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We present a model in which agents can devote energies to production or to
appropriating the fruits of other people’s labour. We investigate the situations
under which such transfers are equilibria, i.e. will reproduce themselves over
time. We note that many of worst outcomes can be observed when players are
relatively evenly matched and when the social environment makes predatory
activity very successful. In these situations we may even see economic collapse.
The introduction of property rights has many of the expected e¤ects, with
rewards to productive activity increasing. Nevertheless these gains materialise
only if the protection is stronger in areas where the more productive player has a
comparative advantage. It is possible to achieve more cooperative outcomes in
the repeated game, but paradoxically this might lead to higher levels of income
transfers.

¤The current form of the paper owes an enormous debt to Anne Case, who kept prod-
ding me to clarify what my abstract model had to say about real issues. If I have not
succeeded better in this, it is certainly not her fault. Comments from Stefan Schirmer and
Johannes Fedderke improved the product markedly.
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Explaining the wealth and poverty of nations and individuals has been
one of the abiding concerns of political economy. The existence or absence
of property rights has often been seen as a crucial variable in explaining the
di¤erent trajectories of di¤erent societies. Landes (1998), for example, has
suggested that the reason why Europe grew faster than China, was that the
fragmented nature of political power imposed limits on the ability of the
ruling classes to extract resources from the producers.

The concern with the impact of predatory behaviour on the well-being of
society goes back at least to Adam Smith. Indeed, Mittermaier (1999) has
suggested that Adam Smith’s famous “invisible hand” argument should in
fact be interpreted as an argument about the deleterious e¤ects of predation:
If everyone were only to concentrate on producing the maximum that they
were capable of, then, of necessity, the aggregate product would be as large
as it could possibly be. It is when people concentrate their energies not on
production, but on the appropriation of other people’s output that the overall
product falls short of the maximum possible.

Predation involves two costs: …rstly there is the production foregone as
a result of the energy devoted to it; secondly there is the cost incurred by
producers in protecting themselves against it. Indeed, parasitism may be
viewed as a negative sum game: the total product is lower when one agent
is parasitic than when everyone cooperates.

This raises an interesting set of issues. If predation removes the fruits of
honest labour would it not lower the incentives for honest people to produce?
If so, is there not the possibility of landing in a downward spiral in which
eventually no one produces? Can predation lead to the collapse of societies,
or would it be possible to have an “equilibrium” level of parasitism? And if
so, is this equilibrium unique or is it possible to have more or less parasitic
types of equilibria?

The historical evidence suggests that situations in which a class of people
systematically extract resources from another group can persist for very long
times. Landes’s (1998) account of China is a case in point. He suggests that
the imperial Chinese model was based on the link between “numbers, food
and power” (1998, p. 23). Lots of cultivators were mobilised on potentially
arable land, to grow crops that in turn supported the armies and the cen-
tralised administration. Centralised control in turn allowed the deployment
of yet more cultivators on yet more arable land and so on. Productivity im-
provements in this system (such as irrigation schemes) ultimately bene…tted
the imperial centre more than the cultivators.
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The Landes account thus suggests that it is not only the existence of a
predatory equilibrium which needs explanation, but also how the equilibrium
shifts in relationship to technological and social change. Conversely the na-
ture of the equilibrium (i.e. how exploitative it is) will presumably in‡uence
the possibility of growth and accumulation.

In this paper we will be concerned to model situations in which there is
a long-term equilibrium in which one party ends up continously transferring
resources to another one. We will try to explain the levels of the transfers as
well as the level of overall production in such societies. We will assess how
changes in productivity, in the technology of appropriation and in wealth
a¤ect the outcome of the interaction. We will ask the following kinds of
questions:

² How does inequality a¤ect the type of transfers that occur? The Landes
account of Chinese development suggests that there are situations in
which it is the rich and powerful who steal from the poor. Under what
circumstances might we expect this kind of behaviour and when is it
the poor who steal from the rich? What is the impact of inequality on
the output of the society?

² What is the impact of productivity change? We might assume that
the more productive a person is, the greater the cost to that person of
engaging in parasitic activities; also, the more tempting it would be for
the less productive members of that society to sponge o¤ her. Who,
therefore, ends up bene…tting from productivity improvements?

² What happens if the technology of appropriation changes? The develop-
ment of certain types of technologies (guns, centralised bureaucracies,
deeds registries) might make it easier or more di¢cult to appropri-
ate the output. One would assume that changes that make claiming
activity more decisive would lead to a shift towards non-productive
activities.

² What is the impact of property rights? Landes’s central thesis is that
property rights are crucial to the long-run performance of economies.
How might we model this? What other impacts might property rights
have on the way the economy functions?

² Under what circumstances might we expect predation to be minimised?
Is the Smithian idea of a society in which everyone expends maximal
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energy on production utopian, or are there institutional arrangements
that would bring it about?

The model through which we will investigate these and other questions is
a variant of the “parasitism” model (Wittenberg 1999). Our starting point
is a two-player interaction in which each player has a choice about how much
energy to expend on production and how much on the appropriation of the
product that has already been produced. The optimal level of production
versus claiming behaviour will be dependent also on the decisions of the
opponent and it is the nature of this strategic interaction which drives the
analysis. We allow players to di¤er both in how productive they are, as well
as in how e¤ective they are in making claims.

We consider initially the short-run, one-period interactions and the na-
ture of the equilibria that might be attained. We then consider how these
di¤er from the long-run equilibria. It transpires that in the long run the
level of inequality become endogenous to the model. The payo¤s attained
in each period by each player determine the long-run allocation of wealth.
Consequently our model can be thought of not only as a model of equilibrium
transfer of resources, but also of equilibrium inequality.

The structure of the discussion will be as follows. In Section 1 we present
the simplest version of the one-period interaction. In this model we do not,
as yet introduce property rights. We show how changes in inequality, pro-
ductivity and claiming strength a¤ect the choice between production and
predation. In Section 2 we endogenise the level of inequality (by consider-
ing the long-run equilibrium). We interpret this model as being perhaps the
closest in spirit to the peasant-feudal lord interaction. We consider a few
other archetypal patterns of interaction. In Section 3 we show what happens
when the decisiveness of claiming increases to relatively high levels. It tran-
spires that it is then possible to get multiple equilibria. Furthermore small
shifts in the control parameters may then lead to catastrophic jumps in the
equilibrium levels of inequality and production.

Section 4 shows that there are a number of di¤erent ways in which one
might think about the costs of predation, e.g. direct transfers, investment in
claiming activities and opportunity costs. These do not necessarily highlight
the same features of the situation. We show that predation seems to be
most costly when the players are relatively evenly matched. In Section 5
we extend the model to include multi-player interactions. We show that to
some extent the behaviour of the model does, indeed, conform to the stylised
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picture presented by Landes of the Chinese imperial state.
In Section 6 we develop a more elaborate model in which we now have

property rights. We proceed to investigate how the resultant equilibria di¤er
from those discussed earlier. We note that in some circumstances even a
small amount of predation can have enormous consequences, for the level
of inequality and production in society. In most sensible cases it turns out,
however, that property rights improve the conditions of the more productive
player. This has important bene…ts for the level of output and growth rates
of the economy.

In Section 7 we consider whether there are any prospects of achieving
Pareto superior outcomes to the Nash equilibria considered throughout this
paper. Given the repeated nature of the interactions in our model, this ought
to be possible. The major points to consider, however, are that stages of our
game build on each other and do not simply repeat the same set of options.
This means that each player cannot a¤ord to adopt strategies which would
e¤ectively remove her from the interaction.

We conclude by re‡ecting back on some of the issues raised earlier. Proofs
and more detailed analytical discussion are provided in the appendix.

Throughout the discussion we assume that the players interact without
the mediation of an external agency or state, i.e. our agents exist in a
Hobbesian “state of nature” or in Hirshleifer’s (1995) state of “anarchy”.
This assumption is not only to simplify the analysis, but also in view of the
fact that the state can frequently itself be seen as a party to the interaction,
or as an agent of one of the players.

1 Description of the basic model

Hirshleifer’s (1995) anarchy model in fact serves as the starting point for
our analysis. In this model he imagines that there is a …xed resource (e.g. a
gold …eld or rich agricultural area) which is available for utilisation. However
there is no external agency which allocates claims: the agents have to stake
out and …ght for their claim, as well as productively exploit their portion
of the overall resource. Each agent is, as it were, involved in a Hobbesian
…ght of all against all. The problem her is how to split the available resources
between productive e¤ort and …ghting e¤ort so as to maximise overall income.
Devoting more resources now to …ghting e¤ort will lead to greater resources,
which in the future will lead to greater income. On the other hand, increasing
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…ghting e¤ort means that current production is at a lower level.
One of the limitations of this model is that the underlying resource base is

not a¤ected by the con‡ict. Although there are costs to engaging in con‡ict
in terms of production foregone, the resource base itself cannot be run down
or destroyed.

In order to deal with this problem we have modi…ed the Hirshleifer model.
In our model the con‡ict is not about a pre-given resource - it is about the
aggregate product of that society itself. As in the anarchy model, agents face
a choice: they can either contribute to production or they can expend energy
on staking claims to the output. If the agents do not spend a su¢cient
proportion of resources on production, however, they will end up …ghting
over a shrinking pie.

Formally our model can be described as follows: there are two players
A and B with initial endowments of wealth WA and WB respectively. The
choice confronting each player is what proportion of these resources to devote
to productive and to claiming activities respectively. We label the propor-
tions devoted to production as ® and ¯ respectively. We assume that the
aggregate production function is given by YAB which has the following char-
acteristics: @YAB@® > 0 , @YAB@¯ > 0 and YAB (0; 0) = 0. Indeed we will make the
more restrictive assumption that the production function is separable in the
products of A and B, i.e. YAB = YA+ YB, where YA and YB are the outputs
of A and B respectively. With this speci…cation it is possible to unambigu-
ously identify the contributions of A and B, which helps to identify whether
the …nal allocation exhibits parasitism or not. In the discussions below we
have chosen particular functional forms given by:

YA = cA (®WA)
h , YB = cB(¯WB)h (1)

where 0 · ®; ¯ · 1; cA and cB are productivity parameters and h is a return
to scale parameter. While the model can be developed for the more general
case (see Wittenberg 1999, for a discussion of the increasing returns to scale
case) we will restrict our discussion here to the situation where h = 1.

The appropriation functions gA and gB determine how the aggregate out-
put is split up between the players. We assume that gA and gB depend on
the respective energy that is put into claiming by A and B. Furthermore
we assume that gA and gB are homogeneous of degree zero in (1 ¡ ®) and
(1 ¡ ¯). This implies that the division of the product depends only on the
relative resources devoted to appropriation. In particular it implies that the
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actual contributions made to the total product are not a consideration when
the aggregate product is divided up.

As a consequence, a player that does not manage to stake any claim,
will receive nothing, even if that player has contributed the largest share of
the total output. Claiming activities should therefore not be thought of as
intrinsically illegitimate. People who do not engage in e¤orts to establish
their rights to particular resources or then to defend those rights are likely
to be taken advantage of. In this sense claiming is not only an alternative to
production, but also a necessary complement (if the other player is likely to
engage in claiming, that is).

This view of human nature is not that far fetched. Entire professions have
grown up around the establishment and enforcement of claims. Litigation,
the registration of title deeds or the registration of patents are all examples of
claiming activities in this sense. Lobbying government for welfare payments
or for a reduction of taxes would be others. Furthermore the outcomes of
these contestations need not be related to the intrinsic merits of the cases, but
may often just re‡ect the relative skills of the lawyers or politicians involved.

We assume that gA and gB are given by

gA =
sm1

sm1 + sm2
and gB =

sm2
sm1 + sm2

(2)

where s1 and s2 represent the relative strengths of players A and B in making
claims on the output. We assume that s1 is a function of (1 ¡ ®) but not of
(1 ¡ ¯) while the reverse is true of s2, with @s1

@(1¡®) ¸ 0 and @s2
@(1¡¯) ¸ 0.

The parameter m is a decisiveness parameter - it records how sensitive
the …nal division of aggregate output is to claiming behaviour. With a low
m claiming activities are relatively ine¤ective and the …nal output is more
or less equally divided. With high m claims become highly e¤ective and the
…nal shares come to re‡ect the respective energy that was put into making
claims on the output. With an extremely largem, the person with the largest
muscle gets to keep everything.

It should be noted that m is a re‡ection of the social values and tech-
nologies available within a society. We might list some of them as follows:

² cultural factors: A society’s attitude towards wealth and inequality
would de…nitely a¤ect m. A great belief in equality would tend to
reduce m, while a high tolerance for inequality would drive up m:
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² military technology: The more sophisticated the tools of destruction,
the more leverage the owners of those implements would tend to have
on the division of the product, i.e. this would drive up m.

² storage technology: Limits on the ability to store and transport wealth
(e.g. the presence or absence of grain silos) would tend to reduce m.

Again we have chosen particular functional forms for the claiming strength
functions, given by

s1 = (1 ¡ ®) fAWA
s2 = (1 ¡ ¯) fBWB

Note that (1 ¡ ®)WA and (1 ¡ ¯)WB are the respective resources devoted
to claiming activities. The parameters fA and fB can be seen as conver-
sion parameters - they determine how resources (wealth) get translated into
claiming strength. They indicate that di¤erent agents may not have access
to the same …ghting or claiming technology. In the case of feudal societies
knowledge about how to produce certain types of weapons would have been
closely guarded secrets of the court. In more recent times, apartheid South
Africa imposed legal restrictions on the ability of black South Africans to get
access to guns. There were also restrictions on the kinds of legal claims that
blacks could make on property. All of these would have severely impaired
the e¢ciency with which claims could be established

The …nal payo¤s to each player are given by

Y1 = gA [cA®WA + cB¯WB]
Y2 = gB [cA®WA + cB¯WB]

Our key concern is to analyse the e¤ects of the strategic interactions
around appropriation and production. It is evident that if both players claim
only and do not produce, then there will be no product to split. This,
however, cannot be an equilibrium: if the other player is determined to be an
absolute parasite, it would be in my interest to produce something, because
even a small share of a positive output would be preferable to absolute no
return at all. The balance between appropriation and production that we will
see ought to depend on the productiveness of the players, their e¤ectiveness in
establishing claims, their respective wealth and the degree to which claiming
is an e¤ective activity.
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We will in general be more concerned with analysing the e¤ects of relative
changes in wealth and productivity. We therefore reparameterise our model,
letting

k =
WA
WB

, p =
cA
cB

and f =
fA
fB

(4)

We interpret k as our index of inequality, p as an index of productivity
di¤erentials and f as an index of A’s relative claiming strength. Without
loss of generality we will assume throughout that B is the less productive
individual, i.e. p ¸ 1. With this reparameterisation, cB andWB now function
as scale parameters. Increases in cB and WB (for …xed values of p and k)
lead to increases in the productivity or wealth of both players. To signal this
change, we drop the subscript1.

We can therefore write the payo¤s as

Y1 =
(1 ¡ ®)m fmkm

(1 ¡ ®)m fmkm + (1 ¡ ¯)m c (p®k + ¯)W (5a)

Y2 =
(1 ¡ ¯)m

(1 ¡ ®)m fmkm + (1 ¡ ¯)m c (p®k + ¯)W (5b)

We will make the Cournot assumption that players treat their opponent’s
choice of cooperativeness as …xed. This means that the one-period equilib-
rium will be at the intersection of the respective reaction functions, where
these give the optimal values of ® (or ¯) given the opponents choice of ¯ (or
®). For interior solutions the reaction functions will be given by the loci of
the solutions to

@Y1
@®

= 0 and
@Y2
@¯

= 0

Figure 1, however, indicates that we are not guaranteed to get interior so-
lutions. There will be combinations of the parameters for which one of the
players becomes completely parasitic. Indeed the possibility of complete par-
asitism and its e¤ects on the interactions with the other player turn out to
be absolutely crucial for the behaviour of the model.

1A similar point applies to f , of course. The “baseline” appropriation e¢ciency fB
does not feature in the payo¤ function, however, so there is no need to concern ourselves
with this issue.
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Figure 1: Plot of Y2 against choice of ¯. For some choices of the parameters,
the payo¤ function has its global maximum in the interior of [0; 1), for others
the payo¤ function is monotonically decreasing. Case (a): k = 1, p = 1,
f = 1, W = 1, c = 4, m = 0:5, ® = 0:1. Case (b)k = 10, p = 1, f = 1,
W = 1, c = 2, m = 0:5, ® = 0:6.

In Figure 2 we have graphed some reaction functions and the locus of
Cournot equilibria for a particular set of parameters. It is evident that be-
yond a critical level of inequality (k = 5 in the diagram), Player B becomes
completely parasitic. Indeed for higher levels of inequality B’s reaction func-
tion moves very sharply down to zero and then stays at zero until A shows
excessively high degrees of cooperation.

We detect three kinds of reaction functions in the diagram:

1. One type (exempli…ed by A’s reaction function when k = 10) which
increases monotonically over the interval [0; 1)

2. Another (exempli…ed by both A’s and B’s reaction functions when
k = 1 or k = 2) which …rst decreases and then increases, but always
has an interior solution to the optimisation problem @Y1

@® = 0 or @Y2@¯ = 0.

3. A …nal kind (exempli…ed by B’s reaction function when k = 10) which
monotonically decreases to zero, then coincides with the line ¯ = 0 and
then increases monotonically towards ¯ = 1.

We can show (in Theorem 13) that these are indeed the only cases to be
found. Furthermore it is not accidental that a type 1 reaction function on
the part of A is paired with a type 3 reaction function of player B. This
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Figure 2: Reaction functions and Cournot equilibria change with the in-
equality parameter k. The locus of equilibria is indicated by the heavy line.
Large dots indicate intersections of the reaction functions in the diagram.
Parameters: f = 1, p = 1, m = 0:5.
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will always be the case: whenever one player’s reaction function reaches the
boundary, then the other player’s reaction function will be monotonically
increasing (see corollary 14 ).

Some additional properties of the reaction functions are evident from the
diagram. In each case the reaction functions start at a high level. Indeed the
optimal response to ® = 0 for B involves a choice for ¯ such that ¯ ¸ 1

m+1 .
This is due to the fact that if A is completely parasitic B is compelled
to produce, if B wants a positive payo¤. As ® increases, this compulsion
gradually disappears. In our diagram B’s response is to immediately increase
her levels of claiming (i.e. B’s reaction functions are of type 2 or 3). This
is due to two factors. At higher levels of ® A is producing positive output
which adds to aggregate output. This increases the incentive for B to claim.
On the other hand, as ® increases, A’s level of claiming activity goes down.
This makes B’s claims relatively much more e¤ective. The combination of
increased incentive with increased e¤ectiveness leads to the decrease in the
reaction functions observed in the diagram. This decrease happens until
either B becomes a complete parasite or until the Cournot equilibrium is
reached. In the case of complete parasitism the reaction function eventually
reappears and converges on ¯ = 1 at a high enough level of ®. Essentially
at these levels of ® A is doing such little claiming that B is left with almost
the total output. In these situations it is in B’s interests to start producing
to increase the total output. Although B becomes more cooperative, the
reaction function stays far below the 45o line in this region, so B devotes
relatively much larger resources to claiming than A.

A’s optimal choice is obviously in‡uenced by similar considerations. One
additional point to note is that if A is substantially wealthier than B (e.g.
k = 10 in the diagram), then we have a type 1 reaction function: there is no
longer any incentive for A to increase her claiming activities as B becomes
more cooperative. The additional resources that she can obtain from her own
production far outweigh the bene…ts she might gain by claiming from B.

Note that there are two types of Cournot equilibria. In the …rst kind
both players produce a positive output and the reaction functions intersect
at their respective minima. The second kind involves one player becoming
completely parasitic. The reaction function of the non-parasitic player in
this case increases. In both cases therefore, the Cournot equilibrium has
the curious property that it represents the maximally uncooperative point
on either player’s reaction function. Equivalently, it is the point at which
both players spend the most energy on claiming, given that this level must
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be rational on some hypothesis about the opponent’s behaviour.
The exact equilibrium that is reached is dependent on the parameters of

the model. The diagram provides graphical evidence that increasing k would
make A more cooperative and B less so. It is less evident how the other
parameters would a¤ect the outcome. The comparative statics for this single
period interaction can be summarised as follows (see Theorem 29):

1. Inequality of wealth: An increase in A’s wealth relative to B makes A
more cooperative and B less so:

@®
@k

¸ 0,
@¯
@k

· 0

The reason for this is evident: as a player becomes more wealthy, a
smaller proportion of resources devoted to claiming will have the same
e¤ect. Consequently the individual who becomes more a­uent can
a¤ord to devote more resources to production.

2. Relative productivity: If A becomes more productive relative to B, then
A would tend to become more productive:

@®
@p

¸ 0,
@¯
@p

· 0

The result is again intuitive: the costs of production foregone increase
for the person who becomes more productive. For the less productive
individual the gains from own production start looking less attractive
relative to what can be gained by claiming from the other player.

3. Changes in claiming e¢ciency: If A becomes more e¤ective in estab-
lishing claims relative to B, then A becomes more productive:

@®
@f

¸ 0,
@¯
@f

· 0

This result makes sense if one remembers that an increasing claiming
e¤ectiveness implies that A gets to keep a larger share of her output.
It therefore becomes in her interest to enlarge the output. For the
player who loses ground in the claiming stakes, it is in their interest to
increase their claiming e¤ort and so reduce the productive e¤ort.
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4. Changes in the decisiveness of claiming: If claiming becomes more de-
cisive, then we would expect both players to spend more time claiming
and less time producing. In fact the result is more complicated

@®
@m

S 0 as
gA
gB

S ³, @¯
@m

S 0 as
gB
gA

S ³

where ³ ¼ 3:591121. If the players are relatively evenly matched, then
an increase in the decisiveness parameter would unambiguously increase
the amount of claiming activities. If there is a large imbalance in the
power of the players, then the player who currently extracts the lion’s
share would actually become more productive, since this power now
obviously translates into a much larger impact.

2 Long-run parasitism: feudal exploitation

The results thus far are for one period interactions only. We will be con-
cerned to investigate Cournot equilibria that might persist for many periods
- decades or even centuries. We are therefore interested in equilibria which
are intertemporally stable, i.e. the relative wealth k at the end of the period
must be the same as at the beginning of the interaction. In order to do this,
we need to close the model somehow. The simplest way to do this is to ab-
stract away from consumption and simply convert the entire current period
returns into next period wealth, i.e.

WA;t+1 = Y1;t WB;t+1 = Y2;t (6)

Consequently kt+1 = Y1;t
Y2;t

which we can write (substituting in equations
5a and 5b) as

kt+1 =
(1 ¡ ®t)m fm
(1 ¡ ¯t)m

kmt (7)

We have subscripted ® and ¯ with t to indicate that in general ® and ¯ would
not need to be constant from period to period. Of course in an equilibrium
they would be. These equilibrium values of ® and ¯ will depend on the
parameters k, p, f and m. It is also evident from this equation that if
m > 1, the dynamics of the model are likely to be somewhat unstable.
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Provided that m · 1, there is, in fact, a unique value of k which yields a
stationary state. We can therefore think of equation 7 as determining k as a
function of m, p and f , i.e.

k = k (m; p; f)

Indeed it can be shown (see theorem 30) that for an interior Cournot equi-
librium we will have

k =
µ
f
p

¶ m
m+1

(8)

This is a remarkable equation, both for its simplicity and for what it implies.
It suggests that the relative wealth of any player is positively related to the
player’s own claiming e¢ciency and inversely related to own productivity.

We might interpret this scenario as the Seven Samurai scenario: the
more productive individual (read: the peasant) produces every period at
a high level only for the richer and militarily stronger parasite (read: the
bandit, or the feudal lord) to expropriate a large share of the output (the
harvest) and thus reproduce the inequality in wealth and power from period
to period. What makes this equilibrium stable is the inability of the poorer
more productive individual to squirrel resources away to take on the parasite.
What is perhaps even more startling is that increases in the productivity of
the peasant increase the disparity in wealth between the peasant and the lord,
thus bene…tting the lord. Equation 8 suggests that the feudal lord would be
richer, the more productive his peasant is and the stronger his own military
capability.

Nevertheless, the story is somewhat more complicated than this. In Fig-
ure 3 we have graphed the equilibrium level of k for changing values of p. On
the graph we have also indicated the boundary lines within which there is
an interior solution, i.e. within which the equilibrium value of k is given by
equation 8. At p ' 504 this solution is no longer valid and we reach a corner
solution. At this point the equilibrium k no longer depends on p, indeed the
value will be given by the solution to the equation

f = k
1¡m
m

µ
m+ k + 1
m

¶
(9)

Increases in peasant productivity therefore lead to changes in the wealth
of the lord up to a point determined by the military strength of the lord
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Figure 3: The lord gets richer as the peasant gets more productive, until p '
504. Then inequality remains stable. Choice of parameters (for both panels):
m = 0:5, f = 0:25. Left panel: 1 · p · 20. Right panel: 50 · p · 750.

(given by f) and the extent to which the prevailing social conditions favour
appropriation (as re‡ected by m).

The movements along the equilibrium k curve therefore re‡ect the chang-
ing balance of forces as the richer, less productive player concentrates pro-
gressively on feeding o¤ the poorer more productive one. Once the richer
player has become a complete parasite, however, he can no longer do any
more damage, as it were. From this point on the bene…ts of increases in
productivity will be shared proportionately (which of course implies that the
parasite gets the lion’s share).

This raises a question about how the poorer player responds to the preda-
tion. There are two e¤ects that need to be taken into consideration. On the
one hand, increases in p lead to an incentive e¤ect. As the peasant becomes
more productive, there are greater incentives to produce (as we noted above).
On the other hand, we have also seen that in equilibrium much of this extra
production is siphoned o¤ by the lord, increasing wealth disparities. This
wealth e¤ect would tend to o¤set the incentive e¤ect. In Figure 4 we show
that the incentive e¤ect initially predominates, but beyond a certain point
(when p ' 152) the wealth e¤ect leads the peasant to reduce output. At the
point where the other player becomes completely parasitic, the wealth e¤ect
ceases to matter and ® remains constant. The level of this equilibrium, as
before, depends only on f and m.
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Figure 4: Increases in p have two e¤ects: …rstly they increase the incentive
for A to produce, but they also increase the disparity in wealth. The incen-
tive e¤ect initially outweighs the wealth e¤ect, but the peasant eventually
cuts down somewhat on production. At the point at which player B be-
comes a complete parasite, the optimal ® no longer depends on p. Choice
of parameters: m = 0:5, f = 0:25. Left panel: 1 · p · 15. Right panel:
50 · p · 600.

The relative productivity of the peasant (p) is only one of the factors
helping to determine the level of inequality in equilibrium. As noted above,
the relative e¤ectiveness of the lord in appropriation (as measured by f) is
also important. Decreases in f (i.e. increasing e¤ectiveness in appropriation
by the lord) will (by equation 8) lead to a decrease in the equilibrium level
of k, i.e. an increase in the relative wealth of the lord. A decrease in f will
therefore have an unambiguous e¤ect on the productive e¤ort by the peas-
ant: it will reduce it directly and also through the concomitant wealth e¤ect.
This raises the prospect that if the richer player’s advantage in the contest
for resources becomes too great, the poorer player will cease production al-
together and become a complete parasite. This is show in Figure 5. At the
point at which this happens, the equilibrium level of k is no longer given by
equation 8. Instead it is now given by the solution to the equation

f =
k

1
mm

km+ k + 1
(10)

As shown in the diagram, at this point further increases in B’s strength
would lead to even greater inequality. Up to this point, decreases in f can be
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k decreases, i.e. B gets richer. At a critical level (f ' 0:004987) player A
becomes completely parasitic. At this point inequality increases at a more
rapid rate. Choice of parameters: p = 4, m = 0:5.

o¤set by player A devoting more energy to claiming. Once A has abandoned
all productive activities, however, this strategy is no longer open, and so any
additional strength by B translates directly into additional wealth for B.

Of course with such a turn of events the relationship between the poorer
player and the richer one could not realistically be described as feudal2. The
poorer (though more productive) player would be a pauper - relying on beg-
ging, theft or robbery to make a living. Would there be precedents for such
situations? Another example from the “Wild West” genre of movies is the
con‡ict between the wealthy rancher and the small scale homesteaders. An-
other would be the enclosure movement. The ability of the rich landowners
to lay claim to the communal land areas squeezed the poorer peasants to the
point where it made some sense to become full time beggars or highwaymen.
Many peasants would, of course, also have left the area to look for opportu-
nities in the cities. Exit from the game is, of course, not an option in our
model.

We have therefore isolated two polar cases:
2Landes makes the distinction between “feudal” relationships, which are between a lord

and his vassal, i.e. they are intra-nobility relationships and “manorial” or “seigneurial”
relationships which are those between the lord and his serfs. We have used the term
“feudal” in its more colloquial sense to cover the latter relationships.
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p < 1 p > 1
f < 1 Cottager/Vagrant/Bandit Peasant

May be richer or poorer. Will always be poorer
Will never be exploited May be exploited (feudal case)

May be parasitic (landless peasant)
f > 1 Lord/Landowner Farmer

Will always be richer May be richer or poorer
May be parasitic (feudal case) Will never be parasite
May be exploited (landowner)

Table 1: Equilibrium outcomes of the two-player game for player A

² One where the rich parasite appropriates from the poor productive
individual (the feudal case) and

² One where the poor parasite lives o¤ the scraps from the rich producer
(the landless peasant vs the landowner).

Between these outcomes there are many intermediate ones, in which both
players produce some output. To the extent to which the richer player is the
one producing less, the dynamics will have more of a feudal ‡avour; where the
richer player is also more productive it will resemble the landowner/landless
peasant interaction more.

In the examples above we have assumed throughout that player A is both
more productive and less strong than player B. It is of course possible for
these two variables to combine in other ways. The possible combinations
(from player A’s perspective) are shown in Table 1. We have labelled the
cases in ways that might be suggestive of empirical situations. Player B’s
role (for given values of f and p) will be given by the diagonally opposite
cell in the table, i.e peasant is always paired with lord/landowner and farmer
with cottager.

Clearly the actual outcome reached will depend not only on f and p, but
also on m. Equation 8 suggests that an increase in m will have the e¤ect of
widening inequality. If k > 1, it will increase, while if k < 1, it will decrease.
It turns out that this is true even if we have reached a corner. In all cases an
increase in decisiveness will bene…t the player who is richer at the expense
of the player who is poorer. The response of the poorer player is to reduce
the level of productive activity (where this is positive).
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p; f and m. Choice of parameters: f = p = 1

3 The dark ages: turmoil and trouble

What happens if decisiveness increases such that m > 1? Clearly many
of the broad conclusions reached above still hold. Nevertheless in this new
environment, several additional outcomes are possible.

The …rst, and perhaps most dramatic, change is that it is now possible
to get multiple equilibria corresponding to the same levels of f , p and m. In
Figure 6 we have graphed the curves representing intertemporal equilibria for
the special case f = p = 1. In this perfectly symmetrical case, the symmet-
rical distribution of wealth k = 1 is obviously a stable solution. Nevertheless
at su¢ciently high levels of m it turns out that there are also equilibria with
unequal distributions of wealth. In the diagram there are therefore no fewer
than …ve equilibria for any m > 3, three stable ones and two unstable ones.
Clearly the equilibrium that is reached will depend on the initial conditions.
In the region where there is only one intertemporal equilibrium, all start-
ing values of k will eventually converge on the equilibrium value. In the
zone where there are multiple equilibria, the loci of unstable equilibria serves
to separate out the initial conditions which will converge on the symmetric
equilibrium from those which will converge on the corner equilibria.
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The second new possibility is that of “catastrophic” changes in the equi-
librium level of inequality (and hence activity levels) consequent on small
changes in the control parameters. This possibility is already present in the
previous example. If initial conditions have led to one of the corner equilib-
ria, then smooth decreses in m will eventually lead to a discontinuous jump
in k. In the example, this would happen at the latest at m = 3. Adjustments
towards a lowerm would lead to a jump in k from either 8 or 0.125 to 1. This
would be the situation in which baronial privilege would suddenly collapse
consequent on a decrease in society’s tolerance of inequality. In this example,
however, it is not clear that increases in m would ever shift the equilibrium
away from k = 1.

In Figure 7 we indicate that jumps may be pervasive if m > 1. In this
case the productivity parameter p and the claiming e¤ectiveness parameter f
just balance each other so that while there is an interior equilibrium, wealth
remains equally divided. Once the corner is reached, however (at m = 2) a
small increase in decisiveness would lead to a marked shift in favour of the
producer. This example might be reminiscent of the increase in farmer wealth
consequent on the expulsion of the cottagers from the commons. With very
high levels of m there is another set of equilibria which become intertempo-
rally stable, associated with the less productive player being richer and being
the sole producer.

What happens to the level of production along these di¤erent curves? We
have noted above that the poorer individual would tend to restrict output
consequent on an increase in m. This introduces yet another possibility. We
may see a reversal in who is the producer and who the parasite. This is shown
in Figure 8 where initially we are dealing with a feudal lord-peasant interac-
tion. As society’s tolerance for inequality increases, a point is reached where
the peasant has cut down production to such an extent, that it becomes
necessary for the lord to produce. Increases in m will lead to reduction in
peasant output, to the point where the peasant has …nally ceased producing.
One might wish to think of this point as the point where the lord has suc-
cessfully converted all the land to ranch land. What is, of course, interesting
about this is that the same individual attributes (represented by f and p) in
di¤erent social environments, (represented by m) will lead to qualitatively
quite di¤erent outcomes.

In this …gure we note yet again that there is a possibility of getting multi-
ple equilibria for su¢ciently largem. Focusing on the continuous adjustment
curve in the bottom half, we note that there are three changes of slopes evi-
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dent, representing the transitions into, out of and into parasitism respectively.
The …rst transition is barely evident, very close to m = 1. At the second
kink, i.e. the point where player B enters production, inequality increases at
a slower rate than before. This is due to the fact that with B producing a
positive output, claiming activity by A is no longer geared only to protecting
her own output, but increasingly towards appropriating part of B’s produc-
tion. Once A has become completely parasitic, however, she cannot do any
more damage. Consequently this check on the rate of growth of inequality is
removed.

We have seen that the bottom path in the main represents movements by
A from sole producer to complete parasite and the converse movement on the
part of B. What happens in the equilibria at the top right hand corner? Since
these are all corner equilibria, B remains a complete parasite at all points
along the curve. In the case of A, however, there are two distinct trajectories.
The “upper” trajectory is again the stable one. It is characterised by the fact
that k is increasing, while k is decreasing along the unstable one. It turns
out that ® will also be increasing along the former and decreasing along the
latter trajectory.
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Indeed in general there may be two types of corner equilibria, the outer
(stable) one in which inequality is most extreme, which will be associated
with increasing levels of production by the sole producer and the inner (un-
stable) one which is marked by decreasing levels of production. For large
enough m the stable trajectories will always exist. Indeed we can show that
k > fm (m¡ 1)m if B is the complete parasite and k < fm

(m¡1)m if A is the par-
asite. This shows that inequality increases exponentially with m along these
trajectories. We might dub these trajectories aggressive equilibria because
they represent situations in which the marginal player is getting completely
squeezed out of the picture.

What is less clear is how aggregate output changes along these trajec-
tories. We have graphed both output3 and the growth rate in Figure 9 to
correspond to the situation depicted in Figure 8. There are a number of
really stark conclusions. In the …rst place output falls along the continuous
adjustment path. This makes sense, since the more productive individual is
gradually reducing her productive e¤ort. Interestingly, however, the output
and the growth rate bounce back a little, once player A has become com-
pletely parasitic. The reason is that increases in decisiveness bene…t B (who
is the richer), since they allow B to reduce the e¤ects of A’s predations. In
this model the worst of all possible outcomes is to reach the point at which
the more productive player has just been marginalised. It is much better4

to completely annihilate the in‡uence of the landless peasant, than to let
her hang on at the margins. The outcomes attainable along the continuous
adjustment path are, however, decidely inferior to the outcomes attained (at
a high enough m) with the more productive individual as the sole producer.
The outcomes with the highest output and growth rates all involve the com-
plete destruction of the in‡uence of the less productive individual, i.e. they
are “aggressive equilibria”.

The actual outcomes that are achieved depend on the levels of c and W .
The latter in‡uences the level of output, whereas the former a¤ects both the
output levels and the growth rates. In the bottom right panel of Figure 9 we
show that it is possible to get negative growth rates. Interestingly enough in
the diagram these occur only around the point where player A just becomes
parasitic. Along the “aggressive” trajectories we …nd that in the limit the

3It should be noted that the output graphs are somewhat misleading, since the aggre-
gate wealth which generates the output is not constant as m changes. This defect does
not apply to the growth rate graphs.

4for output and growth rates, though obviously not for A
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growth rates converge to cA ¡ 1 and cB ¡ 1 respectively. Positive growth
is therefore possible only if the player who is left as the sole producer is
su¢ciently productive.

The possibility of wholesale collapse is, however, not restricted to cases in
which the productivity parameter is barely above one. In Figure 10 we have
graphed the situation of completely evenly matched players (depicted also in
Figure 6). We chose the productivity parameter c = 2, so that if each player
produced to maximum capacity, wealth would double each period. As is
evident, however, with increasing decisiveness this society achieves negative
growth rates for all m > 1. The only exception to this is along the aggressive
corner equilibria. The lesson again seems clear: in a context where claims
become highly decisive the worst outcome is where the contenders are evenly
matched, so that maximum energy gets exerted on claiming activities.

The idea that society could move from stable expansion to economic con-
traction and collapse with relatively modest movements in the decisiveness
parameter should not be surprising to students of economic history. The
conventional history of the “dark ages” pictures the situation in more or
less this fashion: with bands of marauding raiders on the loose, productive
activity was cut back. Only where a local strong leader was able to annihi-
late such parasitic claimants, would growth have been possible. Nevertheless
such “local” solutions would have been vulnerable to the sorts of catastrophic
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collapse noted earlier.
The combination of multiple equilibria, catastrophic jumps and destruc-

tive competition among evenly matched protagonists would in more or less
any situation merit the description of the “dark ages”.

4 Land clearances and the cost of parasitism

Several ways of thinking about the prevalence of con‡ict and parasitism have
been alluded to in the discussion thus far. The most obvious one is simply
the e¤ort exerted by each player in production (i.e. the level of ® and ¯)
versus the e¤ort devoted to claiming (i.e. 1 ¡ ® and 1 ¡ ¯). The last few
examples, however, have indicated that the opportunity costs are also an
important measure. Indeed there are at least four ways that we might think
about measuring parasitism:

1. The energy devoted to claiming: In our model this would be indexed
by

I® = 1 ¡ ® and I¯ = 1 ¡ ¯ (11)

In an empirical setting one might want to estimate this by the number
of criminals, beggars and so on. One limitation with this index is that
® and ¯ are bounded below by zero and once this bound has been
reached this index is silent about what happens within society.

2. The level of transfers from A to B as a proportion of output : In our
model this index would be calculated as

IT =
YA ¡ Y1
YA + YB

(12)

where Y1 = gA [YA + YB]. Negative values of this index are of course
transfers from B to A. This index tracks the gap between what A
produces and what A …nally gets as a proportion of total output. In
an empirical setting this might be proxied by the total loss due to
criminal activity. One disadvantage with this index is that there may
be no or relatively few net transfers in the armed camp scenario: where
everyone is armed to the teeth, but all this claiming balances out so
that in the end everyone keeps more or less what they have produced.
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3. The proportion of resources devoted to claiming: This can be repre-
sented as

IC =
(1 ¡ ®)WA + (1 ¡ ¯)WB

WA +WB
(13)

Empirically this would be the sum of investments made in security ar-
rangements (forti…cations, fences, alarms and security guards) and in
criminal equipment (cannons, battering rams, guns, lock-picking de-
vices). It will be useful to note that this index is in fact a weighted
average of the claiming intensities I® and I¯, weighted by the shares of
aggregate wealth.

4. The opportunity cost of claiming activities: Obviously if everyone was
producing and no one was claiming aggregate output would be higher.
The loss in potential output due to claiming (per unit of initial wealth)
is

IO =
cA (1 ¡ ®)WA + cB (1 ¡ ¯)WB

WA +WB
(14)

Another way of thinking about this index is that it represents the dif-
ference between the maximally attainable growth rate gmax and the
actual growth rate g. Empirically this is probably the hardest to es-
timate although it would perhaps also be the most interesting. One
disadvantage with this particular index is that it is not bounded above.
We will therefore often work with a rescaled version of this index:

IL =
cA (1 ¡ ®)WA + cB (1 ¡ ¯)WB

cAWA + cBWB
(15)

This index, like IC, is also a weighted average of the claiming inten-
sities, but weighted by the contribution to maximum potential out-
put. Perhaps a somewhat more intuitive way of thinking about it is as
the di¤erence between the maximal growth ratio5 ¼max and the actual

5where ¼max = cAWA+cBWB
WA+WB

, i.e. it is the “gross” growth rate. Obviously ¼max ¡ 1 =
gmax and ¼ ¡ 1 = g. Note that ¼max ¡¼ = gmax ¡ g. The numerator of IL is therefore the
di¤erence in the growth rates.
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growth ratio ¼, when expressed as a proportion of the maximal growth,
i.e.

IL =
¼max ¡ ¼
¼max

In Figure 11 we have graphed four of the indices, I®, IT , IC and IL for the
completely symmetrical case. We note that the symmetrical (and interior)
solution k = 1 is associated with no net transfers of resources. Nevertheless
on every one of the other indices it suggests that there is a higher level
of parasitism. This is the “armed camp” scenario suggested earlier. Large
quantities of resources are devoted to claiming, but in the resulting stalemate
everyone manages to keep just what they produce.

By contrast with this, the “aggressive” equilibrium in which B becomes
marginalised ends up showing the lowest level of parasitism on virtually all
indicators: A produces at a high level, there are only small amounts of
resources transferred, only a small proportion of all resources is devoted to
claiming activities and production approaches the maximally possible level.
As suggested earlier, if claiming becomes decisive, the worst outcome occurs
when the protagonists are evenly matched.

A much more complicated picture is presented in Figure 12, which presents
I®, IT , IC and IL for the case corresponding to Figures 8 and 9. In all of
the indices the transition out of and into parasitism (at m ' 0:6283604682
and m ' 3:291456415 respectively for the continuous adjustment path) are
marked. The quality of these transitions is very di¤erent, however. Both IC
and IT record a decrease in parasitism once B starts producing. In the case
of IC, however, the decrease in parasitism is very pronounced. The reason
for this is lies in the fact, alluded to earlier that IC is a weighted average of
I® and I¯, with the weights given by the shares of wealth. IC is therefore
extremely sensitive to decreases in parasitism by the wealthier player. IT
by contrast, depends on the relative productivity of the players as well. The
levels of transfers in this case remain high, despite the fact that the wealthier
player is spending fewer resources on claiming. It is interesting to note that
player A remains exploited almost right up to the point at which she herself
becomes completely parasitic.
IL, by contrast to IC and IT marks a decline in parasitism only once

A has become completely parasitic. The reason for this is that with the
massive imbalance in productivity in the case under review, a decrease in
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A’s level of production has a much larger e¤ect on the potential output than
the corresponding increase by B. This e¤ect becomes less pronounced as the
resources with which A could produce become reduced (as shown by the
decrease in k in Figure 8). As A becomes marginalised, the contribution she
could make to aggregate production with the resources at her disposal shrink
to zero.

This interplay between what is possible and what is actual is shown in
more detail in Figure 13, where, for clarity, we have presented the same
information twice: once in ordinary levels (left hand panel) and once on a
log scale (right panel). The gap between actual and potential output widens
as A moves into parasitism. In this range A still manages to control some
resources, but they need increasingly to be put towards claiming activities,
to ward of the predations of B. It is this gap between what A could be
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Figure 13: Actual and potential growth rates. Up to the point where A
becomes completely parasitic, the decrease in ® is faster than the decrease
in k, leading to a much larger wedge between actual and potential growth.
Choice of parameters: f = 1, p = 100, c = 1:5, W = 1. Left panel: growth
rates. Right panel: growth rates on a log scale.

producing and what she is actually producing that is recorded as an increase
in IL in diagram 12. Once A’s resource base has been eroded (k decreases
very fast once A is completely parasitic), her potential contribution dwindles
to zero. Furthermore in this range B becomes able to devote more resources
to production. Hence the gap between actual and potential growth narrows
and so IL shrinks to zero.

Despite the fact that IL approaches zero in both aggressive equilibria,
these are clearly not equivalent. In the one there is a growth rate approach-
ing 0:5, while in the other it is approaching 149. The “best” outcome is
achieved in the aggressive equilibrium where the more productive player (A)
manages to completely marginalise the less productive one (B). This raises
an important point about the way in which the gap between actual and po-
tential growth in diagram 13 ought to be interpreted. The curve depicting
the maximum possible growth is for a given level of k, which in turn depends
on the parameters f , p, and m. Maximal growth is therefore relative to a
particular income distribution which itself depends on the interplay of social
forces. The counterfactual considers only what would happen if there was
a mutual cessation of claiming with the given level of k. If, however, we
were also to consider redistributions of income, the maximal growth rates
would, in fact increase. Indeed if p > 1 the maximal growth would always
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be obtained if the most productive player was given all the resources to pro-
duce with. This is, of course, what happens in the limit in the aggressive
equilibrium where B is marginalised.

The conclusions from all these cases are clear:

² There may be large costs incurred in claiming even when there are no
net transfers occurring

² There may be large transfers of resources even when the resources de-
voted to claiming seem to be falling

² Even when both the levels of transfers and the resources devoted to
claims are falling, the opportunity cost of claiming may be very high

² Con‡ict and all the costs that are associated with it are minimised if
one of the players is marginalised; growth and output are maximised if
the player who is removed is also the less productive one!

The last point has some resonances with the di¤erent trajectories of Ar-
gentina and the United States, as related by Landes (1998, Chapter 20). In
the former it was the less productive ranchers who ended up dominating,
while in the latter it was the homesteaders and the squatters who prevailed
over the rich landowners (see especially pages 318-320).

The marginalisation of one of the players is possible only in a context of
a very high m, i.e. the society must have a high tolerance for inequality, the
technology of appropriation must be highly decisive and the output of the
society must be such that it can be easily appropriated. These combinations
are probably found most readily in the context of conquest and colonisation.
Indeed, one might think of the di¤erent trajectories of di¤erent types of
colonialisms in terms of both the relative productivity of the conqueror versus
the conquered and the decisiveness with which the conquest happened: Land
clearances and wholesale dispossession of the indigenous populations in the
United States, Canada and Australia can be contrasted with the extractive
relationship developed with the original inhabitants in other parts of the
world.
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5 “Numbers, food and power”: The rise and fall of
…efs and empires

The di¤erences between land-grabbing conquests (the marginalisation of a
competitor) and the extraction of tribute has probably existed for as long
as people have lived in organised societies. The pursuit of tribute, however,
raises a number of interesting issues in the context of the current model.
Existing wealth can be used not only to make claims of an existing serf, but
to enslave additional producers. How might we extend the model to deal
with many players?

The simplest way would be to divide players into two types (peasants
and lords) and to permit a lord to have many dyadic interactions. Each
interaction could then be modelled as a two-player game, exactly as before.
In order to make the analysis tractable we would need to assume that if the
lord interacts with n peasants, he would be able to bring only one n-th of his
resources to bear on each individual interaction, i.e. he would not be able to
concentrate his resources - …rst on browbeating one recalcitrant peasant and
then another. If we assume that all peasants are identical (i.e. we have the
same p and f in every game), then the outcome of every interaction would
be exactly as analysed before, except that the disparity between the wealth
of any one peasant and the total wealth of the lord would now be given by
k = k¤

n where k¤ is the equilibrium level of inequality from the corresponding
two-player game. Inequality would therefore widen. In the speci…c context
of interior intertemporal equilibria we would have

k =
1
n

µ
f
p

¶ m
m+1

The assumption that the n interactions are independent of each other
is somewhat unpalatable, since it implies that the peasants cannot see that
additional resources are going into the societal pot, so while they might be
able to contest how the outcome of their labour is split with the Lord, they
cannot in‡uence how any of the other divisions are made. This isolation
of individual interactions from each other might, however, in some circum-
stances be justi…ed. Marx once famously compared the French peasants to a
sack of potatoes:

The small-holding peasants form a vast mass, the members of
which live in similar conditions but without entering into mani-
fold relations with one another. Their mode of production isolates
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them from one another instead of bringing them into mutual in-
tercourse. .... A small holding, a peasant, and his family; along-
side them another small holding, another peasant and another
family. A few score of these make up a village, and a few score
of villages make up a Department. In this way, the great mass
of the French nation is formed by simple addition of homologous
magnitudes, much as potatoes in a sack form a sack of potatoes.
(Marx 1977, p.317)

Of course if the interactions are independent of each other, then the out-
comes of the individual interactions are the same if there is one lord facing
n peasants or n (identical) lords facing n peasants. Indeed there may be all
sorts of intermediate outcomes: one lord with n1 peasants and another with
n2 where n = n1+n2, and so on. The peasant “base” could therefore support
all kinds of feudal superstructures. This is, of course, more or less exactly
how feudalism did work. Fiefs expanded and contracted as noble families
fought or married one another. Peasants kept their heads down and paid
their dues to whoever happened to be in the local manor.

The “sack of potatoes” version of the multi-player interaction therefore
has de…nite uses. Nevertheless there will be situations in which decisions do
become interlinked. It will therefore be useful to at least sketch out how a
truly multi-player version of the model might look.

Let us assume that the players are indexed from 1 to n. Each player, as
before, has a choice how to balance production and claiming. The production
functions are given by

YAi = ci®iWi

where ci and Wi are, as before, individual productivity and Wealth parame-
ters. ®i is the proportion of resources devoted to production. The appropri-
ation functions are

gi =
smiPn
j=1 s

m
j

where

si = (1 ¡ ®i) fAiWi
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and fAi is the individual claiming e¢ciency parameter. The …nal payo¤ to
player i will be given by

Yi = gi

Ã
nX

j=1

cj®jWj

!

As before it will be useful to express many of these relationships in relative
terms. Taking one of the players (say player n) as the basis for comparison,
we can reparameterise the model, letting

ki =
Wi
Wn

, pi =
ci
cn

, fi =
fAi
fAn

The scale parameters c and W are then given by

c = cn and W = Wn

and the payo¤ to player i will be

Yi =
(1 ¡ ®i)m fmi kmiPn
j=1 (1 ¡ ®j)m fmj kmj

c

Ã
nX

j=1

pi®iki

!
W (16)

It will be useful to refer to a player’s opponents. We will in general denote
the relevant magnitude with the subscript “¡i”, e.g. the collective share of
a player’s opponents is g¡i, i.e.

g¡i =
P
j 6=i s

m
jPn

j=1 s
m
j

The collective strength of a player’s opponents we will denote by s¡i where6

s¡i =

ÃX

j 6=i
smj

! 1
m

so that

gi =
smi

smi + sm¡i
and g¡i =

sm¡i
smi + sm¡i

6This means that s¡i depends on m, except in the very special case of a two-player
game.
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A full analysis of the multiplayer game is beyond the scope of this paper.
We will content ourselves with some observations on the very speci…c case
where we have n identical players of one type (peasants) and one player of
a di¤erent type (a lord)7. We will refer to the lord as player B, while every
one of the other players will be of type A. We will order the players so that
player n+1 is B and we will express all our quantities relative to B, so that
ki = k, pi = p, fi = f for i = 1 : : : n. We will adopt our previous conventions
and refer to B’s production intensity as ¯.

The level of inequality (for interior intertemporal equilibria) in this model
does not have a simple closed form solution. Instead, it is given by the
solution to the equation

k¡1 + n¡ 1 ¡ np
f
k

1
m = 0

It is easy to show that this has a unique solution. Furthermore this solution
will be such that

k >
1
n

µ
f
p

¶ m
m+1

This has the straightforward implication that inequality will be less pro-
nounced if the peasant producers interact with each other also, than if they
individually face up to the lord. We would therefore expect to see larger
transfers in aggregate and richer lords in situations where the peasantry is
numerous but disorganised.

If fp < 1 (as it would be in our feudal case) then it follows that k <
³
f
p

´ m
m+1 , so that the lord is de…nitely richer than he would be if he had only

one peasant. Furthermore in this case @k@n < 0, so each additional peasant
would increase the relative wealth of the lord.

Aggregate output is, in fact, larger in the case of the atomised peasantry.
In the truly multi-player game, the incentives shift towards increased claiming
by all players. Each peasant has to contend not only with the predations of
the stronger lord, but also the possibility of yielding up some of her product
to another peasant. In the equilibrium all peasants produce at exactly the
same level so that there are no inter-peasant transfers. All transfers are
between peasants and the lord. As seen in the previous section, however,

7In fact we will restrict our analysis also to interior intertemporal equilibria.
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the absence of transfers does not imply the absence of costs. The larger the
number of potential claimants, the larger the costs incurred in preempting
such predations. This is re‡ected in a lower per capita output.

What happens to aggregate output if more peasants are introduced? We
can show that

@YAB
@n

> 0 if, and only if, pk > m

Now increases in n reduce k, so it is evident that there is a critical peasant
mass n¤ beyond which increases in the number of peasants actually reduces
aggregate output. This level is obviously a function of both the decisiveness
parameter m and peasant productivity p. Larger values of p will also reduce
the equilibrium k, but pk will increase with p.

The model of expanding empire by adding peasants at the margin (as
in Landes’s (1998, p.23) account referred to in the introduction) therefore
runs up against inbuilt limits. These constraints can be slackened only if
productivity can be enhanced. This constraint obviously does not apply to
the “sack of potatoes” model. Empire building on the backs of a peasantry
is therefore much more feasible if peasants do not interact with each other.

6 The impact of property rights

In all the cases considered thus far the aggregate output has been split purely
according to the relative claiming e¢ciencies of the players. One of the im-
plications of this is that the less productive player can always forcibly extract
resources simply by being su¢ciently vociferous. Being bloody-minded helps
in this model. Indeed, in many circumstances it enables one to walk o¤ with
the lion’s share.

Obviously this could not happen if there were perfect property rights. In
that case every player would get exactly what he or she produced and there
would be no claiming. Between these polar cases of absolutely inviolate
property rights and shares decided purely on claiming strength, there are a
number of very interesting intermediate situations8.

The simplest way of incorporating restrictions on the predations of the
other player is to provide each player with an activity which is not subject to

8Indeed in situations where there are strong property rights, establishing the existence
of such a right will often take up energy. This can be seen as a type of claiming activity.
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predation. The way one might think about this, is that it corresponds to the
peasant’s vegetable patch which cannot be raided by the lord. Alternatively,
this might be a crop or a type of production which is subterranean, hidden
from view.

Formally we assume that a …xed proportion Á of each agents wealth Wi
can be and is invested in the secure type of production. This proportion
is not subject to choice by the agent. It re‡ects societal norms, values and
institutions such as the prevailing legal framework. Many of the cultural
factors which in‡uence m will also have an impact on Á. For example, a
strong aversion to inequality may yield a low m, but might also make larger
portions of each agent’s production subject to redistributive pressure, i.e. it
might erode Á. On the other hand primitive military technology (low m)
would probably tend to increase Á.

We might assume that production in the secure sector occurs with exactly
the same technology as production in the unprotected sector. This, however,
is a restrictive assumption. It may be possible that the cost of secure pro-
duction is that production is less e¢cient. Root crops, for example, while
they may be hidden from view may yield less than cereals. Alternatively
the protected form of production may be more e¢cient, simply because it is
protected.

In general we will therefore assume that production in the protected sector
will occur with a constant returns to scale technology with a productivity
factor ri, so that the payo¤ to production in the secure sector will be given
by

Ysi = riÁWi

Since there can be no predation we have assumed that production happens
with maximal e¢ciency.

In relation to the open sector we assume, as before, that agents have to
balance claiming and productive activities. The output of production will be
given by

YA = cA® (1 ¡ Á)WA and YB = cB¯ (1 ¡ Á)WB
The appropriation functions will still be given by equation 2 except that

s1 = (1 ¡ ®) fA (1 ¡ Á)WA
s2 = (1 ¡ ¯) fB (1 ¡ Á)WB



Predatory equilibria 39

The (1 ¡ Á) terms in the appropriation functions obligingly divide out, so
that the payo¤s from the open sector will be given by

Yoi = (1 ¡ Á)Yi
where Y1 and Y2 are exactly as in equations 5a and 5b, i.e. the payo¤s that
would have been achieved if the entire stock of resources had been invested
in the open sector. Reparameterising the model as before, the …nal payo¤s
to each player will be given by

RA = Ár1kW + (1 ¡ Á)Y1 (17a)
RB = Ár2W + (1 ¡ Á)Y2 (17b)

In this form it is clear that the payo¤s are a weighted average of the return
that would be achieved on the secure asset if all resources could be devoted
to producing there and the payo¤ achieved in the contest around open pro-
duction if all resources were invested there.

Since Á is not a decision variable, the maximising choice of ® for p, f ,
m and k will be precisely as before: the reaction functions and the Cournot
equilibria are all the same. One important di¤erence, however, is that the
conversion of current period payo¤ into future wealth will now be given by

WA;t+1 = RA;t WB;t+1 = RB;t (18)

and this implies that the intertemporal equilibria will be di¤erent.
The key result is that

k T k¤ as r1 T r2

where k¤ is any stable equilibrium that would have been achieved if there
were no property rights, i.e. if Á = 0. Furthermore, the size of the shift
(upwards or downwards) depends on the di¤erence (r1 ¡ r2) and on Á. The
larger the term (r1 ¡ r2)Á, the larger the shift. An example of such a shift
is depicted graphically in Figure 14

One astonishing implication of this relationship is that if r1 = r2, then
granting property rights makes absolutely no di¤erence to the equilibrium
outcome for any Á < 1. Even if the bulk of all production is completely
protected, the di¤erences in the unprotected sector will in the long-run com-
pletely determine the distribution of wealth! The point is that theft in the
“open” sector acts like a slow leak: even though the transfers every period
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Figure 14: Property rights shift the equilibrium k upwards at all stable equi-
libria, provided that r1 > r2. Left panel: log scale. Right panel: detail from
left panel, on a linear scale. Choice of parameters: f = 1, p = 2, c = 2,
r1 = 4, r2 = 2.

may be very small, in the long-run they end up a¤ecting the overall equilib-
rium distribution of resources. If r1 = r2, then there are no countervailing
‡ows of income which might alter the balance determined in the contest in
the open sector.

When viewed in this light, systematic theft, even if it occurs in only a
small domain of the economy, could have very deleterious long-run e¤ects.

In general, one would assume, however, that a person who has a produc-
tivity advantage in the open form of production would also be more produc-
tive in the secure form of production. This would imply that our peasant or
homesteader (p > 1, f < 1) may yet end up in an equilibrium with property
rights, as the richer player. One way of modelling a link between the pro-
ductivities ri in the secure sector with those in the open sector is to specify
them as

ri = cµi (19)

This equation implies that r1 > r2 if cA > cB (assuming ci > 1). It has the
additional implication that the productivity di¤erentials in the two sectors
might be di¤erent. If µ is greater than one, then any productivity di¤erences
in the open sector become magni…ed in the protected sector. Given that
one might suppose that human capital is an inalienable asset and might
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Figure 15: With su¢ciently strong property rights, productivity increases
might bene…t the producer and not just the parasite. Choice of parameters:
f = 0:25, m = 0:5, µ = 1, c = 2.

be disproportionately exercised in the protected sector, such a widening of
di¤erentials is perhaps to be expected.

In Figures 15 and 16 we show that with stronger property rights (higher Á)
and larger di¤erentials in productivity in the secure sector (larger µ) we may
see not only higher levels of k, but also a transformed relationship between k
and p. It is possible now for productivity increases on the part of A to lead
to a relative increase in A’s wealth also, i.e. we may see @k@p > 0. The top
right panel in …gure 15 is interesting for another reason. It shows a marked
change in the relationship between k and p at the point at which player
B becomes completely parasitic. To the left of this point we see that the
stronger, more parasitic player manages to appropriate the bene…ts of the
increase in productivity. Once this player has become completely parasitic,
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Figure 16: If Á > 0 and µ (representing. the productivity di¤erential in the
secure sector) su¢ciently large, then we may have an increasing relationship
between k and p, i.e. the more productive individual also becomes richer, in
equilibrium. Choice of parameters: Á = 0:2, f = 0:25, m = 0:5, c = 2.

however, the maximal damage has been done and the bene…ts of productivity
increases now accrue to the producer.

Indeed, although it is not altogether clear from Figure 15 one of the
e¤ects of the introduction of property rights is to reduce the value of p at
which player B becomes completely parasitic. When Á = 0, this transition
is reached at around p = 500. When Á = 0:2, however, it occurs already
at about p = 25 and when Á = 0:4 it is at about p = 8:5. The reason for
this quicker onset of complete parasitism is, of course, that it is true more
generally that @¯@k < 0. As A becomes richer, the pickings to be had from
parasitism increase, and the impact of A’s own claiming activities increases.
On both counts B …nds it necessary to increase the claiming intensity.

A positive relationship between k and p can exist in contexts other than
corner solutions. Indeed, with A becoming richer, A’s ability to fend o¤
B’s predations increases. This is illustrated in Figure 17 which provides
a closer look at the case Á = 0:4 in Figure 15. It is evident that here
too there is a change in slope at the point where B becomes completely
parasitic. The upward sloping relationship between k and p for the interior
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Figure 17: With Á su¢ciently high, the relationship between k and p is
positive even in interior equilibria. At the point at which B becomes parasitic
the slope increases. Choice of parameters: f = 0:25, m = 0:5, µ = 1, c = 2.

equilibria indicates that in this case A is su¢ciently strong to gain from her
own increases in productivity. Part of the bene…t of even imperfect property
rights is therefore that they provide a ‡ow of resources to the more productive
player which can be used to o¤set the greater claiming e¢ciency and indeed
motivation for theft on the part of the opponent.

Figure 16 indicates, however, that in the case of low property rights, the
productivity di¤erentials in the protected sector have to be rather large before
they have su¢ciently strong countervailing e¤ects. Indeed for the parameter
choices in the model, we need the di¤erentials to be signi…cantly larger in
the protected sector than in the open one in order for the more productive
player to also be the richer player in equilibrium.

Because property rights a¤ect the distribution of resources in society9

they will also a¤ect the equilibrium indices of parasitism. In Figure 18 we
have graphed IT , IC, IL and the growth rate, for di¤erent values of Á. For the
sake of the comparison, the graphs only consider the proportion of resources
in the open sector. With higher Á, the indices IT , IC, and IL will shift down
even further, since the con‡ict in the open sector only involves a proportion

9As noted above, this is true only if r1 6= r2
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of (1 ¡ Á) of all resources. Greater property rights will therefore result in
even more dramatic shifts in the equilibrium level of parasitism.

Two broad trends are evident in the data: with higher Á player B becomes
parasitic sooner while beyond the point where B is a complete parasite, higher
levels of Á unequivocally lead to a reduction in parasitism within the open
sphere. At low p, however, the quicker onset of parasitism by B suggests
that societies with high property rights might actually sustain higher levels
of transfers and claiming. The mediating relationship, of course, is that with
inequality. Higher Á implies higher k and this in turn leads to more claiming
and higher transfers. Once B has become completely parasitic, however, the
bene…ts of property rights to the productive player become evident. The
greater level of resources available to A, enable her to ward o¤ the e¤ects of
the predation, which leads to lower transfers, i.e. lower values of IT . This is
true even if we ignore the fact that with higher Á there is a smaller portion
of A’s production that B can appropriate.

As far as the aggregate claiming e¤ort is concerned, we have noted above
that IC is really a weighted average of (1 ¡ ®) and (1 ¡ ¯), weighted by the
relative wealth of the two players. There are two o¤-setting trends in this
regard. Higher Á implies higher ® and lower ¯ in equilibrium. It also implies
a relative re-weighting, with A gaining weight (due to a higher k) and B
losing some. Again the direction of these shifts is clear-cut once we are in
the zone where B is a complete parasite.

The lower levels of IL record that the more productive player is also
devoting a higher proportion of resources to production while the growth rate
indicates that resources are shifting to the more productive individual10.

One “feature” of Figure 18 is that it suggests that at high enough levels
of p, the level of parasitism stabilises. This is certainly true for Á = 0 (as
noted above in relation to Figure 4). It is also approximately true if µ = 1.
If the productivity di¤erentials in the protected sector are, however, much
larger, then the more productive player is able to progressively squeeze out
the e¤ects of the opponent’s predations. This is depicted in Figure 19, where
it is also clear that the maximal level of parasitism is reached just at the point
where B becomes completely parasitic. Although it may not be immediately
evident from the diagrams, we can show that both IT and IC tend to zero in
this case. Indeed, more generally IT and IC will approach zero as p tends to
in…nity if, and only if, µ > 1.

10Interestingly, however, the gap between g1max and g1 is wider at higher Á.
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Figure 18: Indices against p with changing strength of property rights. Top
left: IT , Top right: IC , Bottom left IL, Bottom right: g1. Choice of parame-
ters: f = 0:25, m = 0:5, µ = 1, c = 2, W = 1.
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Figure 19: With higher productivity di¤erentials in the protected sector (i.e.
µ > 1), the levels of transfers and of claiming (within the open sector) de-
crease markedly once player B has become completely parasitic and eventu-
ally tend to zero. Choice of parameters: f = 0:25, m = 0:5, Á = 0:4, µ = 1:5,
c = 2, W = 1.

The reduction of the e¤ects of predation in these cases is also a process of
marginalisation, akin to that discussed in the context of high values of m. It
is the greater resources at the disposal of the more productive player which
limit the impact of B’s predation. .

7 The possibility of cooperation

Thus far the conclusion seems to be that predation is minimised either
through very strong property rights (very high Á) or through the marginal-
isation of one of the players. Marginalisation can occur either through a
very high decisiveness or through a combination of some property rights (i.e.
Á > 0), a very high productivity di¤erential (p very large) and higher di¤er-
entials in the secure form of production than in the open sector (µ > 1).

In certain circumstances, however, it might be possible to achieve equilib-
ria that are Pareto superior to the ones discussed thus far. This seems most
obvious in the case of the “armed camp” scenario - the perfectly symmetrical
game with moderately high decisiveness. As …gures 11 and 10 make clear,
the costs associated with claiming in the symmetrical equilibrium are very
high indeed. In some ways this game is very reminiscent of the prisoners’
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dilemma: if both players could only agree to be more cooperative than in
the Cournot equilibrium, they would both be better o¤. Indeed if m > 1,
this would be the only way in which a downward spiral of collapsing output
(negative growth rates) could be avoided.

Since our intertemporal equilibria are all the outcomes of repeated inter-
actions, the Folk Theorem would suggest that other equilibria ought to be
possible. Provided that both players are su¢ciently patient, it ought to be
possible to negotiate a process of mutual disarmament. Nevertheless in one
important respect the situation in our model is di¤erent from that of the
well analysed repeated prisoners’ dilemma: the game is not a repetition of
the same stage game, iterated inde…nitely. Instead, the results of each stage
produce a wealth distribution which then sets the scene for the subsequent
interaction.

One implication of this, is that if Á = 0, full cooperation (i.e. ® = 1
and ¯ = 1) can never be an equilibrium outcome. A defection by any player
at this stage would e¤ectively remove the opponent and terminate the game
immediately. It would be the most dramatic marginalisation considered yet.
This possibility does not exist if Á > 0, since the player who had been
“suckered” would still have the resources from the protected sector to fall
back on.

If m < 3, then any agreed combination ® = ¯ (< 1) could be an equi-
librium of the symmetrical game, with the threat of each player reverting
to the Cournot strategy as the discipline to maintain this equilibrium. Note
that any defection at this stage, while impoverishing the opponent would still
leave the opponent with some resources. Since with m < 3 the intertemporal
equilibrium is unique and stable, the path of the game after the defection
would eventually converge back on the symmetrical equilibrium. The only
question is whether the short-term higher payo¤s to the defector would out-
weigh the long-run losses. With su¢ciently patient players, the threshold of
cooperation could be moved arbitrarily close to (1; 1) and with Á > 0, even
(1; 1) would be a possible outcome, since any “suckered” player would have
the resources from the protected sector available, to continue in the game
and then to “punish” the defector by playing the Cournot strategy.

In the context of multiple equilibria, however, a strategy of mutual dis-
armament would have to restrict itself to outcomes which subsequent to a
defection would not take the game into the basin of attraction of either ag-
gressive equilibrium. This suggests that in the context of high decisiveness
there is a limit to the amount of cooperation that could be expected. With
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strong property rights, the ‡ow of resources to each player from the protected
sector would have an equalising e¤ect, so that the level of cooperation could
in each case be set higher. Property rights might therfore promote more
cooperative outcomes.

For interactions other than the symmetric one, more cooperative solutions
than the Cournot equilibria ought to be possible as well. Points along the
line joining any Cournot equilibrium to the point (1; 1) have the property
that 1¡®

1¡¯ is constant along them (two such paths are indicated in Figure 20).
This, however, implies that the ratio of the shares in output gAgB is constant
along such a line. In addition aggregate output is de…nitely larger hence both
players would get higher payo¤s along such a path. If Á = 0 (as at the point
indicated A in …gure 20) then kt+1 =

gA;t
gB;t

and the path in the diagram from
A to (1; 1) preserves the equilibrium shares of wealth. As in the symmetrical
case, therefore, it should be possible to negotiate a more cooperative solution.
This would be a proportional reduction of claiming.

If Á > 0, however, the situation becomes a little bit more complicated,
since kt+1 = r1ÁWA+(1¡Á)Y1

r2ÁWB+(1¡Á)Y2 A balanced “disarmament” along the line indi-
cated in the diagram would, as a …rst round e¤ect, increase Y1 and Y2 pro-
portionately. With r1 > r2 it would follow that this would reduce k11. This
in turn would have second round e¤ects. A’s share would become smaller
(admittedly of an altogether larger pie) and this in turn would lead to a
further reduction in k. At the end of these adjustments, k would be smaller
than it would be in the Cournot equilibrium.

A balanced reduction in claiming would therefore bene…t the less produc-
tive or more parasitic player more. If A is initially richer (as it is in our
diagram, due to strong enough Á and µ), we might consider this reduction
in k as a voluntary form of redistribution, a progressive tax as it were, to
buy social peace. If B, however, is initially richer, it would not lead to a
more equal distribution of resources, instead it would make the richer para-
site more richer still. Although both players would be better o¤, the parasite
would be the bigger bene…ciary of this “peace dividend”. The transfers from
A would resemble “protection money” paid out, not due to actual threats,
but potential ones.

Note that in both cases the level of transfers would have gone up, despite

11 r1ÁWA+(1¡Á)Y1
r2ÁWB+(1¡Á)Y2

> r1ÁWA+(1¡Á)±Y1
r2ÁWB+(1¡Á)±Y2

(where ± > 1) if, and only if r1
r2

k > Y1
Y2

. Now we
have shown that with Á > 0 and r1 > r2 we must have k > Y1

Y2
. We will therefore de…nitely

have r1
r2

k > Y1
Y2

.
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Figure 20: Points along the path from the intertemporal equilibria to (1; 1)
are Pareto superior to the respective equilibrium itself. Choice of parameters:
f = 0:25, m = 0:5, p = 100, c = 2, µ = 1:5.

the fact that the level of overt claiming activity would have gone down.
Furthermore for the given distribution of k, the opportunity cost of claiming
would go down. Nevertheless the e¤ect of the threat of predation (in these
disarmament deals) is to make k less optimal than it would otherwise be
for output growth. Maximum growth is, of course, achieved if resources are
redistributed towards the more productive player.

8 Conclusion: The manifold e¤ects of predation

We started this paper o¤ with the problem of the di¤erent trajectories of dif-
ferent economies. Our analysis has con…rmed that predation can have very
deleterious e¤ects on the long-run growth performance. In the absence of
property rights, resources would tend to accumulate in the hands of people
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who have a comparative advantage in …ghting and a disadvantage in pro-
duction. Systems of this sort can build impressive wealth for the parasite.
Indeed whole empires can be built in this way. The success of such an impe-
rial project, however, has to be built on a system of divide and rule, because
in properly interacting systems, there are inbuilt limits to how large they can
be, before the e¤ects of predation lead to economic collapse.

All of these systems grow at a slower rate than they could do, because pro-
ductivity advances bene…t largely the parasite and because wealth tends to be
concentrated among the least productive. The worst outcomes, however, are
experienced when relatively evenly matched players are pitted against each
other in an environment of high decisiveness. Some of the “best” outcomes
(for growth) are achieved in a context of high decisiveness through the e¤ec-
tive marginalisation of the opponent. Nevertheless it matters greatly who is
marginalised. Rancher victories are arguably less favourable to growth than
homesteader ones.

The introduction of property rights paradoxically does not automatically
guarantee better outcomes. Indeed, these will materialise only if the pro-
tection is stronger in areas where the more productive player also has a
greater comparative advantage. This might explain the di¤erent trajectories
of largely agricultural societies from more urban based ones. Perhaps the ad-
vantage of the West was not stronger property rights per se, but that these
property rights were stronger in the domain of urban, industrial production.
The wealth generated in this sphere could then eventually break the strangle-
hold of the feudal parasites. Property rights over portions of the agricultural
output by contrast, might not generate su¢ciently strong returns to o¤set
the established power imbalances.

In all cases more cooperative outcomes ought to be possible. The suc-
cess of such negotiated settlements depends on the players interacting with
each other repeatedly. Consequently smaller societies that are not constantly
overrun by migrants or marauders ought to show less overt theft or claiming
activity and should therefore exhibit better growth. Nevertheless if there are
positive property rights a balanced reduction of claiming would bene…t the
parasite more than the producer. The implication seems to be that the threat
of predation might actually be more e¤ective in achieving transfers than the
predation itself. One might argue that the state (in particular the welfare
state) is a formalised mechanism for policing this social pact.
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A Proofs

A.1 The basic model
Many of the properties of the model can be derived from the most general
speci…cation. In this form the payo¤ functions can be written as

Y1 =
°1

°1 + °2
YAB

Y2 =
°2

°1 + °2
YAB

where °1 = sm1 . We will derive many properties of the model from this most
general speci…cation and then apply them to the version with our choice of
functional forms. This version is given by:

Y1 =
(1 ¡ ®)m fmAWmA

(1 ¡ ®)m fmAWmA + (1 ¡ ¯)m fmBWmB
[cA®WA + cB¯WB] (20a)

Y2 =
(1 ¡ ¯)m fmBWmB

(1 ¡ ®)m fmAWmA + (1 ¡ ¯)m fmBWmB
[cA®WA + cB¯WB] (20b)

In this form the model is obviously symmetrical for A and B. Any statement
which is true in this model will remain true if we reassign variables as follows
Y1 ! Y2; Y2 ! Y1, ® ! ¯, ¯ ! ®, cA ! cB, cB ! cA, fA ! fB, fB ! fA,
WA !WB, WB !WA. When we reparameterise the model such that

k =
WA
WB

, p =
cA
cB

and f =
fA
fB

this obvious symmetry is broken. As noted in the text the fact that WA
and cA no longer feature in the model necessitates a reinterpretation of these
parameters, so a change inWB with constant parameter k has the implication
of increasing both WA and WB. This implies that the parameter WB now
represents the baseline wealth of the society as a whole and cB the baseline
productivity. We drop the subscripts to re‡ect this reinterpretation.

The payo¤ equations become (as in equations 5a and 5b)

Y1 =
(1 ¡ ®)m fmkm

(1 ¡ ®)m fmkm + (1 ¡ ¯)m c (p®k + ¯)W

Y2 =
(1 ¡ ¯)m

(1 ¡ ®)m fmkm + (1 ¡ ¯)m c (p®k + ¯)W
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Despite the apparent asymmetry in this form of the model, the strategic
choices facing A and B are obviously still symmetric. If we interchange
A’s and B’s wealth, productivity and appropriation e¢ciency the optimal
responses will also be interchanged.

Remark 1 Any statement about B when suitably reinterpreted will be true
of A. If we make the following substitutions in any statement, the statement
will continue to be true: Y1 ! Y2; Y2 ! Y1, ® ! ¯, ¯ ! ®, p ! p¡1,
k ! k¡1, f ! f¡1, c! pc, W ! kW .

This can be readily checked in the equations above. We will rely on
this property to derive the results once and then reinterpret them for the
symmetrical case.

A.2 Properties of the payo¤ and reaction functions
Lemma 2 We have (1 ¡ ®) @°1@a = ¡m°1 and (1 ¡ ¯) @°2@¯ = ¡m°2

Proof. This follows from the fact that °1
°1+°2

is homogeneous of degree
zero in (1 ¡ ®) and (1 ¡ ¯) and that °1 and °2 are not functions of ¯ and ®
respectively. By applying Euler’s theorem to °1

°1+°2
we get the identity

(1 ¡ ®) °2
@°1
@®

´ (1 ¡ ¯) °1
@°2
@¯

This can hold only if

(1 ¡ ®) @°1
@®

´ ¡µ°1 and ¡ µ°2 = (1 ¡ ¯) @°2
@¯

for some constant µ ¸ 0. In our case this constant is m.

Proposition 3 @Y1
@¯ > 0 and @Y2@® > 0

Proof. We prove the case for @Y1@¯ . The other case is analogous. Now

@Y1
@¯

=
¡°1 @@¯ (°2)
[°1 + °2]

2 YAB +
°1

°1 + °2

@YAB
@¯

By our assumptions @
@¯ (°2) < 0 and @YAB

@¯ > 0 so the result follows immedi-
ately.
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Proposition 4 For a given value of ¯ we have that @Y1@® T 0 as Y2 S
(1¡®)
m

@YAB
@® . Similarly for a given value of ® we have that @Y2@¯ T 0 as Y1 S

(1¡¯)
m

@YAB
@¯

Proof. We know that

@Y1
@®

=
°2
@
@® (°1)

[°1 + °2]
2YAB +

°1
°1 + °2

@YAB
@¯

Using the lemma 2, excluding the case ® = 1 and simplifying we get

@Y1
@®

=
°1

°1 + °2

· ¡m
(1 ¡ ®)Y2 +

@YAB
@®

¸
(21)

If we exclude the possibility that °1
°1+°2

= 0 we have the result.

Theorem 5 Given our choice of functional form, and for …xed values of the
parameters ¯; k; p; f;m; c;W the payo¤ function Y1 (®) can have one of the
following characteristics:

² Y1 increases from ® = 0 until it reaches its maximum from where it
decreases to the global minimum at ® = 1.

² Y1 decreases monotonically from ® = 0 to the global minimum at ® = 1.

Similarly for …xed values of ®; k; p; f;m; c;W the payo¤ function Y2 (¯)
can either reach a maximum in the interior of (0; 1), or decrease mono-
tonically on [0; 1).

Proof. We will prove the case for Y2 (¯). The proof for Y1 (®) follows
by symmetry. By proposition 4 we have that @Y2@¯ T 0 as Y1 S (1¡¯)

m
@YAB
@¯ .

Substituting in we get @Y2@¯ T 0 as

(1 ¡ ®)m fmkm
(1 ¡ ®)m fmkm + (1 ¡ ¯)m c (p®k + ¯)W S (1 ¡ ¯)

m
cW

Now note that if ¯ = 1 the right hand side is zero, while the left hand side
is equal to c (p®k + ¯)W which is positive12. Consequently @Y2

@¯ is negative
near ¯ = 1. Furthermore the left-hand side is monotonically increasing in

12Provided that a 6= 1, in which case, the left-hand side is not de…ned
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¯. We therefore need to consider only what happens at ¯ = 0. If we have
(1¡®)mfmkm

(1¡®)mfmkm+1c (p®k)W <
1
mcW , then there will be a unique ¯0 2 (0; 1) for

which the left-hand side is equal to the right-hand side, i.e. @Y2@¯ = 0. This
point is clearly a maximum since @Y2@¯ is increasing on (0; ¯0) and decreasing
on (¯0; 1)

Corollary 6 It is clear that B’s reaction function will be given by the locus
of interior maxima of Y2 (¯) i.e. by the solutions to the equation @Y2

@¯ = 0
(where these exist) and otherwise by ¯ = 0.

Proposition 7 Y1 (®) will have an interior maximum in a neighbourhood of
¯ = 0 and of ¯ = 1. It will have an interior maximum for every ¯ 2 [0; 1) if
pk ¸ m.
Y2 (¯) will have an interior maximum in a neighbourhood of ® = 0 and

of ® = 1. It will have an interior maximum for every ® 2 [0; 1) if pkm · 1.

Proof. (of the case for Y2 (¯)) We have noted in the proof of Theorem 5
above that the equation @Y2@¯ = 0 has a solution only if

(1 ¡ ®)m fmkm
(1 ¡ ®)m fmkm + 1

(p®k) <
1
m

(22)

This inequality will certainly hold in a neighbourhood of ® = 0 and of ® = 1.
It will hold for every ® 2 [0; 1] if pkm · 1.

Remark 8 Y2 (¯) will have an interior maximum if Y1 (®; 0) · cW
m .

Proof. Inequality 22 above can, of course be written equivalently as
(1¡®)mfmkm

(1¡®)mfmkm+1c (p®k)W <
cW
m . The left hand side is the payo¤ to Player A

if ¯ = 0, i.e. it is Y1 (®j¯ = 0)

Proposition 9 If there is an interior solution to the equation @Y1
@® = 0 it

will be a maximum if @
2YAB
@®2 < 0. If @

2YAB
@®2 > 0 then the solution may be a

maximum or minimum.

Proof. Assume that for ¯ = ¯0 we have @Y1
@® = 0 at ® = ®0 i.e.

Y2 (®0; ¯0) =
(1¡®0)
m

@YAB
@® . At this solution we have

@
@®

µ
@Y1
@®

¶
=

@
@®

µ
°1

°1 + °2

¶
¢
· ¡m
(1 ¡ ®)Y2 +

@YAB
@®

¸
+

°1
°1 + °2

· ¡m
(1 ¡ ®)2

Y2 ¡ m
(1 ¡ ®)

@Y2
@®

+
@2YAB
@®2

¸
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The …rst term on the right hand side is zero, since we are evaluating the
expression at (®0; ¯0), i.e.

@2Y1
@®2

=
°1

°1 + °2

· ¡m
(1 ¡ ®)2

Y2 ¡ m
(1 ¡ ®)

@Y2
@®

+
@2YAB
@®2

¸

We have shown that @Y2@® > 0, so if @
2YAB
@®2 < 0 we will undoubtedly have

@2Y1
@®2 < 0. If @

2YAB
@®2 > 0 then the sign of the expression in square brackets is

indeterminate.
Note that if YAB is separable, i.e. if YAB = YA+YB then @

2YAB
@®2 = @2YA

@®2 . If
YA is a concave function then @2YA

@®2 < 0 and we come to the conclusion that
any stationary point on the payo¤ function is a global maximum.

Remark 10 By proposition 4 the conditions @Y1@® = 0 and @Y2
@¯ = 0 can be

written respectively as

(1 ¡ ¯)m
(1 ¡ ®)m fmkm + (1 ¡ ¯)m (p®k + ¯) =

(1 ¡ ®) pk
m

(23)

(1 ¡ ®)m fmkm
(1 ¡ ®)m fmkm + (1 ¡ ¯)m (p®k + ¯) =

(1 ¡ ¯)
m

(24)

De…nition 11 Let ¯ = rB (®) be the locus of global maxima of the payo¤
function Y2 (¯) for …xed values of k; p; f;m; c;W de…ned for ® 2 [0; 1). Let
® = rA (¯) be the locus of global maxima of the payo¤ function Y1 (®) for
…xed values of k; p; f;m; c;W de…ned on [0; 1).

Proposition 12 The slope of the reaction function ® = rA (¯) at any inte-
rior point will be given by

@®
@¯

= ¡
¡m

(1¡®)
@Y2
@¯ + @2YAB

@¯@®
¡m

(1¡®)2Y2 ¡ m
(1¡®)

@Y2
@® + @2YAB

@®2

provided that ¡m
(1¡®)2Y2 ¡ m

(1¡®)
@Y2
@® + @2YAB

@®2 6= 0. The slope of the reaction
function ¯ = rB (®) at any interior point will be given by

@¯
@®

= ¡
¡m
(1¡¯)

@Y1
@® + @2YAB

@®@¯
¡m

(1¡¯)2Y1 ¡ m
(1¡¯)

@Y1
@¯ + @2YAB

@¯2

provided that ¡m
(1¡¯)2Y1 ¡ m

(1¡¯)
@Y1
@¯ + @2YAB

@¯2 6= 0.
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Proof. We make use of the implicit function theorem. Since we are at
an interior point, we may assume that ® = rA (¯) can be de…ned implicitly
by the equation @Y1@® = 0 and in particular by:

¡m
(1 ¡ ®)Y2 +

@YAB
@®

´ 0

Let F (®; ¯) = ¡m
(1¡®)Y2 +

@YAB
@® . Then

@®
@¯

= ¡F¯
F®

This will be valid provided that F® 6= 0. Now F® = ¡m
(1¡®)2Y2 ¡ m

(1¡®)
@Y2
@® +

@2YAB
@®2 . Furthermore F¯ = ¡m

(1¡®)
@Y2
@¯ + @2YAB

@¯@® . The other result follows by
symmetry.

Theorem 13 B’s reaction function rB (®) will have one of three possible
shapes:

1. rB increases monotonically over the interval [0; 1) and rB (®) > 1
m+1

for all ®.

2. rB monotonically decreases over the interval [0; ®] and then monotoni-
cally increases on [®; 1)

3. rB monotonically decreases over [0; ®1] to zero, rB = 0 for ® 2 [®1; ®2]
and rB increases monotonically on [®2; 1).

In all case rB (0) > 1
m+1 and rB (®) ! 1 as ®! 1

An analogous result applies for A’s reaction function rA (¯).

Proof. We note (by proposition 7) that at ® = 0 we have an interior
maximum. The condition @Y2@¯ = 0 can be written in the form of equation 24
Substituting ® = 0 into this expression and simplifying, we get that

(1 ¡ ¯)m+1 = fmkm (¯ (m+ 1) ¡ 1)

Equality can hold only if the right hand side is positive, i.e. ¯ > 1
m+1 . This

establishes that rB (0) > 1
m+1 .
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We have also observed that near ® = 1 we will also have an interior
maximum. Note that lim®!1

(1¡®)mfmkm
(1¡®)mfmkm+(1¡¯)m (p®k + ¯) = 0 so in order for

equality to hold in equation 24, we need lim®!1 ¯ = 1.
The rest of the theorem follows by considering the slopes of the reaction

functions in the interior of the unit square. By proposition 12 we have

@¯
@®

= ¡
¡m
(1¡¯)

@Y1
@® + @2YAB

@®@¯
¡m

(1¡¯)2Y1 ¡ m
(1¡¯)

@Y1
@¯ + @2YAB

@¯2

With our choice of functional form @2YAB
@¯2 = 0, so the denominator is de…nitely

negative and non-zero. Furthermore @
2YAB
@®@¯ = 0. It follows that the sign of

@¯
@® is opposite to that of @Y1@® . By proposition 4 @Y1@® T 0 as Y2 S (1¡®)

m
@YAB
@® .

Assume now that @¯@® > 0 at some point (®0; rB (®0)) on the reaction function,
i.e. @Y1@® < 0 at ®0. We must have

Y2 (®0; rB (®0)) >
(1 ¡ ®0)
m

c (pk)W (25)

The total derivative of Y2 with respect to ® at this point is d
d®Y2 = @Y2

@® +
@Y2
@¯
@¯
@® . Since @Y2

@¯ = 0 at (®0; rB (®0)) the left-hand side of inequality 25
will unambiguously increase with an increase in ®. The right hand side will
unambiguously decrease. Consequently the sign of @Y1@® will remain negative.
It follows that if @¯@® > 0 at any ®0 then for all ® > ®0 we must also have
@¯
@® > 0.

Now observe that for ® near 1 we have shown that there must be interior
points on the reaction function. Furthermore in this region inequality 25
must hold. Consequently the reaction function rB must be increasing on
some interval to the left of ® = 1.

It remains to consider what happens at ® = 0. It is possible that we have
Y2 (0; rB (0)) > 1

mc (pk)W . In that case the reaction function will increase
monotonically from ® = 0 for all ® 2 [0; 1). If Y2 (0; rB (0)) = 1

mc (pk)W then
@¯
@® = 0 at ® = 0. However we have d

d®Y2 (®; rB (®)) > 0, so @Y1@® evaluated at
(®; rB (®)) will be negative to the right of ® = 0. Again the reaction function
will increase monotonically.

If Y2 (0; rB (0)) < 1
mc (pk)W then the reaction function will decrease from

® = 0. There are now two possibilities: either the reaction function will reach
a stationary point at ® = ® in the interior of the unit square, or it continues
decreasing until it reaches the boundary at ®1, i.e. rB (®1) = 0.
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If we have @¯
@® = 0 at (®; rB (®)) with rB (®) > 0, then we must have

Y2 (®; rB (®)) = 1¡®
m c (pk)W . By the previous arguments it follows that to

the right of ® we must have @¯@® > 0 and hence the reaction function must
increase towards one on the interval (®; 1).

Assume now that at ®1 we have rB (®1) = 0, with Y2 (®1; 0) · 1¡®1
m c (pk)W .

If we have equality the previous case applies, so assume that Y2 (®1; 0) <
1¡®1
m c (pk)W . This implies by proposition 4 that @Y1@® > 0. The payo¤ func-

tion Y1 for ¯ = 0 is therefore still increasing at ® = ®1. It will reach its
maximum at ® = ®¤.

Note that because rB (®1) = 0, the solution to the equation @Y2
@¯ = 0 is

given by ¯ = 0. It follows (again from proposition 4) that Y1 (®1; 0) =
cW
m .

Since ®¤ maximises the payo¤ function Y1 (®; 0), we must have Y1 (®¤; 0) >
cW
m . Since Y1 decreases monotonically on (®¤; 1) towards zero, there must
be a unique ® = ®2 on this interval such that Y1 (®2; 0) = cW

m . Since Y1 is
…rst increasing and then decreasing on (®1; ®2) it follows that Y1 (®; 0) > cW

m
for all ® 2 (®1; ®2). This, however, proves that @Y2@¯ < 0 at ¯ = 0 for all
® 2 (®1; ®2). It follows by Theorem 5 that there will be no interior maxima
of Y2 on this interval, i.e. rB (®) = 0 for ® 2 (®1; ®2).

Now consider what happens to the reaction function at ® = ®2. We know
that @Y1@® < 0 at ®2 so Y1 (®; 0) < cW

m to the right of ®2. We will therefore
again have interior solutions. Furthermore since @Y1@® < 0 at ®2 we must have
@¯
@® > 0 to the right of ®2. The reaction function is therefore monotonically
increasing on this interval.

Corollary 14 If rB is of the third type, then rA will be of the …rst type and
if rB is of the …rst type, then rA will be of the third type, and conversely.

Proof. We have noted in the proof above that if rB is of the third type,
then A’s optimal response to ¯ = 0 i.e. ®¤ is such that ®¤ 2 (®1; ®2).
Furthermore at (®¤; 0) we have @Y2@¯ < 0. By proposition 12 it follows that
A’s reaction function rA has a positive slope at (®¤; 0), i.e. @®@¯ > 0. This,
however, implies that it is of type 1.

If rB is of the …rst type, then we have at the point (0; rB (0)) that @Y1@® ·
0. This, however, implies (by Theorem 5) that for ¯¤ = rB (0) the payo¤
function Y1 has its maximum on the boundary, i.e. at ® = 0. This implies
that rA is of the third type.

The converse results hold by symmetry.
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A.3 The Cournot equilibria
Proposition 15 If @

2YAB
@¯@® = 0, then if the two reaction functions rB (®) and

rA (¯) intersect in the interior of [0; 1)£ [0; 1) they will do so at right angles.

Proof. This follows from 12. If we set @
2YAB
@¯@® = 0, then along A’s

reaction function we have @®@¯ = 0 if and only if @Y2@¯ = 0, while along B’s
reaction function we have @¯@® = 0, if and only if, @Y1@® = 0. Now at the point
of intersection of rA and rB we must have both @Y2

@¯ = 0 and @Y1
@® = 0. It

follows that both @rB(®)@® = 0 and @rA(¯)@¯ = 0. So while the one reaction curve
is horizontal, the other will be vertical.

De…nition 16 Let ®¤ = rA(0), i.e. ®¤ is the unique solution in (0; 1) of
(1 ¡ ®)m+1 fmkm = ®(m+ 1) ¡ 1

Let ¯¤ = rB (0), i.e. ¯¤ is the unique solution in (0; 1) of (1 ¡ ¯)m+1 =
fmkm (¯ (m+ 1) ¡ 1).

Theorem 17 Let ¯ = rB (®; k; p; f;m; c;W ) and ® = rA (¯; k; k; p; f;m; c;W )
be B’s and A’s reaction functions respectively. Then

1. @rB(®)@® > 0 for all ® 2 [0; 1) if, and only if, rA (¯¤) = 0. The Cournot
solution is therefore (0; ¯¤)

2. rB has an interior turning point at ¹® if, and only if, rA has a turning
point at ¹̄ = rB (¹®). The point

¡
¹®; ¹̄

¢
is therefore the intersection of rB

and rA and will be the Cournot solution. We have @rB(®)@® = 0 at
¡
¹®; ¹̄

¢

and @rA(¯)@¯ = 0, i.e. the reaction curves intersect at right angles.

3. rB (®¤) = 0 if, and only if, @rA(¯)@¯ > 0 for all ¯ 2 [0; 1). The Cournot
solution is therefore (®¤; 0).

Proof. The results all follow from corollary 14 and proposition 15. The
corollary establishes cases 1 and 3. As far as case 2 is concerned, we note
that at an interior Cournot equilibrium the two reaction curves meet at right
angles. The implication of this is that at any point

¡
¹®; ¹̄

¢
which satis…es

both the condition that @Y1@® = 0 and @Y2
@¯ = 0 we must have along rB that

@¯
@® = 0. Similarly we will have along rA that @®@¯ = 0.
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Conversely, however, if there should be any point (®0; ¯0)along the reac-
tion curve rB where @¯@® = 0 it follows that this point will satisfy the equation
@Y1
@® = 0. Consequently it will fall onto the curve rA, i.e. it is the point of
intersection of the reaction functions. This proves case 2.

Corollary 18 Let
¡
¹®; ¹̄

¢
be any Cournot equilibrium. We must have rA(¯) ¸

¹® for all ¯ 2 [0; 1) and rB (®) ¸ ¹̄ for all ® 2 [0; 1).

Proof. In the case of interior equilibria, the reaction curves intersect at
their respective turning points. These are the global minima of these curves.
In the case of a corner solution (0; ¯¤) or (®¤; 0) it is trivially true for the
“corner”, that respectively rA (¯) ¸ 0 or rB (®) ¸ 0. The other reaction
curve will in this case be monotonically increasing and hence rB (®) ¸ ¯¤
and rB (®) ¸ ®¤ respectively.

This result states that in some sense the Cournot equilibrium is maximally
uncooperative - maximally uncooperative among all rational responses.

Proposition 19 Assume that B’s reaction function ¯ = rB (®) is de…ned
on some neighbourhood in the interior of [0; 1) £ [0; 1). Assume further that
A’s reaction function ® = rA (¯) is de…ned on the same neighbourhood. If
these reaction functions intersect in the interior, then at this interior Cournot
equilibrium we will have

°1
°2

=
(1 ¡ ¯) @YAB@¯
(1 ¡ ®) @YAB@®

(26)

YAB =
(1 ¡ ®)
m

@YAB
@®

+
(1 ¡ ¯)
m

@YAB
@¯

(27)

Proof. By proposition 4 the reaction functions must satisfy (respectively)

°2
°1 + °2

YAB =
(1 ¡ ®)
m

@YAB
@®

(28)

°1
°1 + °2

YAB =
(1 ¡ ¯)
m

@YAB
@¯

(29)

Dividing equation 29 by equation 28 produces the …rst result. Adding
the two equations produces the second.



Predatory equilibria 62

Corollary 20 If YAB is homogeneous of degree one in ® and ¯, then at every
interior Cournot equilibrium we will have YAB = 1

m+1

³
@YAB
@® + @YAB

@¯

´

Proof. Condition 27 implies thatmYAB = @YAB
@® +@YAB@¯ ¡

³
®@YAB@® + ¯ @YAB@¯

´
.

Euler’s theorem implies that ®@YAB@® + ¯ @YAB@¯ = YAB. Rearranging produces
the result.

Corollary 21 Let
¡
¹®; ¹̄

¢
be any Cournot equilibrium in the interior of the

unit square. Then with our functional choices

(1 ¡ ®)m+1 fmkm+1

(1 ¡ ¯)m+1 =
1
p

(30)

pk [® (m+ 1) ¡ 1] + ¯(m+ 1) ¡ 1 = 0 (31)

Proposition 22 For any Cournot equilibrium
¡
¹®; ¹̄

¢

¹® T 1
m+ 1

() ¹̄ S 1
m+ 1

Proof. An interior equilibrium has to satisfy equation 31. Equality
can hold only if [® (m+ 1) ¡ 1] and [¯(m+ 1) ¡ 1] have opposite signs. In
the case of corner equilibria we have immediately ¹® = 0 ) ¹̄ > 1

m+1 and
¹̄ = 0 ) ¹® > 1

m+1 .

Remark 23 At any interior Cournot equilibrium we will have

gA =
f
m
m+1

p
m
m+1 + f

m
m+1

, gB =
p
m
m+1

p
m
m+1 + f

m
m+1

and

Y1 =
f
m
m+1

p
m
m+1 + f

m
m+1

c (pk + 1)W
m+ 1

, Y2 =
p
m
m+1

p
m
m+1 + f

m
m+1

c (pk + 1)W
m+ 1

Proof. We can rewrite equation 30 as (1¡®)m+1fm+1km+1

(1¡¯)m+1 = f
p , hence

(1¡®)mfmkm
(1¡¯)m =

³
f
p

´ m
m+1

. The left hand side of this is just gAgB . Then exploiting
the fact that gA+gB = 1, we can solve for gA and gB. To get the expressions
for Y1 and Y2 we note that Y1 = gAYAB and Y2 = gBYAB By corollary 20 we
have that YAB = c(pk+1)W

m+1 with our speci…cation. The result follows.
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Theorem 24 Let
¡
¹®; ¹̄

¢
be any Cournot equilibrium, then

¹® = F1 (k; p; f;m)
¹̄ = F2 (k; p; f;m)

Furthermore if
¡
¹®; ¹̄

¢
is an interior equilibrium then

¹® = 1 ¡ m
m+ 1

p
m
m+1

³
p
m
m+1 + f

m
m+1

´ pk + 1
pk

(32a)

¹̄ = 1 ¡ m
m+ 1

f
m
m+1

³
p
m
m+1 + f

m
m+1

´ (pk + 1) (32b)

while if (0; ¯¤) is a corner equilibrium, then ¯¤ is implicitly de…ned by

(1 ¡ ¯¤)m+1 = fmkm (¯¤ (m+ 1) ¡ 1)

and if (®¤; 0) is a corner equilibrium, then ®¤ is implicitly de…ned by

(1 ¡ ®¤)m+1 fmkm = ®¤(m+ 1) ¡ 1

Furthermore
¡
¹®; ¹̄

¢
will be an interior Cournot equilibrium if, and only

if13,

m

p
·
1 + (m+ 1)

³
f
p

´ m
m+1

¸ · k ·
1 + (m+ 1)

³
p
f

´ m
m+1

mp
(33)

(®¤; 0) will be a corner Cournot equilibrium if, and only if, k ¸ 1+(m+1)( pf )
m
m+1

mp
and (0; ¯¤) will be a corner Cournot equilibrium if, and only if, k · m

p
·
1+(m+1)( fp )

m
m+1

¸

Proof. Note that the theorem states that the Cournot solution will be
independent of c and W .

13Note that m
p
h
1+(m+1)( f

p )
m

m+1
i <

1+(m+1)( p
f )

m
m+1

mp for all choices of the parameters.
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We will derive the conditions for the interior equilibrium …rst. Equation
30 in corollary 21 can be rewritten as (1¡®)m+1fm+1km+1

(1¡¯)m+1 = f
p , i.e.

(1 ¡ ®) fk
(1 ¡ ¯) =

µ
f
p

¶ 1
m+1

(34)

so (1 ¡ ®) k =
³
f
p

´ 1
m+1

(1 ¡ ¯) f¡1. From equation 31 we get k = 1¡¯(m+1)
p(®(m+1)¡1) .

Substituting this in, and cross-multiplying we get

(1 ¡ ®) (1 ¡ ¯ (m+ 1)) =
µ
p
f

¶ m
m+1

(1 ¡ ¯) (® (m+ 1) ¡ 1)

Collecting up terms in ® and simplifying we get

1 ¡ ® =

³
p
f

´ m
m+1 (1 ¡ ¯)m

³
p
f

´ m
m+1 (m+ 1) (1 ¡ ¯) ¡ ¯ (m+ 1) + 1

We substitute this expression back into the equation 34 and solve for ¯.
This gives us equation 32b. With this expression we substitute back into the
equation above, to obtain the equilibrium value of ®, given in equation 32a.

The solutions given in equations 32a and 32b represent a legitimate equi-
librium only if both formulae evaluate to non-negative quantities (they are
guaranteed to produce values less than one). Imposing the conditions ¹® ¸ 0
and ¹̄ ¸ 0 and simplifying the respective equations yields the conditions in
(33) above.

To see what happens at the corner, let us assume that (®¤; 0) is a corner
Cournot equilibrium. In this case ®¤ solves @Y1@® = 0 at ¯ = 0. Furthermore
we have that @Y2@¯ · 0 at (®¤; 0). By proposition 4 the following two conditions
must be satis…ed at the point (®¤; 0):

1
(1 ¡ ®)m fmkm + 1

(p®k) =
(1 ¡ ®) pk
m

(35a)

(1 ¡ ®)m fmkm
(1 ¡ ®)m fmkm + 1

(p®k) ¸ 1
m

(35b)

(Compare with equations 23 and 24 with ¯ = 0). The …rst equation produces
the condition

(1 ¡ ®)m+1 fmkm = ® (m+ 1) ¡ 1 (36)
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(as in Theorem 17 when read with De…nition 16). When we divide each side
of inequality 35b by the corresponding two sides of equation 35a we get

(1 ¡ ®)m fmkm ¸ 1
(1 ¡ ®) pk

i.e. (1 ¡ ®)m+1 fm+1km+1 > f
p , i.e.

(1 ¡ ®)m fmkm ¸
µ
f
p

¶ m
m+1

(37)

From equation 36 we get that (1 ¡ ®)m fmkm = ®(m+1)¡1
(1¡®) . Substituting this

into the left-hand side of the inequality above and simplifying we get

® ¸
1 +

³
p
f

´ m
m+1

(m+ 1)
³
p
f

´ m
m+1 + 1

From this it follows that

1
1 ¡ ® ¸

(m+ 1)
³
p
f

´ m
m+1 + 1

m
³
p
f

´ m
m+1

We can rewrite inequality 37 as

k ¸ 1
(1 ¡ ®) f

µ
f
p

¶ 1
m+1

Substituting in for 1
1¡® and simplifying yields

k ¸
(m+ 1)

³
p
f

´ m
m+1 + 1

mp

We have therefore shown that (®¤; 0) is a corner Cournot equilibrium only if

k ¸ (m+1)( pf )
m
m+1+1

mp
The conditions for the other corner equilibrium follow similarly.
Since there is always guaranteed to be a Cournot equilibrium; since the

three cases exhaust all possibilities; and because these equilibria are uniquely
de…ned by k; p; f and m, the opposite implications follow.
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Remark 25 At any corner Cournot equilibrium (®¤; 0) we will have

gA =
® (m+ 1) ¡ 1

®m
, gB =

(1 ¡ ®)
®m

and

Y1 =
cpkW [® (m+ 1) ¡ 1]

m
, Y2 =

(1 ¡ ®) cpkW
m

At any corner Cournot equilibrium (0; ¯¤) we will have

gA =
(1 ¡ ¯)
¯m

, gB =
¯ (m+ 1) ¡ 1

¯m

and

Y1 =
(1 ¡ ¯) cW
m

, Y2 =
[¯ (m+ 1) ¡ 1] cW

m

Proof. Consider a corner equilibrium (®; 0). In order for ® to be an
optimum, it must satisfy equation 23. Substituting in ¯ = 0 and simplifying,
we get.

p®k
(1 ¡ ®)m fmkm + 1

=
(1 ¡ ®) pk
m

The left hand side of this expression is Y2
cW . We obtain Y1 from the fact

that Y1 + Y2 = YAB and total production at this corner is simply cp®kW .
Furthermore the expression above simpli…es to:

1
(1 ¡ ®)m fmkm + 1

=
(1 ¡ ®)
®m

The expression on the left is gB. From the fact that gA = 1 ¡ gB we deduce
that gA = ®(m+1)¡1

®m . The results for the corner (0; ¯) follow in like fashion,
by noting that the optimal ¯ has to satisfy 24 with ® = 0.

De…nition 26 Let ³ be such that ln ³ = 1
³ + 1

We have ³ ¼ 3:591 121 477. Note that the function ln y¡ 1¡ 1
y is strictly

increasing. So for y < ³ we will have ln y ¡ 1 ¡ 1
y < 0 and for y > ³ we will

have ln y ¡ 1 ¡ 1
y > 0
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Proposition 27 Let
¡
¹®; ¹̄

¢
be any interior Cournot equilibrium. Then

@¹®
@k

> 0,
@ ¹̄

@k
< 0

@¹®
@p

> 0,
@ ¹̄

@p
< 0

@¹®
@f

> 0,
@ ¹̄

@f
< 0

@¹®
@m

S 0 as
µ
f
p

¶ m
m+1

S ³, @
¹̄

@m
S 0 as

µ
p
f

¶ m
m+1

S ³

Proof. The results follow by di¤erentiating the expressions for ¹® and ¹̄.
The comparative statics with respect to k are given by

@¹®
@k

=
m
m+ 1

p
m
m+1

p
m
m+1 + f

m
m+1

1
pk2

and

@ ¹̄

@k
= ¡ m
m+ 1

f
m
m+1

³
p
m
m+1 + f

m
m+1

´p

The derivative with respect to p is slightly more tricky. After some algebraic
manipulation, it turns out that

@¹®
@p

=
m
m+ 1

p
m
m+1

p2
³
p
m
m+1 + f

m
m+1

´
k
¹̄

This will be positive provided that ¹̄ > 0. Once ¯ reaches the boundary we
see that @¹®@p = 0. Indeed it is obvious that p does not feature in the equations
for the corner equilibria.

Similarly

@ ¹̄

@p
= ¡ m
m+ 1

f
m
m+1

³
p
m
m+1 + f

m
m+1

´ ¹®k

The derivatives with respect to f are straightforward and given by

@¹®
@f

=
m2

(m+ 1)2
p
m
m+1

f
1
m+1

³
p
m
m+1 + f

m
m+1

´2
(pk + 1)
pk
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and

@ ¹̄

@f
= ¡ m2

(m+ 1)2
p
m
m+1

f
1
m+1

³
p
m
m+1 + f

m
m+1

´2 (pk + 1)

In order to calculate the comparative statics with respect to m, it is in fact
easier to calculate them with respect to the variable ¹ = m

m+1 . Since d¹dm > 0
the sign of @¹®@¹ will correspond to the sign of @¹®@m . It is also more convenient
to rewrite ¹® as

¹® = 1 ¡ ¹

1 +
³
f
p

´¹
pk + 1
pk

Then

@¹®
@¹

= ¡
1 +

³
f
p

´¹
¡ ¹

³
f
p

´¹
ln

³
f
p

´

h
1 +

³
f
p

´¹i2
µ
pk + 1
pk

¶

The sign of this expression depends only on the sign of 1+
³
f
p

´¹
¡¹

³
f
p

´¹
ln

³
f
p

´
.

We can rewrite this as ¡
h³
f
p

´¹
ln

³
f
p

´¹
¡

³
f
p

´¹
¡ 1

i
, i.e. as ¡

³
f
p

´¹ ·
ln

³
f
p

´¹
¡ 1 ¡ 1

( fp )
¹

¸
.

The expression in square brackets is of the form ln y ¡ 1 ¡ 1
y . Consequently

@¹®
@¹ S 0 as

³
f
p

´¹
S ³. The result follows. Similarly ¹̄ = 1 ¡ ¹

( pf )
¹
+1

(pk + 1).

We …nd that @ ¹̄@¹ S 0 as
³
p
f

´¹
S ³.

Proposition 28 Let (®¤; 0) be a Cournot equilibrium. Then

@®¤

@k
> 0,

@®¤

@f
> 0,

@®¤

@m
S 0 as (1 ¡ ®¤)m fmkm S ³

Similarly, if (0; ¯¤) is a Cournot equilibrium, then

@¯¤

@k
< 0,

@¯¤

@f
< 0,

@¯¤

@m
S 0 as

(1 ¡ ¯¤)m
fmkm

S ³
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Proof. The proof proceeds by implicit di¤erentiation. Let q (®) =
(1 ¡ ®)m+1 fmkm¡® (m+ 1)+1. Then ®¤ is de…ned implicitly by q (®) ´ 0.
@®¤
@k = ¡ qkq® , provided that q® 6= 0. We have q® = ¡ (m+ 1) (1 ¡ ®)m fmkm¡
(m+ 1) < 0. qk = m (1 ¡ ®)m+1 fmkm¡1 > 0, hence

@®¤

@k
=

m (1 ¡ ®)m+1 fmkm¡1

(m+ 1) [(1 ¡ ®)m fmkm + 1]

which is positive. We can rewrite this expression utilising the fact that
(1 ¡ ®)m+1 fmkm = ® (m+ 1) ¡ 1. We get

@®¤

@k
=

(1 ¡ ®) [® (m+ 1) ¡ 1]
(m+ 1)®k

(38)

Also qf = (1 ¡ ®)m+1 fm¡1km > 0, i.e. @®¤@f > 0.
In the case of m we have qm = (1 ¡ ®)m+1 fmkm ln [(1 ¡ ®) fk] ¡ ®. It

helps to rewrite this. Let y = (1 ¡ ®)m fmkm, then qm = (1 ¡ ®) y ln y 1
m ¡®,

i.e. qm = 1¡®
m

£
y ln y ¡ ®m

1¡®
¤
. This expression has to be evaluated at a solution

to q (®) = 0. At such a solution we have ®m = (1 ¡ ®)m+1 fmkm + (1 ¡ ®).
Substituting this into the expression for qm we get qm = 1¡®

m [y ln y ¡ y + 1],

i.e. qm = 1¡®
m y

h
ln y ¡ 1 ¡ 1

y

i
. So qm S 0 as (1 ¡ ®¤)m fmkm S ³. The

results for ¯¤ follow symmetrically.

Theorem 29 Let
¡
¹®; ¹̄

¢
be any Cournot equilibrium. Then

@¹®
@k

¸ 0,
@ ¹̄

@k
· 0

@¹®
@p

¸ 0,
@ ¹̄

@p
· 0

@¹®
@f

¸ 0,
@ ¹̄

@f
· 0

@¹®
@m

S 0 as
gA
gB

S ³, @
¹̄

@m
S 0 as

gB
gA

S ³

Proof. This proof merely summarises the results of propositions 27 and
28. Because of the possibility of being at a corner, the inequalities have been
weakened, to allow for the fact that when ¯ = 0, we certainly do not have
@ ¹̄
@k < 0. Furthermore at the corner both @¹®

@p = 0 and @ ¹̄
@p = 0. We have also
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characterised the comparative statics for m somewhat di¤erently. We have

utilised the fact that for interior solutions
³
f
p

´ m
m+1 = gA

gB
, while if ¯ = 0, then

gA
gB

= (1 ¡ ®¤)m fmkm.

A.4 Intertemporal equilibria
We assume, as in the text (equation 6) that

WA;t+1 = Y1;t WB;t+1 = Y2;t
and that an intertemporal equilibrium is de…ned by kt+1 = kt. We will show
in the next theorem that under certain circumstances this requirement is
su¢cient to de…ne k uniquely as a function of the other parameters.

Theorem 30 Let
³
e®; ē;ek

´
be any intertemporal equilibrium, then if m · 1

the equilibrium values will be uniquely de…ned by (p; f;m), i.e.
ek = G1 (p; f;m)
e® = G2 (p; f;m)
ē = G3 (p; f;m)

In particular, if
³
e®; ē; ek

´
is an interior intertemporal Cournot equilib-

rium, then

ek =
µ
f
p

¶ m
m+1

(39a)

e® = 1 ¡ m
m+ 1

p
m
m+1

³
p
m
m+1 + f

m
m+1

´

³
p

1
m+1f

m
m+1 + 1

´

p
1
m+1f

m
m+1

(39b)

ē = 1 ¡ m
m+ 1

f
m
m+1

³
p
m
m+1 + f

m
m+1

´
³
p

1
m+1f

m
m+1 + 1

´
(39c)

If
³
e®; 0;ek

´
is a corner equilibrium, then ek and e® are de…ned through the

equations

f = ek 1¡m
m

Ã
m+ ek + 1
m

!
(40a)

e® =
ek + 1

m+ ek + 1
(40b)
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If
³
0; ē;ek

´
is a corner equilibrium, then ek and ē are de…ned through the

equations

f =
ek 1
mm

ekm+ ek + 1
(41a)

ē =
ek + 1

ekm+ ek + 1
(41b)

³
e®; ē;ek

´
will be an interior equilibrium if and only if

p
m
m+1

8
<
:

¡1 +
q

1 + 4m(m+1)
p

2 (m+ 1)

9
=
; · f m

m+1 · p mm+1

(
1 +

p
1 + 4m (m+ 1) p

2mp

)
(42)

If m > 1 then it is possible for there to be multiple equilibria, i.e. the
same values of p;m; and f might combine with di¤erent values of k to yield
intertemporal equilibria. The equations governing each equilibrium will be
given by the equations above.

Proof. By the condition for intertemporal equilibrium we have that
k = (1¡®)mfmkm

(1¡¯)m . However by equation 34 we know that at an interior Cournot
equilibrium we must have

(1 ¡ e®)m fmkm³
1 ¡ ē

´m =
µ
f
p

¶ m
m+1

The …rst result therefore follows. We substitute this value of k into the
equilibrium values of ® and ¯ given in equations 32a and 32b to get the
other results.

This solution will, however, de…ne a legitimate equilibrium only if e® ¸ 0
and ē ¸ 0. It is obvious that both will be less than one. The condition
ē ¸ 0 will be true only if mp

1
m+1

³
f
m
m+1

´2
¡ f m

m+1 ¡ (m+ 1) p
m
m+1 · 0. This

is a quadratic in
³
f
m
m+1

´
which will always have two real roots. Applying

the quadratic formula and noting that f
m
m+1 would have to be smaller than

the positive root, we get the inequality

f
m
m+1 · 1 +

p
1 + 4 (m+ 1)mp

2mp
1
m+1
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The other inequality is found by considering the condition e® ¸ 0 (or by
applying the symmetry rules).

To see what happens at the corner, we note that if ē = 0, then as in
Theorem 24, the optimal ® has to satisfy the condition ® (m+ 1) ¡ 1 =
(1 ¡ ®)m+1 fmkm. We note also that the condition for intertemporal equi-
librium now requires that k = (1¡®)mfmkm

1 . Substituting (1 ¡ ®)m fmkm = k
into the right hand side of the previous equation, we get ® (m+ 1) ¡ 1 =
(1 ¡ ®) k and the equilibrium condition on e® follows. Substituting ® = ek+1

m+ek+1

into ® (m+ 1)¡ 1 = (1 ¡ ®)m+1 fmkm and simplifying gives the equilibrium
condition for ek.

The conditions for the other corner can be derived equivalently (or by
symmetry).

To show uniqueness, we assume that k0 =
³
f
p

´ m
m+1

is such that k0 <

(m+1)( pf )
m
m+1+1

mp . By Theorem 24 it follows that the combination of param-
eters (k0; p;m; f) de…nes either an interior equilibrium or a corner equilib-
rium with ® = 0. Assume now that there is some k = k1 also such that
(k1; p;m; f) de…nes a corner equilibrium with ¯ = 0. It follows from The-

orem 24 that k1 ¸ (m+1)( pf )
m
m+1+1

mp , i.e. k1 >
³
f
p

´ m
m+1 . Now k1 has to sat-

isfy equation 40a, i.e. f = k
1¡m
m

1

¡m+k1+1
m

¢
. Since we have assumed that

m · 1, k
1¡m
m

1 ¸
³
f
p

´ 1¡m
m+1 , so f >

³
f
p

´ 1¡m
m+1

µ
m+( fp )

m
m+1+1
m

¶
. Simplifying we get

mpf
2m
m+1 > (m+ 1) p

m
m+1 + f

m
m+1 . This, however, contradicts the assumption

that
³
f
p

´ m
m+1
<

(m+1)( pf )
m
m+1+1

mp . It follows that there can be no k1 such that
F2 (k1; p;m; f) = 0.

Similarly we show that if k0 =
³
f
p

´ m
m+1

is such that k0 > m

p
·
1+(m+1)( fp )

m
m+1

¸ ,

then there can be no corner solution with ® = 0. Putting the two results
together it follows that if

m

p
·
1 + (m+ 1)

³
f
p

´ m
m+1

¸ <
µ
f
p

¶ m
m+1

<
(m+ 1)

³
p
f

´ m
m+1 + 1

mp
(43)
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then we cannot have any corner solutions. Hence we can only have an interior
solution. This solution will be given by equations 39a, 39b and 39c. The
uniqueness of the corner solutions follows from the fact that if inequality 43

does not hold we can either have
³
f
p

´ m
m+1 ¸ (m+1)( pf )

m
m+1+1

mp , in which case

¯ = 0 or m

p
·
1+(m+1)( fp )

m
m+1

¸ ¸
³
f
p

´ m
m+1 , in which case ® = 0, but not both.

Note that condition 43 can be rearranged to yield condition 42.
To show that this result does not hold if m > 1, it is easiest to do so with

a counterexample. Let m = 10, p = 0:04 and f = 0: 264 374 336 5. Then
there are the following three intertemporal equilibria:

1. k = 10, ® = : 523 809 523 8, ¯ = 0.

2. k = 5: 566 719 865, ® = 0: 239 834 255 3, ¯ = 0:057: 748 104 07

3. k = 3: 843 310 204, ® = 0, ¯ = 0: 111 915 705 4

Corollary 31 If f > 1 and p > 1 and m < 1, then we cannot have a corner
solution in which ® = 0. If f < 1 and p < 1 and m < 1, then we cannot
have a corner solution in which ¯ = 0.

Proof. If f > 1 and p > 1, then m

p
·
1+(m+1)( fp)

m
m+1

¸ <
³
f
p

´ m
m+1 . Since equi-

libria are unique if m < 1, it follows that there cannot be corner equilibrium

in which ® = 0. If f < 1 and p < 1, then
³
f
p

´ m
m+1 <

(m+1)( pf )
m
m+1+1

mp .

Remark 32 The conditions for the corner equilibria can be presented equiv-
alently in terms of ® and ¯ (rather than k):

If
³
e®; 0;ek

´
is a corner equilibrium, then ea and ek are de…ned through the

equations

[e® (m+ 1) ¡ 1]1¡m = (1 ¡ e®) fm

ek =
e® (m+ 1) ¡ 1

1 ¡ e®
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If
³
0; ē; ek

´
is a corner equilibrium, then ē and ek are de…ned through the

equations
h
ē (m+ 1) ¡ 1

i1¡m
fm =

³
1 ¡ ē

´

ek =
1 ¡ ē

ē (m+ 1) ¡ 1

Proposition 33 An interior Cournot equilibrium will always be stable. A
corner equilibrium (®; 0; k) or (0; ¯; k) will be stable if ® (¯) > m

m+1 and will
be unstable if ® (¯) < m

m+1 .

Proof. Let D (kt) = kt ¡ Y1(kt)
Y2(kt)

. Note that D is a continuous function
of k, since the locus of Cournot equilibria is continuous. By condition 6 we
have kt+1 = Y1(kt)

Y2(kt)
, so clearly D (k) = 0 if, and only if, k is an intertemporal

equilibrium. Now consider …rst an interior intertemporal equilibrium at ek.
Now consider the set of all ks which meet condition 33. This will always
be a non-empty set. By remark 23 every one of these k’s will give Y1(k)Y2(k)

=
³
f
p

´ m
m+1 = ek. In a neighbourhood of ek therefore we have D (k) > 0 if k > ek

and D (k) < 0 if k < ek. This, however, establishes the stability of ek.14

Now consider a solution to the equation D (k) = 0 at a corner (®¤; 0; k¤).

Now k¤ must be such that it the condition k ¸ 1+(m+1)( pf )
m
m+1

mp must hold

with a strict inequality (otherwise Y1Y2 =
³
f
p

´ m
m+1 and k¤ would not be an in-

tertemporal equilibrium). This means that there is a neighbourhood around
k¤ in which there are only corner solutions with ¯ = 0. In particular every
k > k¤ will yield a corner solution. Now by remark 25 at every one of these
k’s we will have Y1Y2 = ®(m+1)¡1

1¡® , i.e. D (k) = k ¡ ®(m+1)¡1
1¡® . Consequently

D0 (k) = 1 ¡ m
(1¡®)2

@®
@k . Substituting in @®@k from equation 38 we get

D0 (k) = 1 ¡ m
(1 ¡ ®)2

(1 ¡ ®) [® (m+ 1) ¡ 1]
(m+ 1)®k

i.e.

D0 (k) = 1 ¡ m [® (m+ 1) ¡ 1]
(m+ 1) (1 ¡ ®)®k

14It also establishes that there can only ever be one interior intertemporal equilibrium.
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when we evaluate this at the equilibrium (®¤; 0; k¤) we note that by remark 32
we have k¤ = ®¤(m+1)¡1

1¡®¤ , i.e. D0 (k¤) = 1 ¡ m
(m+1)®¤ . We will have D0 (k¤) > 0

only if ®¤ > m
m+1 . In that case there will be a neighbourhood around k¤ on

which kt > kt+1 if kt > k¤ and kt < kt+1 if kt < k¤. Furthermore if kt > k¤,
then by proposition 28 ® (kt) > ® (k¤), i.e. ®t(m+1)¡1

1¡®t > ®¤(m+1)¡1
1¡®¤ = k¤.

Hence kt > kt+1 > k¤. This establishes local stability.
If ®¤ < m

m+1 , then we will have D0 (k¤) < 0 in a neighbourhood of k¤ and
then points in this neighbourhood will diverge from k¤.

The results for the other corner follow symmetrically.

Proposition 34 If
³
e®; ē;ek

´
is an interior intertemporal Cournot equilib-

rium, then

@k
@p

< 0,
@k
@f
> 0,

@k
@m

S 0 as
µ
f
p

¶
S 1

@e®
@p

T 0 as ē T m
m+ 1

,
@e®
@f
> 0,

@e®
@m
< 0 if f < p and

@e®
@m
> 0 if f > ³

m+1
m p

@ē
@p

T 0 as e® S m
m+ 1

,
@ ē
@f
< 0,

@ē
@m
< 0 if p < f and

@ ē
@m
> 0 if p > ³

m+1
m f

Proof. To get the comparative statics, for k is straightforward. To
get the others, we could just di¤erentiate the expressions above. A more
instructive and easier route is to use the partial derivatives already obtained.
So totally di¤erentiating (and abusing notation somewhat) we get

@e®
@p

=
@®
@p

+
@®
@k
@k
@p

The virtue of thinking about the processes in this way is that it is explicit
that there are two types of changes which will in‡uence the optimal choice
of ®: …rstly there is the direct e¤ect (which we know is positive); secondly,
however, there is a wealth e¤ect which might o¤set the …rst e¤ect. We know
that the optimal ® increases with p. The increasing p, however, also has the
e¤ect of decreasing the equilibrium wealth of player A. Substituting in for
all of the expressions, and simplifying, we get

@e®
@p

=
m
m+ 1

p
2m
m+1

³
ē ¡ m

m+1

´

p2
³
p
m
m+1 + f

m
m+1

´
f
m
m+1
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Similarly we get

@ē
@p

= ¡ m
m+ 1

f
m
m+1k

¡
e®¡ m

m+1

¢
³
p
m
m+1 + f

m
m+1

´

The partial derivatives with respect to f are even easier, since @e®
@f =

@®
@f +

@®
@k
@k
@f and every one of these terms is positive, while @¯@f and @¯@k are both

negative.
We have @®@m < 0 if gAgB < ³ but k = gA

gB
, so @®

@m < 0 if k < ³. Furthermore
@k
@m < 0 if

³
f
p

´
< 1. We can sign @e®@m if f < p, since in that case k =

³
f
p

´ m
m+1 <

1, i.e. @®@m < 0. If
³
f
p

´ m
m+1 > ³, then both @®

@m and @k
@m are positive.

Proposition 35 If
³
e®; 0;ek

´
is a corner equilibrium, then

@ek
@f

T 0 as ek T m2 ¡ 1, i.e. as e® T m
m+ 1

@e®
@f

T 0 as ek T m2 ¡ 1, i.e. as e® T m
m+ 1

If ek ¸ 1 then

@ek
@m

T 0 as ek T m2 ¡ 1, i.e. as e® T m
m+ 1

@e®
@m

T 0 as ek T m2 ¡ 1, i.e. as e® T m
m+ 1

If f < 2: 544 948 then

@ek
@m

< 0 if m · 1 and ek < 1

@e®
@m

< 0 if m · 1 and ek < 1

Proof. Let q (k; f;m) = f ¡ k 1¡m
m

¡m+k+1
m

¢
. Then ek is de…ned implicitly

by q ´ 0, provided that qk 6= 0. Now qk = k
1¡2m
m

m (m2 ¡ 1 ¡ k). Consequently
qk S 0 as k T m2 ¡1 (since we assume throughout that k > 0). Furthermore
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qf = 1 and so @ek@f = ¡qfqk T 0 as k T m2 ¡ 1. We note from equation 40b that
ea = 1

m
ek+1

+1 . It follws that ek+1 T m2 if and only if e® T m
m+1 . The derivatives

for ea follow, since ea increases monotonically with ek.
We have qm = k

1¡m
m

m3 [m+mk + ln k (k +m+ 1)]. Consequently

@ek
@m

=
k (m+mk + (k +m+ 1) ln k)

m (k + 1 ¡m2)
(44)

. It is evident that if k > 1, then @ek
@m T 0 as k T m2 ¡ 1.

Consider the case 0 < m < 1. On this interval we de…nitely have k >
m2 ¡ 1. If k < e¡m we see immediately that @ek@m < 0. Note also that k ! 1
as m ! 0. It is clear therefore that on some interval to the right of m = 0
we will have k < 1 and @ek

@m < 0.
Now we can write m+mk+(k+m+1) ln k

m as 1+k+fk
m¡1
m ln k (utilising the fact

that we are di¤erentiating along the curve de…ned by q = 0). If we let z =
1+k+fk

m¡1
m ln k, then @z

@m = @k
@m+k¡

1
m

h
fk(ln k)2

m2 + f
¡m¡1
m

¢ @k
@m ln (k) + f @k@m

i
.

If m < 1 and k < 1, and @k
@m > 0, then every one of the terms in the square

bracket is positive. It follows that if @ek@m is positive for any m0 < 1, i.e.
the numerator of the right hand side of equation 44 is positive then it will
continue to be so for any m 2 (m0; 1). Now when m = 1, it follows from
equation 40a that ek = f ¡ 2. This evidently has solutions with k > 0 only
if f > 2. If we substitute in ek = f ¡ 2 into equation 44 and evaluate this
expression at m = 1, we …nd that @ek@m = f¡1+f ln (f ¡ 2). @ek@m = 0 if f ' 2:
544 948 12. It follows that if f < 2: 544 948 12, then @ek

@m < 0 on the interval
[0; 1]. If f > 2: 544 948 12 then there is a turning point for some m 2 (0; 1).

Note that for f < 2 we will have k ! 0 as m! 1. This follows from the
fact that we can write k as k =

¡ fm
m+k+1

¢ m
1¡m , i.e. k <

¡ fm
m+1

¢ m
1¡m . On this

interval fmm+1 < 1 and hence limm!1
¡ fm
m+1

¢ m
1¡m = 0.

The results for e® follow as before.

A.5 The multi-player game
As indicated in the text, we assume that the players are indexed from 1 to
n. We assume that the aggregate production function is YA which is homo-
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geneous of degree zero in ®1; : : : ; ®n. and that the appropriation functions
can be written as

gi =
°iPn
j=1 °j

where each °i is a function that depends on (1 ¡ ®i) but not on any of the
other ®j’s and where gi is assumed to be homogeneous of degree zero in the
(1 ¡ ®j) terms. Note that this is a generalisation of our assumption in the
text that °i = smi . We let

°¡i =
X

j 6=i
°j

Lemma 36 (1 ¡ ®i) @°i@®i = ¡m°i for all i = 1 : : : n

Proof. This proof follows the proof of Lemma 2 mutatis mutandis.

Proposition 37 @Yi
@®i

= 0 if and only if °¡i
°i+°¡i

YA = (1¡®i)
m

@YA
@®i

Proof. By de…nition Yi = giYA, i.e. Yi =
°i

°i+°¡i
YA. Di¤erentiating this

and noting that @°¡i@®i
= 0, we get

@Yi
@®i

=
°¡i

@°i
@®i¡

°i + °¡i
¢2YA +

°i
°i + °¡i

@YA
@®i

Substituting in the result of the previous lemma we get

@Yi
@®i

=
°i

°i + °¡i

µ
¡ °¡i
°i + °¡i

mYA
(1 ¡ ®i)

+
@YA
@®i

¶

The result follows given the restriction that °i 6= 0.

Proposition 38 At any interior Cournot equilibrium we have YA = 1
mn¡m+1

Pn
i=1

@YA
@®i

Proof. At an interior Cournot equilibrium we must have @Yi
@®i

= 0 for
i = 1 : : : n, i.e.

°¡i
°i + °¡i

YA =
(1 ¡ ®i)
m

@YA
@®i

for every i = 1 : : : n
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Consequently
nX

i=1

°¡i
°i + °¡i

YA =
nX

i=1

(1 ¡ ®i)
m

@YA
@®i

Now °i+°¡i is the same quantity for every i. The left hand side of the above
expression therefore simpli…es to

YA
°i + °¡i

nX

i=1

°¡i

°¡i contains every term except °i, so
Pn
i=1 °¡i = (n¡ 1)

Pn
i=1 °i = (n¡ 1)

¡
°i + °¡i

¢
.

The left-hand side is therefore (n¡ 1)YA. The right hand side is

1
m

nX

i=1

@YA
@®i

¡ 1
m

nX

i=1

®i
@YA
@®i

By Euler’s theorem we have
Pn
i=1 ®i

@YA
@®i

= YA and hence

(n¡ 1)YA =
1
m

nX

i=1

@YA
@®i

¡ YA
m

Simplifying, we get the result.
We apply some of these results to the speci…c context in which we have

n identical players of type A and one player of type B (i.e. there are n + 1
players in this game). Because the identical players all face identical choices,
the optimal ®i’s must all be the same. In a Cournot equilibrium, therefore
these choices of ® must satisfy any one of the typical reaction functions of a
player A, i.e. we must have

(1 ¡ ¯)m + (n¡ 1) (1 ¡ ®)m fmkm
(1 ¡ ¯)m + n (1 ¡ ®)m fmkm c (np®k + ¯)W =

(1 ¡ ®)
m

cpkW (45)

where we have used proposition 37. Player B’s reaction function can be
written as

n (1 ¡ ®)m fmkm
(1 ¡ ¯)m + n (1 ¡ ®)m fmkm c (np®k + ¯)W =

1 ¡ ¯
m
cW (46)

Dividing equation 45 by 46 we get

(1 ¡ ¯)m + (n¡ 1) (1 ¡ ®)m fmkm
n (1 ¡ ®)m fmkm =

(1 ¡ ®)
(1 ¡ ¯)pk
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which we can write equivalently as

(1 ¡ ¯)m+1

(1 ¡ ®)m+1 fm+1km+1
+ (n¡ 1)

(1 ¡ ¯)
(1 ¡ ®) fk = n

p
f

(47)

Now if we convert payo¤s to wealth according to equation 6 then the new
ratio of a player A’s wealth to player B’s new wealth will be given by

kt+1 =
gA
gB

which will still be given by equation 7, i.e.

kt+1 =
(1 ¡ ®)m fmkmt

(1 ¡ ¯)m

The condition for intertemporal equilibrium, as before is that kt+1 = kt.
Using the fact that k = (1¡®)mfmkm

(1¡¯)m , we can rewrite equation 47 as

µ
1
k

¶m+1
m

+ (n¡ 1)
µ
1
k

¶ 1
m

= n
p
f

i.e.
1
k
+ (n¡ 1) = n

p
f
k

1
m (48)

This condition in fact de…nes k uniquely - the left hand side is decreas-
ing in k and the right hand side increasing, so there can be at most one k
satisfying this condition. Now let Q (k) = 1

k + (n¡ 1)¡ n pf k
1
m . Then Q = 0

can be used to de…ne k implicitly. Near k = 0 we have Q (k) > 0 while

for k su¢ciently large Q (k) < 0. We note that Q
µ

1
n

³
f
p

´ m
m+1

¶
= n ¡ 1 +

n
³
p
f

´ m
m+1

³
1 ¡ 1

n

1
m

´
> 0, i.e. k > 1

n

³
f
p

´ m
m+1 . Furthermore Q

µ³
f
p

´ m
m+1

¶
=

µ³
p
f

´ m
m+1 ¡ 1

¶
(1 ¡ n), so if pf > 1 we have Q < 0 and hence k <

³
f
p

´ m
m+1

.

To get the comparative statics we note that Qk = ¡ 1
k2 ¡ n

m
p
f k

1
m¡1 < 0, while

Qn = 1 ¡ p
f k

1
m .

Now the condition Q = 0 can be written as
¡ 1
k ¡ 1

¢
+ n

³
1 ¡ p

f k
1
m

´
= 0.

It follows that if k < 1 we must have 1 ¡ p
f k

1
m < 0, otherwise equality could

not hold. Consequently Qn < 0 whenever k < 1. In this case @k@n = ¡QnQk < 0.
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To see what happens to output, we use Proposition 38. Given our choice
of production functions we must have at every interior Cournot equilibrium

YA =
c (npk + 1)W
mn+ 1

(noting that the number of players is n+ 1). Di¤erentiating this expression
with respect to n we get that

@YA
@n

=
c (pk ¡m)W
(mn+ 1)2

A.6 Property rights
We assume that the economy is divided into two sectors: an open sector,
which is subject to predatory behaviour and a secure one which is not. The
overall returns to each player are the sum of the two outputs, i.e.

Ri = Ysi + Yoi

We will assume that

Ysi = riÁWi

Once we have reparameterised, this implies that the returns are given by

RA = r1ÁkW + (1 ¡ Á)Y1
RB = r2ÁW + (1 ¡ Á)Y2

where Y1 and Y2 are exactly the same as in equations 5a and 5b. With the
choices of functional forms as given in equation 19, the payo¤s can be written
as

RA = ÁcµpµkW + (1 ¡ Á)Y1
RB = ÁcµW + (1 ¡ Á)Y2

Proposition 39 At an interior intertemporal Cournot equilibrium
³
e®; ē;ek

´

we have
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ek =
(1 ¡ Á) cpf m

m+1 +
³
p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡ (1 ¡ Á) cp mm+1

2 (1 ¡ Á) cp 2m+1
m+1

+

vuuuut

(
(1 ¡ Á) cpf m

m+1 +
³
p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡

(1 ¡ Á) cp mm+1

)2

+

4 (1 ¡ Á)2 c2p 2m+1
m+1 f

m
m+1

2 (1 ¡ Á) cp 2m+1
m+1

(49a)

e® = 1 ¡ m
m+ 1

p
m
m+1

³
p
m
m+1 + f

m
m+1

´ p
ek + 1
pek

(49b)

ē = 1 ¡ m
m+ 1

f
m
m+1

³
p
m
m+1 + f

m
m+1

´
³
pek + 1

´
(49c)

At a corner intertemporal equilibrium
³
e®; 0;ek

´
the equilibrium ® and k

will satisfy the conditions

(1 ¡ Á) c p
f
[® (m+ 1) ¡ 1]

1
m = m (r1 ¡ r2)Á (1 ¡ ®) 1

m +

(1 ¡ Á) cp [® (m+ 1) ¡ 1] (1 ¡ ®) 1
m(50a)

k =
[® (m+ 1) ¡ 1]

1
m

(1 ¡ ®)m+1
m f

(50b)

Furthermore we require

k ¸
1 + (m+ 1)

³
p
f

´ m
m+1

mp

At a corner intertemporal equilibrium (0; ¯; k) the equilibrium ¯ and k
will satisfy the conditions

(1 ¡ Á) c [¯ (m+ 1) ¡ 1] (1 ¡ ¯) 1
m = m (r1 ¡ r2)Á (1 ¡ ¯) 1

m +

(1 ¡ Á) c (¯ (m+ 1) ¡ 1)
1
m f(51)

k =
(1 ¡ ¯)m+1

m

(¯ (m+ 1) ¡ 1)
1
m f

(52)
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Furthermore we require

k · m

p
·
1 + (m+ 1)

³
f
p

´ m
m+1

¸

Proof. By equation 18 we have kt+1 =
RA;t
RB;t

. Substituting in for RA and
RB from equations 17a and 17b and imposing the condition that kt+1 = kt
we get

k =
r1ÁkW + (1 ¡ Á)Y1
r2ÁW + (1 ¡ Á)Y2

Rearranging we get

(r1 ¡ r2)ÁkW = (1 ¡ Á)Y2
µ
k ¡ Y1
Y2

¶
(53)

At any interior Cournot equilibrium, we have by Remark 23 that

Y1
Y2

=
µ
f
p

¶ m
m+1

and

Y2 =
p
m
m+1

p
m
m+1 + f

m
m+1

c (pk + 1)W
m+ 1

Substituting these into equation 53, we get

(r1 ¡ r2)Ák = (1 ¡ Á) p
m
m+1

p
m
m+1 + f

m
m+1

c (pk + 1)
m+ 1

"
k ¡

µ
f
p

¶ m
m+1

#

i.e.

(r1 ¡ r2)Ák = (1 ¡ Á) c (pk + 1)³
p
m
m+1 + f

m
m+1

´
(m+ 1)

h
kp

m
m+1 ¡ f m

m+1

i

Multiplying out and rearranging we get a quadratic in k:

(1 ¡ Á) cp2m+1
m+1 k2¡(

(1 ¡ Á) cpf m
m+1+³

p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡ (1 ¡ Á) cp mm+1

)
k¡

(1 ¡ Á) cf m
m+1 = 0
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This quadratic will always have real roots. Let

a = (1 ¡ Á) cp2m+1
m+1

b =

(
(1 ¡ Á) cpf m

m+1+³
p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡ (1 ¡ Á) cp mm+1

)

c = (1 ¡ Á) cf m
m+1

Then our solution will be given by

k =
b+

p
b2 + 4ac
2a

since the other root will be negative (4ac > 0), i.e.

k =
(1 ¡ Á) cpf m

m+1 +
³
p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡ (1 ¡ Á) cp mm+1

2 (1 ¡ Á) cp 2m+1
m+1

+

vuut
n
(1 ¡ Á) cpf m

m+1 +
³
p
m
m+1 + f

m
m+1

´
(m+ 1) (r1 ¡ r2)Á¡ (1 ¡ Á) cp mm+1

o2
+

4 (1 ¡ Á)2 c2p 2m+1
m+1 f

m
m+1

2 (1 ¡ Á) cp 2m+1
m+1

The results for ® and ¯ merely repeat the results in equations 32a and
32b.

Consider now a corner solution (®; 0; k). From the results in remark 25
we get that Y2W = c(1¡®)pk

m and that Y1Y2 = ®(m+1)¡1
1¡® . The condition in equation

53 must also hold for this case. Substituting in we get

(r1 ¡ r2)Ák = (1 ¡ Á) c (1 ¡ ®) pk
m

µ
k ¡ ® (m+ 1) ¡ 1

1 ¡ ®

¶

Dividing out k and simplifying we get

(1 ¡ Á) c (1 ¡ ®) pk = m (r1 ¡ r2)Á+ (1 ¡ Á) cp [® (m+ 1) ¡ 1]

Now by Theorem 24 the corner solution will satisfy (1 ¡ ®)m+1 fmkm =
® (m+ 1) ¡ 1. We can solve for k in this expression. In particular we note
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that (1 ¡ ®) k =
h
®(m+1)¡1

1¡®

i 1
m 1
f . Substituting this into the expression above

and simplifying we get

(1 ¡ Á) c p
f
[® (m+ 1) ¡ 1]

1
m = m (r1 ¡ r2)Á (1 ¡ ®) 1

m +

(1 ¡ Á) cp [® (m+ 1) ¡ 1] (1 ¡ ®) 1
m

The requirement that k ¸ 1+(m+1)( pf )
m
m+1

mp follows also from Theorem 24.
In the case of a corner (0; ¯; k) we also use remark 25. We have that

Y2
W = c[¯(m+1)¡1]

m and that Y1Y2 = 1¡¯
¯(m+1)¡1 . Substituting these expressions into

equation 53 we get

(r1 ¡ r2)Ák = (1 ¡ Á) c¯ (m+ 1) ¡ 1
m

µ
k ¡ 1 ¡ ¯
¯ (m+ 1) ¡ 1

¶

i.e.

(1 ¡ Á) c [¯ (m+ 1) ¡ 1] k = m (r1 ¡ r2)Ák + (1 ¡ Á) c (1 ¡ ¯)

But at this corner ¯ and k have to satisfy the condition (1 ¡ ¯)m+1 =
fmkm (¯ (m+ 1) ¡ 1), i.e.

k =
(1 ¡ ¯)m+1

m

(¯ (m+ 1) ¡ 1)
1
m f

Substituting this in and simplifying we get

(1 ¡ Á) c [¯ (m+ 1) ¡ 1] (1 ¡ ¯) 1
m = m (r1 ¡ r2)Á (1 ¡ ¯) 1

m +

(1 ¡ Á) c (¯ (m+ 1) ¡ 1)
1
m f

The condition on k follows, as before, from Theorem 24.

Proposition 40 If, r1 T r2 then at any interior equilibrium and at any sta-
ble corner equilibrium an increase in Á from 0 will change the intertemporal
k such that k T k¤ where k¤ is the corresponding intertemporal equilibrium
when Á = 0. The inequalities will be reversed at any unstable corner equilib-
rium. The size of the shifts will increase with (r1 ¡ r2) and Á.
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Proof. Equation 53 gives the condition

(r1 ¡ r2)ÁkW = (1 ¡ Á)Y2
µ
k ¡ Y1
Y2

¶

If Á = 0 then the intertemporal equilibrium is given by k¤ = Y1
Y2

. Now in
an interior equilibrium Y1

Y2
is independent of k (by Remark 23) The result

follows.for this case.
At the corner the situation is a bit more complex since Y1

Y2
will be a

function of k also. Let D (k) = k ¡ Y1(k)
Y2(k)

. The solutions to D (k) = 0 will
be all the intertemporal equilibria for the case Á = 0. As we have noted
in the proof of proposition 33 D0 (k¤) > 0 if k¤ is a stable equilibrium. If
m < 1 then this will be the only equilibrium, i.e. D (k) will be positive for all
k > k¤ and negative for all k < k¤ the only solution to the condition above
will therefore be for a k > k¤.

By di¤erentiating again it is easy to show thatD00 (k) = m
(m+1)2

®(m+1)¡1
(1¡®)®3

2®¡1
k2 .

This will be positive if ® > 1
2 , which it will be at a stable equilibrium ifm > 1.

This proves that D (k) will be positive for all k > k¤.
Now note that we can rewrite the above condition as

m (r1 ¡ r2)Á = (1 ¡ Á) cp
(·
® (m+ 1) ¡ 1

1 ¡ ®

¸ 1
m 1
f

¡ ® (m+ 1) + 1

)
(54)

(compare this with equation 50a). At (®¤; 0; k¤) the term in braces is zero.
By choosing an ® su¢ciently close to one, we can make the term in braces
as large as we like. We can certainly make it larger than the left-hand side,
for any given r1, r2, and Á. This implies that we can always …nd a k > k¤

such that (r1 ¡ r2)ÁkW < (1 ¡ Á)Y2
³
k ¡ Y1

Y2

´
. It follows (by the continuity

of the functions) that there will be a solution with k > k¤ at which we will
have (r1 ¡ r2)ÁkW = (1 ¡ Á)Y2

³
k ¡ Y1

Y2

´
.

It is clear that the larger the term (r1 ¡ r2)Á is, the larger D (k) has to
be to ensure equality in equation 53.

The results for ¯ follow by symmetry.

Proposition 41 Let ri = cµi . If µ > 1, then the intertemporal corner equi-
librium

³
e®; 0;ek

´
will behave as follows: as p ! 1, e® ! 1 and ek ! 1.

Furthermore as c! 1, e®! 1 and ek ! 1.
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Furthermore IT and IC (where these are as de…ned in the text) will tend
to zero, as p! 1.

Proof. In this case we can write equation 54 as

mcµ¡1
¡
pµ ¡ 1

¢

p
Á = (1 ¡ Á)

(·
® (m+ 1) ¡ 1

1 ¡ ®

¸ 1
m 1
f

¡ ® (m+ 1) + 1

)

As p! 1 the left hand side of this equation tends to in…nity. Equality can
hold only if ® ! 1. It follows from the equation for ek that ek ! 1. The
result on c follows likewise.

To show what happens to IT , we note that at any corner equilibrium,
IT = gB (this follows from the fact that YB = 0 and hence YA¡Y1YA+YB

= 1¡ Y1
YA

=
1 ¡ gAYA

YA
). From Remark 25 it follows that gB = (1¡®)

®m . Hence IT ! 0 as
®! 1.

By de…nition IC = (1 ¡ ®) k
k+1 + (1 ¡ ¯) 1

k+1 . As k ! 1 and ® ! 1 it
follows that IC ! 0.


