in their terms: the maximum likelihood (=ML)� update rule or the

full Bayesian (=FB) update rule is consistent with ambiguity averse subjects� choice

behavior. Their experimental �ndings establish an approximate ratio of 2:1 in favor for

the full Bayesian update rule. More speci�cally, Cohen et al. (2000) write:

�Thus, out of the remaining 33 subjects who must have multiple priors in

sample I, 12 chose in accordance with MLU prediction (36, 36%), whereas 19

of them made choices consistent with FBU (57, 58%), and 2 were inconsistent

with either theory (6, 06%). Results in sample II are similar: out of 43

subjects, MLU accounts for the choices of 10 of them (23, 25%), FBU for

the choices of 23 others ( 53, 5%), whereas the choices of the remaining 10

(23, 25%) are unexplained.�(p. 130)

Remark 2. Recall that the MMEU theory of Gilboa and Schmeidler (1989) for-

mally coincides with CEU theory restricted to convex capacities (e.g., neo-additive ca-

pacities for which the � parameter equals zero) whenever the set of priors is given as

the core of the convex capacity. Hanany and Klibano¤ (2007, 2009) establish the exis-

tence of dynamically consistent� but consequentialism-violating� update rules for the

MMEU framework by proving the existence of a dynamically consistent update rule

which uniquely maximizes ambiguity in terms of the more-ambiguous-than relation as

introduced by Ghirardato and Marinacci (2002). An interesting question for future re-

search is whether this ambiguity maximizing update rule for multiple priors is formally

equivalent to the Sarin-Wakker update rule for non-additive probability measures or not.

5 Bayesian learning: Information structure and ad-

ditive beliefs

This section derives in some mathematical detail a closed-form learning model with ad-

ditive beliefs as introduced to the economics literature by Viscusi and O�Connor (1984)

and Viscusi (1985). The reader who wants to skip the mathematical details may imme-

diately jump to the� intuitive� additive Bayesian estimator (37).

Consider the situation of an agent who is uncertain about the probability with which

an event, say H (e.g., a coin comes up heads), occurs but who observes a statistical

experiment with n independent trials where H occurs in every trial with identical prob-

ability. Formally, let us consider a probability space (�;
;F) such that � denotes a
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subjective additive probability measure de�ned on the events in F . In what follows, I
describe the construction of the state space, of the event space and of the additive prob-

ability measure. The event space is thereby closely related to the information structure,

which I also construct in some detail. Finally, I establish consistency of the additive

estimator for this closed-form model of Bayesian learning.

Construction of the state space 
. Denote by � = (0; 1) the parameter-space that

collects all possible values of the �true�probability of H in any given trial and denote by

S1 = �1i=1Si with Si = fH;Tg, i = 1; 2; :::, the sample-space that collects all possible
in�nite sequences of outcomes. Furthermore, de�ne the state space


 = (0; 1)� S1,

with generic element ! = (�; s1). Observe that this de�nition excludes the possibility

that the true probability is degenerate, i.e., either zero or one.

Construction of the information structure. The information structure of the learning

model is described by an in�nite sequence of ever �ner information partitions P1;P2; :::
such that, for n = 1; 2; :::, Pn consists of all information cells of the following form

(0; 1)� fx1g � :::� fxng � Sn+1 � :::

with xi 2 Si, i = 1; 2; ::; n. According to this information structure, the period n

agent does not make any observation about the true parameter value but he observes

the exact sample information up till period n. The distinctive feature of any model of

Bayesian learning of a parameter value is that learning exclusively follows from (indirect)

likelihood considerations but never from (direct) observation of the parameter value.

Loosely speaking, this feature gives rise to the possibility that the agent of our model may

never learn the true parameter value when his likelihood considerations are described

by a non-additive probability measure.

Construction of the event space F . Endow (0; 1) with the Euclidean metric and

denote by B the Borel �-algebra in (0; 1), i.e., the smallest �-algebra containing all open
subsets of the open Euclidean unit interval. Similarly, endow S1 with the discrete metric

and denote by S1 the Borel �-algebra in S1, i.e., S1 coincides with the power-set of

S1. The event space F is then de�ned as the �-algebra generated by the members in

B 
 S1, where B 
 S1denotes the usual product algebra of B and S1.
In a next step, de�ne by �n the �-algebra generated by Pn, for n = 1; 2; :::. That

is, �n is the smallest collection of subsets of 
 that is a �-algebra which contains all
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information cells in Pn. Observe that �1 � �2 � ::: � F so that the sequence of

�-algebras (�1;�2; :::;F) constitutes a �ltration.

Construction of the additive probability measure �. De�ne ~� : 
 ! (0; 1) such that

~� (�; s1) = � the F-measurable random variable that assigns to every state of the world
the true probability of outcome H. For our purpose it is convenient to denote by � the

event in F such that the value � 2 � is the true probability, i.e.,

� = f! 2 
 j ~� (!) = �g . (29)

I assume that the agent�s prior over ~� is given as a Beta distribution with parameters

�; � > 0 so that

� (�) = K�;��
��1 (1� �)��1 (30)

for � 2 (0; 1) such that the normalizing constant is given as

K�;� =
� (�+ �)

� (�) � (�)

with the gamma function de�ned as � (y) =
1R
0

xy�1e�xdx for y > 0. De�ne by Xn : 
!

f0; 1g, with n = 1; 2; :::, the �n-measurable random variable that takes on value one if

a head occurs in the n-th trial and zero otherwise. I assume that, conditional on the

parameter-value � 2 (0; 1), each Xn is Bernoulli distributed with probabilities

� (f! 2 
 j Xn (!) = xg j �) = �x (1� �)1�x for x 2 f0; 1g . (31)

Furthermore, de�ne by In : 
! f0; :::; ng the �n-measurable random variable counting

the number of heads occurring in n trials, i.e., In =
Pn

k=1Xk. For convenience, I denote

by Ikn the event in F such that outcome H has occurred k-times in the n �rst trials, i.e.,

Ikn = f! 2 
 j In (!) = kg . (32)

Since the Xn are independently and identically Bernoulli distributed, each In is, condi-

tional on the parameter-value � 2 (0; 1), binomially distributed with probabilities

�
�
Ikn j �

�
=

�
n

k

�
�k (1� �)n�k for k 2 f0; :::; ng . (33)

By Bayes� rule we obtain the following posterior probability that � is the true value

conditional on information Ikn

�
�
� j Ikn

�
=

�
�
� \ Ikn

�
� (Ikn)

(34)

=
�
�
Ikn j �

�
� (�)R

[0;1]
� (Ikn j �)� (�) d�

(35)

= K�+k;�+n�k�
�+k�1 (1� �)�+n�k�1 . (36)
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The Bayesian estimator. The agent�s prior estimator of the true probability of H is

de�ned as the expected value of ~� with respect to the prior distribution, i.e., E [~�; �].

Accordingly, the agent�s posterior estimator of � conditional on information Ikn is de�ned

as the expected value of ~� with respect to the resulting posterior distribution, i.e.,

E
�
~�; �

�
� j Ikn

��
. In the case of a Beta prior we therefore obtain as the prior estimator

the expected value of the Beta distribution, implying E [~�; �] = �
�+�

. Furthermore, since

the agent�s posterior �
�
� j Ikn

�
is itself a Beta distribution with parameters �+k; �+n�k,

we have E
�
~�; �

�
� j Ikn

��
= �+k

�+�+n
as the agent�s posterior estimator of � conditional on

information Ikn. Or equivalently,

E
�
~�; �

�
� j Ikn

��
=

�
�+ �

�+ � + n

�
E [~�; �] +

�
n

�+ � + n

�
k

n
(37)

where k
n
is the sample mean. That is, the agent�s posterior estimator of the probability

of H is a weighted average of his prior estimator and the sample mean whereby the

weight attached to the sample mean increases in the number of trials. If the number

of trials approaches in�nity, i.e., n ! 1, the sample mean information Ikn converges,
by the strong law of large numbers, with probability one to the sample information I�

according to which outcome H has occurred with relative frequency �, i.e., the true

probability of outcome H. As a consequence, we obtain the following consistency result

for this closed-form model of Bayesian learning with additive beliefs.

Observation 3: The posterior estimator E
�
~�; �

�
� j Ikn

��
of the probability of H

converges with probability one to the true probability � as n approaches in�nity.

Remark. Observe that the convergence result of Observation 3 holds for all true
parameter values in (0; 1) so that it is somewhat stronger than Doob�s (1949) consis-

tency theorem which establishes convergence of Bayesian estimators only for almost all

true parameter values. Related to Doob�s consistency theorem is Blackwell and Dubins�

(1962) convergence theorem for di¤erent additive probability measures within the fre-

quentist framework. In particular, Diaconis and Freedman (1986, Theorem 3) establish

a formal link between Doob�s consistency theorem and Blackwell and Dubins�conver-

gence theorem by basically showing that the Bayesian estimate is consistent if and only

if any corresponding conditional probability measures merge in the weak topology.
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6 Bayesian learning with neo-additive capacities

In this section I formally combine the updating of neo-additive capacities, as derived

in Proposition 1, with the additive learning model (37) to derive closed form models of

Bayesian learning under ambiguity. Formally, I now consider the neo-additive probability

space (�;
;F). As a generalization of the Bayesian learning model discussed in the
previous section, we have now a neo-additive prior about the unknown parameter �

such that

� (�) = ��+ (1� �) �K�;��
��1 (1� �)��1 , (38)

for � 2 (0; 1), i.e., the additive part of this prior is the Beta distribution with parameters
� and �. Accordingly, the agent�s prior estimator of the true value of � is now given as

the Choquet expected value of ~� with respect to his neo-additive prior, i.e.,

E [~�; �] =

Z



~� (!) d� (�) (39)

= ��+ (1� �)E [~�; �] (40)

by Proposition 1 and the fact that inf ~� = 0 and sup ~� = 1. Observe that this prior

estimator is itself a neo-additive capacity. Combining the results of Proposition 1 with

the posterior estimator

E
�
~�; �

�
� j Ikn

��
=

Z



~� (!) d�
�
� j Ikn

�
(41)

gives the following proposition, which constitutes this paper�s main formal result.

Proposition 2. Suppose that the agent receives sample information Ikn. Contingent on
the applied update rule we obtain the following conditional neo-additive beliefs and

posterior estimators of parameter � 2 (0; 1) whereby E
�
~�; �

�
� j Ikn

��
is given by

(37).

(i) Full Bayesian updating.

�FB
�
� j Ikn

�
= �FBIkn �+

�
1� �FBIkn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1 (42)

with

�FBIkn =
�

� + (1� �) � � (Ikn)
(43)

so that

E
�
~�; �FB

�
� j Ikn

��
= �FBIkn �+

�
1� �FBIkn

�
� E
�
~�; �

�
� j Ikn

��
: (44)
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(ii) Optimistic updating.

�opt
�
� j Ikn

�
= �opt

Ikn
+
�
1� �opt

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1 (45)

with

�opt
Ikn
=

� � �
� � �+ (1� �) � � (Ikn)

(46)

so that

E
�
~�; �opt

�
� j Ikn

��
= �opt

Ikn
+
�
1� �opt

Ikn

�
� E
�
~�; �

�
� j Ikn

��
: (47)

(iii) Pessimistic updating.

�pess
�
� j Ikn

�
=
�
1� �pess

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1 (48)

with

�pess
Ikn

=
� � (1� �)

� � (1� �) + (1� �) � � (Ikn)
(49)

so that

E
�
~�; �pess

�
� j Ikn

��
=
�
1� �pess

Ikn

�
� E
�
~�; �

�
� j Ikn

��
: (50)

(iv) Sarin-Wakker updating.

~�SW~�
�
� j Ikn

�
= K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1 (51)

so that

E
�
~�; ~�SW~�

�
� j Ikn

��
= E

�
~�; �

�
� j Ikn

��
. (52)

Except for Sarin-Wakker updating, where the agent�s estimator coincides with the

additive estimator, the above neo-additive estimators are given as a weighted average

between the additive estimator E
�
~�; �

�
� j Ikn

��
and the numbers � (for full Bayesian

learning), 1 (for optimistic Bayesian learning), and 0 (for pessimistic Bayesian learning),

respectively. Thus, Bayesian learning in accordance with the update rules (i) - (iii) does

not� in general� coincide with the additive estimator E
�
~�; �

�
� j Ikn

��
whenever there

is some positive initial degree of ambiguity, i.e., � > 0. More speci�cally, observe that

for the update rules (i) - (iii) the limit estimator�s weight on the true parameter value

decreases in the prior additive probability attached to the limit information so that, in

general, the estimate E
�
~�; �

�
� j Ikn

��
is the more biased the smaller �

�
Ikn
�
is. As an

intuitive explanation of this formal relationship one could say that that agent�s learning

behavior puts the less weight on the sample information the more he is surprised to

actually receive this information.
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Under this paper�s distributional assumptions we obtain the following formal expres-

sion for the probability �
�
Ikn
�
.

Observation 4: The prior additive probability of receiving information Ikn is given by

�
�
Ikn
�
=

�
n

k

�
(�+ k � 1) � ::: � � � (� + n� k � 1) � ::: � �

(�+ � + n� 1) � ::: � (�+ �) : (53)

In the limit of a Bayesian learning process, the agent�s posterior estimator of � will

then converge with probability one to E [~�; � (� j I�)] where I� denotes the information
according to which the agent has observed the occurrence of outcome H with relative

frequency � 2 (0; 1). Suppose, for example, that � = � = 1 so that the agent�s beta

prior is given as the uniform distribution. Substituting � = � = 1 in (53) gives

�
�
Ikn
�
=

�
n

k

�
k! (n� k)!
(n+ 1) � n! (54)

=
1

n+ 1
. (55)

Thus, if the agent�s prior is given by the uniform distribution, ex ante he regards every

possible observation regarding the sample mean as equally likely. Taking the limit of (55)

shows that � (I�) = 0 for all I� which gives us results (i)-(iii) of the following corollary.

Result (iv) of the corollary follows from Proposition 2 (iv) combined with Observation

3.

Corollary 1. Consider the case that � = � = 1, i.e., the agent�s prior over ~� is given
as the uniform distribution. Contingent on the applied update rule, the agent�s

estimator of the true probability of outcome H converges with probability one to

the following values as n becomes large.

(i) Full Bayesian updating.

E
�
~�; �FB (� j I�)

�
= �. (56)

(ii) Optimistic updating.
E
�
~�; �opt (� j I�)

�
= 1. (57)

(iii) Pessimistic updating.
E [~�; �pess (� j I�)] = 0. (58)

(iv) Sarin-Wakker updating.

E
�
~�; ~�SW~� (� j I�)

�
= �. (59)
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7 Concluding remarks

In this paper I have developed closed-form models of Bayesian learning for agents that

express ambiguity attitudes by violating Savage�s sure thing principle. The paper demon-

strates that� for a neo-additive capacity framework� Bayesian learning with respect to

either the full Bayesian, the optimistic, or the pessimistic update rule does not, in gen-

eral, converge towards an event�s true probability but results in a neo-additive capacity

that stays bounded away from this probability. For example, Corollary 1 describes the

extreme situation in which the agent completely ignores the statistical information in the

limit of his learning process because he regards this information as highly �unlikely�. In

that case, Bayesian learning only re-enforces the agent�s ambiguity attitudes expressed

by his neo-additive beliefs and his update rule.

The paper also demonstrates that Bayesian learning with respect to the Sarin-Wakker

update rule implies convergence towards the event�s true probability. The problem with

this �nding, however, is its lack of descriptive appeal. Namely, Sarin-Wakker updating

implies in our framework the arguably unrealistic feature that agents get completely rid

of their ambiguity attitudes after only one round of updating.

To sum-up: The analysis of this paper suggests that Bayesian learners do not, in

general, reduce their ambiguity through the observation of more and more statistical

information. To the contrary, the formal �ndings about full Bayesian, optimistic and

pessimistic updating demonstrate that for perfectly reasonable update rules an agent�s

ambiguity will increase rather than decrease through Bayesian learning.
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Appendix: Formal proofs

Proof of Observation 1: By an argument in Schmeidler (1986), it su¢ ces to restrict
attention to a non-negative function f so that

E [f; �] =

Z +1

0

� (f! 2 
 j f (!) � zg) dz,

which is equivalent to

E [f; �] =

Z sup f

inf f

� (f! 2 
 j f (!) � zg) dz (60)

since f bounded. We consider a partition Pn, n = 1; 2; :::, of 
 with members

Akn = f! 2 
 j ak;n < f (!) � bk;ng for k = 1; :::; 2n

such that

ak;n = [sup f � inf f ] � (k � 1)
2n

+ inf f

bk;n = [sup f � inf f ] � k
2n
+ inf f .

De�ne the step functions an : 
! R and bn : 
! R such that, for ! 2 Akn, k = 1; :::; 2n,

an (!) = ak;n

bn (!) = bk;n.

Obviously,

E [an; �] � E [f; �] � E [bn; �]

for all n and

lim
n!1

E [bn; �]� E [an; �] = 0.

That is, E [an; �] and E [bn; �] converge to E [f; �] for n ! 1. Furthermore, observe
that

inf an = inf f for all n, and

sup bn = sup f for all n.

Since limn!1 inf bn = limn!1 inf an and E [bn; �] is continuous in n, we have

lim
n!1

E [bn; �] = �
�
� lim
n!1

sup bn + (1� �) lim
n!1

inf bn

�
+ (1� �) lim

n!1
E [bn; �]

= � (� sup f + (1� �) inf f) + (1� �)E [f; �] .
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In order to prove Observation 1, it therefore remains to be shown that, for all n,

E [bn; �] = � (� sup bn + (1� �) inf bn) + (1� �)E [bn; �] .

Since bn is a step function, (60) becomes

E [bn; �] =
X
Akn2Pn

�
�
A2

n

n [ ::: [ Akn
�
� (bk;n � bk�1;n)

=
X
Akn2Pn

bk;n �
�
�
�
A2

n

n [ ::: [ Akn
�
� �

�
A2

n

n [ ::: [ Ak�1n

��
,

implying for a neo-additive capacity

E [bn; �] = sup bn
�
��+ (1� �)�

�
A2

n

n

��
+
2n�1X
k=2

bk;n (1� �)�
�
Akn
�

+ inf bn

"
1� ��� (1� �)

2nX
k=2

�
�
Akn
�#

= �� sup bn + (1� �)
2nX
k=1

bk;n�
�
Akn
�
+ inf bn [� � ��]

= � (� sup bn + (1� �) inf bn) + (1� �)E [bn; �] .

�

Proof of Proposition 1.
Part (i). An application of the full Bayesian update rule to a neo-additive capacity

gives

�FB (A j B) =
� � �+ (1� �) � � (A \B)

� � �+ (1� �) � � (A \B) + 1� (� � �+ (1� �) � � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A)� � (:B) + � (A \ :B))

=
� � �+ (1� �) � � (A \B)
1 + (1� �) � (�� (:B))

=
� � �+ (1� �) � � (A \B)

� + (1� �) � � (B)

=
� � �

� + (1� �) � � (B) +
(1� �) � � (B)

� + (1� �) � � (B)� (A j B)

= �FBB � �+
�
1� �FBB

�
� � (A j B)
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such that

�FBB =
�

� + (1� �) � � (B) .

�
Part(ii). An application of the optimistic Bayesian update rule to a neo-additive

capacity gives

�opt (A j B) =
� � �+ (1� �) � � (A \B)
� � �+ (1� �) � � (B)

=
� � �

� � �+ (1� �) � � (B) +
(1� �) � � (B)

� � �+ (1� �) � � (B) � � (A j B)

= �optB +
�
1� �optB

�
� � (A j B)

such that

�optB =
� � �

� � �+ (1� �) � � (B) .

�
Part (iii). An application of the pessimistic Bayesian update rule to a neo-additive

capacity gives

�pess (A j B) =
� (A [ :B)� � (:B)

1� � (:B)

=
� � �+ (1� �) � � (A [ :B)� � � �� (1� �) � � (:B)

1� � � �� (1� �) � � (:B)

=
(1� �) � � (: (:A \B))� (1� �) � � (:B)

1� � � �� (1� �) � � (:B)

=
(1� �) � (1� � (:A \B))� (1� �) � (1� � (B))

1� � � �� (1� �) � � (:B)

=
(1� �) � (� (B)� � (:A \B))
1� � � �� (1� �) � (� (:B))

=
(1� �) � (� (B)� � (B)� (:A j B))
1� � � �� (1� �) � (� (:B))

=
(1� �) � (� (B)� � (B) (1� � (A j B)))

1� � � �� (1� �) � � (:B)
= (1� �pessB ) � � (A j B)

such that

�pessB =
� (1� �)

� (1� �) + (1� �) � � (B) .

�
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Part (iv). An application of the Sarin Wakker update rule to a neo-additive capacity
gives

~�f (A j B) =
� � �+ (1� �)� ((A \B) [Df [A \B])� [� � �+ (1� �)� (Df [A \B])]

� � �+ (1� �)� (B [Df [B])� [� � �+ (1� �)� (Df [B])]

=
� ((A \B) [Df [A \B])� � (Df [A \B])

� (B [Df [B])� � (Df [B])

=
� (A \B)
� (B)

,

since E and Df [E] are, by construction, disjoint events for all E.

Proof of Observation 4: An application of Bayes�rule gives

�
�
Ikn
�
=

�
�
Ikn j �

�
� (�)

� (� j Ikn)

=

�
n
k

�
�k (1� �)n�k � (�) �K�;��

��1 (1� �)��1

K�+k;�+n�k��+k�1 (1� �)�+n�k�1

=

�
n

k

�
K�;�

K�+k;�+n�k

=

�
n

k

�
� (�+ �)

� (�) � (�)

� (�+ k) � (� + n� k)
� (�+ � + n)

=

�
n

k

�
� (�+ �)

� (�+ � + n)
� � (�+ k)
� (�)

� � (� + n� k)
� (�)

=

�
n

k

�
� (�+ �)

(�+ � + n� 1) � ::: (�+ �) � � (�+ �)

�(�+ k � 1) � ::: � � � � (�)
� (�)

�(� + n� k � 1) � ::: � � � � (�)
� (�)

=

�
n

k

�
(�+ k � 1) � ::: � � � (� + n� k � 1) � ::: � �

(�+ � + n� 1) � ::: � (�+ �)

whereby the last equality readily follows from the fact that � (x) = (x� 1) � � (x� 1)
for x > 1 (cf. Theorem 8.18 in Rudin 1976).�
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