Price Discovery in South African Financial Markets: investigating the relationship between South Africa's stock index futures market and the underlying market

Johannes Fedderke and Michelle Joao

University of the Witwatersrand

The authors gratefully acknowledge the assistance of Genesis Analytics in providing both financial and above all data support to the present project. The results were obtained for the South African Financial Services Board. The views expressed in this paper are those of the authors alone, and should not be taken to necessarily reflect those of either Genesis Analytics or the Financial Services Board in any form.

This paper investigates price discovery in the association between the South African stock index market, and the underlying market. Employing an unstructured VAR, on intraday data at the 2, 6, and 10 minute frequency for 1998, and end-of-day data for 1996-98, we find that futures markets lead spot markets. While precluding Fama informational efficiency, this does not preclude zero-arbitrage efficiency.

1 Introduction

Speculative trading, hedging and arbitraging are generally viewed as three of the most important functions of futures markets. However, it is also argued that futures markets play an important role in price discovery. Price discovery implies that the futures market can be used for pricing spot market transactions (Working, 1948, Wise, 1978). In order to determine whether the futures market provides price information, the temporal relationship between futures and spot markets must be examined for any evidence of a lead-lag relationship between futures prices and spot prices.

The presence of the price discovery relationship between spot and futures markets also provides insight into the relative informational efficiency of the two markets. In terms of Fama (1970), in efficient capital markets new information should be reflected simultaneously on both the futures and spot markets and therefore any price changes in the two markets should be perfectly contemporaneously correlated. If price changes in the futures market lead those in the spot market then there is some inefficiency in the market, as information is traded on the futures market before the spot market. However, the literature on the relationship between futures and spot markets recognizes the centrality of the role and function of arbitrageurs who transmit information into both futures and spot markets by taking advantage of risk free profitable opportunities between futures and spot markets. A linkage between spot market and the futures market is maintained by arbitrageurs, such that a no-arbitrage pricing relationship between the futures price and the underlying spot price is determined by the net cost of holding the asset relative to taking a futures position. In attempting to exploit relative misspricing across the spot and futures market, arbitrageurs ensure that this fair value is relatively quickly reestablished - though the presence of transactions costs may allow some divergence of the actual price from its fair price. This understanding of the impact of arbitrage leads to a specific conception of efficient futures and spot markets. An efficient market is defined as one in which there are no risk-free returns above opportunity costs and transaction costs, given investors' information i.e. there are no profitable arbitrage opportunities - see Dwyer and Wallace (1992).

The purpose of this research is to examine the relationship between the Johannesburg Stock Exchange (JSE) All Share Index and its corresponding

¹And also the work of Levich (1985) and Ross (1987).

futures contract, the South African Stock Exchange (SAFEX) All Share Index futures contracts. The question here is whether price discovery takes place in the index futures or in the index spot market.

Different characteristics of these two markets make it likely that new information will be reflected on the index futures market before it affects the spot market. According to Powers & Vogel (1981), the futures market is more efficient than the spot market because transaction costs are lower, trading volumes are greater, capital requirements are smaller, and market players can sell short without having to borrow to buy the securities. The infrequent trading of stocks within the index can also induce an observed lead-lag relationship. Markets for individual stocks are not perfectly continuous. The index lags behind the true value of the underlying index stocks when any of the constituent stocks have not recently traded since underlying stock values may change between trades (see Fisher, 1966). Alternatively, the futures price represents a single claim on all the shares, and thus does not suffer from the nonsynchronous trading effect of the spot index. Therefore, assuming that the index futures prices instantaneously reflect new information, observed futures returns should be expected to lead observed stock index returns because of infrequent trading, even though there is no economic significance to this behaviour whatsoever (Stoll and Whaley, 1990). For example, consider the reaction to an interest rate cut. The futures market would respond quickly, while the spot index would only reflect this information once the price of each of the component stocks had moved accordingly. This nonsynchronous trading effect is then exacerbated by thin trading (or infrequent trading) of component stocks. According to Harris (1989) the nonsynchronous trading problem is greatest when prices are analysed over short time intervals, such as are examined in studies of intraday data, and when trading is thin. Stoll and Whaley (1990) also considered how delays in computing and recording stock index values could induce a spurious lead from the futures to the spot market.

We note immediately that where futures markets are thin, a symmetrical problem may occur, viz., an absence of trading opportunity may preclude the price of the futures index to move in order to reflect the value of the underlying assets. Where futures trades are not as frequent as spot trades, lack of movement in the futures price may not be an expression of an absence of price discovery, but simply of the thinness of the futures market. It is the absence of trading *opportunity* rather than the absence of price discovery that may serve to explain the absence of price movement in the futures market.

This would serve to render any apparent lead on the part of spot prices against futures prices spurious.

Chan (1992) highlighted a differential response to market-wide information vs firm-specific information. He shows that the feedback from futures to the spot is greatest when there is greater market-wide information. Because of the greater ease of transacting on the futures market, one may expect a quicker and more accurate response to an announcement of macroeconomic information which affects the entire market. It would take the spot market longer to adjust and discount the effect the information would have on each of its component stocks. However, in the case of an announcement affecting an individual stock, the spot market is likely to adjust more quickly. Consequently, the lead-lag pattern was found to vary consistently with the extent of market-wide movement. Where more stocks move together (market-wide information), the futures market leads more strongly. The futures market is then the main source of market-wide information, while the cash market is the main source of firm-specific information. Since firms-specific information is diversifiable and market-wide information is systematic, the discovery of market-wide information is more important, so that the feedback from the futures market into the cash market is larger than the reverse.

2 Prior Findings

Several studies have examined this temporal relationship between index futures and the spot market.

One of the earliest studies was conducted by Zeckhauser and Niederhoffer (1983) using the daily spot and futures prices of the Value Line and S&P 500 over a three-month period. They found that market index futures contracts anticipate market movements. This was based on the evidence that futures prices move more rapidly to equilibrium value than spot prices (i.e. they exhibit a lack of momentum) and that futures prices often lie below the spot prices, despite the time value of money. In analysing the predictive value of the futures market, Zeckhauser and Niederhoffer (1983) used a relatively crude technique. They simply examined the correlation between the daily basis (the difference between the closing futures and spot price) and three different moves in the spot price - to the next day open, to the next day close, and to the close three days later. They found that the larger the basis is - that is, the more the futures price exceeds the spot - the greater is

the tendency for the spot to rise. Consequently, the futures index has some ability to anticipate movements in the spot, particularly for the near term.

Using daily data, Ng (1987) finds that futures innovations cause spot price changes, and that futures lead spot prices by one day. In addition, she finds that spot prices do not cause futures prices.

Finnerty and Park (1987) used intraday spot and futures prices of the Chicago Board of Trade's Major Market Index (MMI) and the Maxi Major Market Index (MMMI). For every reported change in the index price (based on at least minute-to-minute data), the closest preceding change in the futures price was identified. They ran 2 regressions for each contract - a basic model testing the relation between the change in the spot index and the change in the closest previous futures price and a modified regression model using a dummy variable to control for the expiration week or month. The results suggest index futures prices lead spot prices, however results for the MMI contract suggest a differential relation over the contract life with a more intense relationship near contract expiration.

Similarly, Kawaller, Koch & Koch (1987) studied the intraday pricing relationship for spot indices and futures contracts using minute-to-minute data, while also testing for a differential response over contract life. However, their study was based on the S&P 500 and used a more rigorous statistical technique. Three-stage least-squares regression is used to estimate lead and lag relationships with estimates for expiration days of the S&P 500 futures compared with estimates for days prior to expiration. This enables an investigation of whether the distributed lags vary systematically throughout the life of each futures contract and whether they differ on expiration days as opposed to nonexpiration days. They found that while index futures and spot index prices move largely in unison, the lead from S&P 500 futures to spot prices extends for between 20 and 45 minutes, while the lead from spot to futures prices rarely extends beyond one minute. In addition, the expiration days do not demonstrate a temporal character substantially different from earlier days. Thus, while arbitrage activity may be presumed to be greatest at expiration, transactions under such arbitrage conditions are not sufficiently strong or pervasive to alter the empirical price relationship for the entire day. Finally, as regards market efficiency, they conclude that since the majority of price movements for the S&P500 are contemporaneous, this casts doubt on the likelihood of the lead-lag structure providing exploitable profit opportunities.

Kawaller et al's findings (1987) were supported by Herbst, McCormack

and West* (1987). However, Herbst et al. also considered the influence of nonsynchronous trading by arguing that the more pronounced lag in the Value Line index relative to the S&P 500 index reflects the difference in the underlying indices i.e. the Value Line index contains more securities.

The impact of nonsynchronous trading on the lead-lag structure was then formally addressed by Harris (1989) and Stoll and Whaley (1990) and Chan (1992).

Harris (1989) examined five-minute changes in the S&P 500 index and futures contract over a very short sample period, a ten day interval surrounding the October 1987 stock market crash. By examining cross-correlations, he found that even after the effect of nonsynchronous trading is taken into account, the futures price strongly leads the spot index, while there is little evidence of the spot market leading the futures market.

Stoll & Whaley (1990) investigated the time series properties of fiveminute, intraday returns of the S&P 500 and MMI stock index futures contracts and the related spot indices. They first used an ARMA filter to remove the effects of nonsynchronous trading on the S&P 500 and MMI indices. The residuals of this model (i.e. return innovations) are then used as a proxy for true' stock index returns. The temporal relation between the futures and stock returns is then estimated using multiple regression with lead, contemporaneous, and lag futures returns as independent variables and stock return innovations as dependent variables. They found that index futures price changes lead spot index changes by about five to ten minutes, but the feedback from the spot market into the futures market is much shorter than that.

Chan (1992) investigated five-minute intraday returns on the MMI and returns on the MMI and S&P 500 futures. A multiple regression model, similar to that used by Stoll and Whaley (1990), was estimated with lead, contemporaneous, and lag futures returns as independent variables and five-minute MMI spot returns as dependent variables. The MMI was chosen because it comprises frequently traded stocks, minimising the possible spurious lead-lag relationship caused by infrequent trading of a component stock. In addition, it comprises only 20 stocks, allowing the study of the lead-lag relationship between individual stocks and the futures price. By also examining the transaction frequencies of component stocks and futures, Chan investigated the extent to which nonsynchronous trading explains the lead-lag relationship. If this bias is present, MMI futures should lead only infrequently traded stocks. Further, Chan tested whether the relationship changes with (i) bad news ver-

sus good news; (ii) relative intensity of trading activities in the two markets; and (iii) the extent of market-wide movements.

Empirical results show strong evidence that the futures market leads the spot market and weak evidence that the spot market leads the futures market. Nonsynchronous trading did not explain the lead-lag relationship well, as the relationship did not vary much with the frequency of trading. Good or bad news was not found to significantly affect the relationship, nor did the relative intensity of trading activities in the two markets. The most significant result was that the feedback from futures to the spot is greatest when there is greater market-wide information (i.e. where more stocks move together). This suggests that the futures market is the main source of market-wide information, while the spot market is the main source of firm-specific information. Since firms-specific information is diversifiable and market-wide information is systematic, the discovery of market-wide information is more important, so that the feedback from the futures market into the spot market is larger than the reverse.

In more recent studies the emphasis has shifted towards more advanced econometric techniques. Ghosh (1993) and Wahab and Lashgari (1993) were the first to introduce cointegration to account for the long run relationship between the spot and futures markets. This approach differs from prior studies which relied on short term dynamics to establish the relationship between the markets. The application of cointegration specifically accounts for the long run equilibrium between economic time series which appear to move together over time. An error correction representation describing each pair of price series is appropriate when series are cointegrated as the models allow valid conclusions to be drawn regarding the lead-lag relationship.

Ghosh (1993) analysed the S&P 500 and Commodity Research Bureau (CRB) indices and futures contracts pairs. Augmented Dickey-Fuller tests were used to test for the stationarity of the data. All time series were found to be I(1). The Engle-Granger method was used to test for cointegration and indicated that the spot series were cointegrated with the contemporaneous futures series for both the S&P 500 and CRB indices. Because they are cointegrated, it was appropriate to represent the spot and futures prices with error correction models (ECMs). ECMs were constructed with equations of the same form. Forecasts from these ECMs were compared to a naive forecasting equation, which simply based the forecast of a future value of a variable on its most recent value. The ECMs improved forecasting of both the S&P 500 and CRB indices. It was established that S&P 500 futures

prices caused the S&P 500 index prices in the sense of Granger, while the reverse was true for the CRB.

Wahab and Lashgari (1993) investigated the relationship between the S&P 500 index and futures contracts traded on the Chicago Index and Options Market, and between the Financial Times - Stock Exchange 100 (FTSE 100) index and futures contracts traded on the London International Financial Futures Exchange. The Engle-Granger method was used to test for cointegration. Both the S&P 500 and FTSE 100 index and futures pairs were found to be cointegrated. The resulting ECMs indicated that the spot and futures prices were mostly simultaneously related, with lagged components rather weak in magnitude, and possibly not economically significant or exploitable. However, there was surprisingly stronger evidence of a lead from the spot markets to the futures markets for the S&P 500 and for the FTSE 100 indices than vice versa. The performance of the ECMs in forecasting was significantly better than that of standard vector autoregression models.

Bhar and O'Callagan (1995) used the cointegration technique proposed by Johansen (1988) and Johansen and Juselius (1990) to investigate the relationship between the All Ords Index of the Australian Stock Market and the SPI Futures Index of the Sydney Futures Exchange. When they tested the order of integration of the data, Bhar & O'Callaghan extended the testing beyond the Dickey-Fuller and augmented Dickey-Fuller tests to use the Phillips-Perron test. The two time series were found to be non-stationary and integrated of the same order. Johansen's maximum likelihood approach indicated one cointegrating vector, proving that the All Ords Index and SPI futures prices were cointegrated. The resulting ECMs were found to outperform the naive forecast model. Bhar & O'Callaghan concluded that since cointegration implies causality, the efficient market hypothesis was contradicted in this case.

Cointegration techniques were also employed by Hung and Zhang (1995) and Tse (1995). They found support for the notion that futures prices lead spot prices of the CBT Municipal Bond Index and Nikkei index respectively.

The SA literature on the temporal relationship between the spot and futures market is relatively limited.

In a 1994 study, Betts (1994b) examined the South African index futures market and the JSE. She found that for the All Share Index (ALSI), the index futures tend to lead the spot market with corrections in mispricing occurring in the spot market. However, according to Betts the low liquidity in the spot ALSI market results in the index not reflecting the true level of

the market. With respect to the INDI, she also found that the futures tended to lead the spot market. For the GLDI, she found that the futures tended to overreact compared to the spot market.

Johnstone (1996) used cointegration analysis on daily data to examine the causal relationship between the ALSI and the SAFEX March 1997 ALSI futures contract. They were found to be cointegrated, implying the existence of a causal relationship between them. The ECMs performed no better than a naive forecasting model and proved not to be economically exploitable. Johnstone (1996) recognised that a limitation of this study was the sampling period of one day imposed by the availability of data. It is likely that the dynamics of the JSE and SAFEX are shorter than one day. This does not affect cointegration testing, which establishes the existence of a long-term equilibrium relationship between nonstationary variables, but it will affect ECMs, as the short-run dynamic behaviour of the variables will not be accounted for. Future studies would therefore gain significance if intraday data could be collected and analysed. The predictive power of the ECMs would probably improve. Finally, Johnstone's (1996) study is also limited by a failure to consider the effects of nonsynchronous trading.

Also using cointegration techniques, Ferret and Page (1998) examined the temporal pricing relationship between four SA index futures contracts and their underlying spot market indices based on daily closing prices. Their paper provides evidence that the JSE stock index futures contracts are cointegrated with the spot market. Fitted error correction models find that the stock index futures price changes lead those of the underlying spot index by up to three days in reflecting new information. However, Ferret and Page (1998) recognised that their study was not only limited by the use of daily rather than intraday data, but by the use of the mark-to-market prices for futures contracts. The mark-to-market price is an average of the closing bid and ask prices and is therefore not the last traded price of the day. Furthermore, they also ignored the nonsynchronous trading problem.

In general, the SA findings are consistent with the majority of international studies and it appears that trading on the JSE and SAFEX follows a similar pattern to markets elsewhere.

3 Modelling Price Discovery

The question here is whether price discovery takes place in the futures, or in the spot market. Since this question translates into that of whether price changes in the futures market lead those in the spot market, or vice versa, this question can be readily translated into an unrestricted VAR framework. In Kawaller, Koch and Koch (1987), the following model is estimated on intraday data. Given the likely efficiency of futures and spot markets, intraday data will be imperative - and the higher the frequency the better for the proposed line of research. Kawaller, Koch and Koch (1987) employ minute-by-minute data. The proposed model is specified as:

$$i_t = z_1 + \sum_{k=1}^{\infty} a_k i_{t-k} + \sum_{k=0}^{\infty} b_k f_{t-k} + e_{1t}$$
 (1)

$$f_t = z_2 + \sum_{k=0}^{\infty} c_k i_{t-k} + \sum_{k=1}^{\infty} d_k f_{t-k} + e_{2t}$$
 (2)

where $i_t = (1 - L) I_t$, $f_t = (1 - L) F_t$, and I_t , F_t denote the spot and future market indexes. We need to note that the model carries the potential of simultaneity where $c_0, b_0 \neq 0$. Under data at the minute-level frequency, k = 60 was the finite lag length chosen. The model allows for the nature of price discovery to be established. Where the $b_k \neq 0, k > 0$, price discovery is in the spot market.

Since the question in the present context is into where price discovery takes place in financial markets, the relevant specification is in terms of price data expressed in terms of first differences, rather than levels. Since price discovery implies the exploration of a different price level, price discovery is inherently related to changes in prices rather than price levels. Hence the formulation of the unrestricted VAR in terms of first differences of the variables.

But use of data specified in terms of first differences is justified in terms of the univariate time series characteristics of the data also. Both the price index on the spot and the price index on the futures market are typically $\sim I(1)$, rendering the least squares estimation process underlying VAR estimation inappropriate. Use of the variables in first difference form, would serve to render them stationary, hence making the VAR framework appropriate.

We note that no precendents appear to exist for South Africa, in the sense that no prior studies appear to have been conducted on the question of price discovery, employing the unrestricted VAR methodology in estimation. In this sense the findings of the present study provide new insight into the workings of South African financial markets.

4 The Data

The study employed five data sets which each contained spot and futures prices of the ALSI 40 index (in the spot market it was the level of the ALSI 40 index) at the same time intervals. The data sets are distinguishable in terms of frequency:

- End of day data: the first two data sets employed for the present study employed end-of-day data. The two data sets are distinguished in terms of the time period covered by the data sets, and the specification of the "end-of-day" observation.
 - Data Set A: the sample period covered June 1996 till the end of 1998, and consisted of the published closing prices of the JSE and SAFEX. Since the JSE and SAFEX do not share the same official closing time for quoted closing prices, this introduces the possibility of errors in variables into the estimation, since the market with a later quoted closing time would carry the institutionally defined opportunity for price discovery while the closed market was unable to react. This data set provided a total of 751 observations.
 - Data Set B: For this reason we employed a second end-of-day data set, for which close of day data was defined to be the observed price in the spot (ALSI40) and futures (SAFEX) markets at a consistent prespecified time common to both markets. The time point chosen was 4:30pm. End of day data for the whole of 1998 made up this data set. This data set provided a total of 234 observations.
- Intra-day data: a number of additional data sets defined in terms of alternative frequency of observation were employed. All such data sets comprised intra-day data for 1998. Three different frequencies besides end of day were tested:
 - Data Set C: data at ten minute intervals throughout the day, yielding 10094 observations for the 1998 year.

- Data Set D: data at six minute intervals throughout the day yielding 16674 observations for the 1998 year.
- Data Set E: data at two minute intervals throughout the day yielding 49574 observations for the 1998 year.

In each of the intraday data sets, estimation proceeded both on the full data set for the full year, and on estimations for subsamples. The use of subsamples supplemented the use of dummy variables to test for the impact of emerging market crises that occurred during the course of 1998 - particularly May and August 1998. Given the size of the data sets at our disposal, it is feasible to estimate the unrestricted VAR's over subsamples of the full 1998 year, in order to investigate whether our findings for each of the frequencies are affected by the crisis or not.

5 Estimation Results

Price discovery takes place in the futures market in South Africa. This constitutes the central finding that emerges from estimated VAR's.

This finding proves consistent across all data sets employed for the study except that of the highest frequency: Data Set E. Moreover, the finding proves robust to the introduction of a number of alternative tests for the impact of the financial market crises. Nevertheless, there is some evidence to suggest that crisis moths and their aftermath did have some impact on the nature of the price discovery in South African financial markets.

While estimation was in terms of unrestricted VAR's, optimal lag structure within the VAR structure was tested for in terms of an information criterion (two information criteria were employed: Akaike's and the Schwarz-Bayesian). For all data sets employed for the present study, optimal lag structures implied by the information criteria proved parsimonious - proving to be no greater than 8 or 9 even for the highest frequency data employed. Nevertheless, since the primary focus of the present exercise was not an explanatory framework for price changes in spot and futures markets but on price discovery, and since this hinges on the statistical significance of parameters within the VAR, a more generous lag structure than implied by the information criteria was employed throughout the study.

In Tables 1 through 8 we present the two equations of the unrestricted VAR for all data sets but Data Set E (with which we deal separately be-

low), without controlling for the impact of the emerging market crises. We note that in all instances, the evidence shows clearly that the condition for price discovery taking place in futures markets, that in the unrestricted VAR structure we have $b_k \neq 0, k > 0$ and $c_k = 0, k > 0$, is met. Regardless of which data frequency is employed therefore, six or ten minute frequencies for the intra-day data, or the end-of-day data, the implication is therefore that price changes in the futures market lead price changes in the spot market.

Tables 9 and 10 report the two equations of the unrestricted VAR for Data Set E. In contrast to the findings for lower frequency data, the evidence no longer satisfies the condition for price discovery taking place in futures markets, viz. that in the unrestricted VAR structure we have $b_k \neq 0, k > 0$ and $c_k = 0, k > 0$. Instead, we find that $b_k \neq 0, k > 0$ and $c_k \neq 0, k > 0$, such that price discovery may take place in the spot market. However, care should be taken to interpret this finding, since it may reflect an errors in variables problem. Futures trades are not as frequent as spot trades and hence the futures price is often static for periods that exceed two minutes. This creates an errors in variables problem, since the lack of movement in the futures price may not be an expression of an absence of price discovery, but simply of the thinness of the futures market. It is the absence of trading opportunity rather than the absence of price discovery that may serve to explain the absence of price movement in the futures market. The statistical consequence of the errors in variables problem would be bias and inconsistency in the Ordinary Least Squares (OLS) estimators which implies that it is not possible to assess the significance of parameters even in large samples - rendering the tests for statistical significance in the high frequency unrestricted VAR's potentially spurious. It is noteworthy that this problem in South African markets mirrors evidence presented for the USA in at least some studies. For symmetrical reasons, US studies have tended to move to 5 minute frequency data in order to avoid potential errors in variables problems. Since for South African markets we find consistent evidence of rice discovery taking place in futures markets at 6 minute frequency data, one potential implication of our findings is that the differential between the efficiency of South African financial markets and those of the US may be smaller than might have been surmised.

Finally, we tested for the sensitivity of our finding that price discovery takes place in futures markets to the impact of emerging markets crises on the South African economy. The impact of the emerging markets crises were tested for in a number of respects:

- Two shocks were controlled for during the course of 1998 (26 May 1998 the "Asian" crisis and 17 August 1998 the "Russian" crisis)
- Three different "durations" of the crisis impact was tested for, for each frequency of data: two week, four week and eight week durations.

In each case, the crisis was not found to affect the price discovery findings. Moreover, the crisis variables were found to be significant only in the spot market equation, and not in the futures market equation. The implication of this evidence is thus that the impact of emerging market crises was not such as to affect the source of price discovery in South African financial markets. price discovery continues to take place in the futures rather than the spot market. The only countervailing evidence comes from the high frequency (10-minute and 6-minute) sub-sample data for 1998. For these two data sets, there is some evidence to suggest that in crisis months price discovery is coincident in the futures and spot markets.² One interpretation of this evidence is that in crisis periods, market activity moves to the short end - perhaps because market participants while needing to react to the new information, are not certain of its quality, and the duration of the shock. Moreover, given the findings of the presence of arbitrage between the futures and spot markets, and its stabilizing effects noted in the following section, the findings on crisis impacts certainly do not suggest that the futures market exacerbates the magnitude of shock impacts.

6 Evaluation and Discussion of Estimation Results

The main implication of our estimation results is that price discovery takes place in futures rather than spot markets in South Africa. Moreover, this finding appears to be robust to a number of tests for the impact of emerging market crises, and emerges at relative high frequency (6 minute data).

Only two qualifications appear required for this finding. The first concerns the countervailing evidence from the very highest frequency data employed for this study (the two-minute data) - though we noted a possible statistical reason for this aberration. Nevertheless, it should be noted that the statistical errors in variables problem may itself reflect an efficiency problem in the futures market. The fact that the futures market does not trade as frequently

²Full results are avaiable from the authors on request.

Dependent varial	ble is F						
20 observations	used for estim	ation	from 12 to 731				
*******	*******	******	***********	*****	****		
Regressor	Coefficient	Standard Error	T-Ratio[Prob]		
CONST	-	2.6523 3.7	59070557[.	481]			
(-1)	.10260	.10724	.95680[.339]				
(-2)	016214	.10317	15715[.875]				
(-3)	.0021373	.10191	.020973[.983]				
(-4)	097174	.10090	96309[.336]				
(-5)	061821	.097453	63437[.526]				
(-6)	.085948	.096796	.88793[.375]				
(-7)	.018966	.093947	.20188[.840]				
(-8)	.058318	.093035	.62684[.531]				
(-9)	.0090577	.082252	.11012[.912]				
(-10)	035585	.079083	44998[.653]				
F(-1) F(-2)	.011991 016551	.091348 .089196	.13127[.896]				
F(-2)	.0057547	.089520	18556[.853] .064284[.949]				
F(-4)	046433	.088699	52349[.601]				
F(-5)	.053208	.086452	.61546[.538]				
F(-6)	083906	.086206	97332[.331]				
(-7)	046654	.083976	55557[.579]				
F(-8)	080997	.082886	97721[.329]				
F(-9)	.041830	.075859	.55142[.582]				
F(-10)	.040558	.073323	.55315[.580]	******	****		
R-Squared		0347	707 R-Bar-Square	ed	.0070878		
S.E. of Regre	ssion	100.5348 F		F	(20, 69	99) 1.2566[.201]	
Iean of Depend	ent Variable	2.57	778 S.D. of Depen	dent Variable	100.8930		
Residual Sum of	Square	s 7064965	Equation Log-likeliho	ood -433	0.5		
	Criterion	- 4351.	5 Schwarz	Bayesian Cri	terion -	-4399.6	
OW- statistic		1.9984					
********	*********	*******	******	*******	****		
	Diagnostic Te	ests					
*******			***********	*****	****		
Test Statistics		*	LM Version	* F Versi		*	
**********	*******	******	********	******	****		
A :Serial Corre	elation	* CHSO(1)=	* 1.3321[.248] * F(1,	698)= 1.2938[.2	* 561 *		
B :Functional	*		*		*		
b :Functional	**	*Cn3Q(1)=.5	420E-3[.976]* F(1, 0	.9132E-3[.	*		
C :Normality	*	* CHSQ(2)=	4713.0[.000] * Not	applicable	*		
D :Heterosced		* CHSQ(1)=	5.4509[.020]* F(1, '	718)= 5.4772[.0 ******			
		residual serial con					
		the square of the					
B:Ramsev's RI							

Figure 1: Inconsistent End-of-Day Results

	riable is I ns used for estin	nation	from 12 to 731				
		1211011 **********		******	*****		
Regressor	Coefficient	Standard Error	T-Ratiof		Prob]		
ONST		2.6865 3.20		0[.403]	1100]		
(-1)	15003	.091520	-1.6393[.102]	.[]			
(-2)	23081	.088053	-2.6213[.009]				
(-3)	011985	.086972	13780[.890]				
(-4)	12381	.086111	-1.4378[.151]				
(-5)	13351	.083170	-1.6052[.109]				
(-6)	020521	.082610	24841[.804]				
(-7)	.11500	.080178	1.4344[.152]				
(-8)	.11833	.079400	1.4903[.137]				
(-9)	.14300	.070197	2.0371[.042]				
(-10)	027969	.067492	41441[.679]				
F(-1)	.21257	.077960	2.7266[.007]				
F(-2) F(-3)	.20468 .032528	.076123 .076400	2.6888[.007] .42576[.670]				
F(-3) F(-4)	.032328	.075699	.28290[.777]				
F(-5)	.11789	.073782	1.5978[.111]				
F(-6)	.0080697	.073571	.10969[.913]				
(-7)	077996	.071668	-1.0883[.277]				
F(-8)	10952	.070738	-1.5482[.122]				
7(-9)	069314	.064741	-1.0706[.285]				
F(-10)	.022162	.062577	.35415[.723]				
Mean of Depe Residual Sum	ression ndent Variable of Square o. Criterion		Equation Log-likelil	F ndent Variable hood -4216 Bayesian Crit	87.3552 .4	2.3146[.001] 285.5	
OW- statistic		1.9640	**********	********	*****		
	D:						
	Diagnostic T	ests ********	******	*******	*****		
******	**********	*******				*	
**************************************	************* cs	*******	LM Version	* F Ve	rsion	*	
**************************************	**************************************	***************	LM Version	* F Ve	rsion ******	*	
*********** Test Statisti ************ A :Serial Co	**************************************	************** ******************* * CHSQ(1)= 20	LM Version ************************************	* F Ve ************************************	rsion ****** P[.000] *	*	
Test Statisti	**************************************	**************************************	LM Version ************************************	* F Ve ************************************	rsion ****** P[.000] *	*	
*********** Test Statisti ************ A :Serial Co	cs rrelation dl Form	**************************************	LM Version ************************************	* F Ve ************************************	rsion ****** P[.000] *	*	
Test Statisti A:Serial Co B:Functiona C:Normality D:Heterosce	rrelation Il Form y edasticity	**************************************	LM Version ***************** 0.3967[.000] * F(2.2807[.000] * F(079.4[.000] * F(1.6267[.000] * F(* F Ve *************** 1, 698)= 20.3499 1, 698)= 19.2059 Not applicable 1, 718)= 22.234	rsion ****** * 0[.000] * * [.000] * * * 5[.000] *	*	
Test Statisti *********** A :Serial Co B :Functiona C :Normality D :Heterosce ********** A:Lagrange B:Ramsey's C:Based on a	rrelation Il Form dedasticity edasticity multiplier test oi RESET test usin a test of	**************************************	LM Version ************************************	* F Ve ************** 1, 698)= 20.3499 1, 698)= 19.2059 Not applicable 1, 718)= 22.234 ************************************	rsion ****** * 0[.000] * * [.000] * * * 5[.000] *	*	

Figure 2: Inconsistent End-of-Day Results

Source	SS	df M	S		Number of obs	
Model	418086.254	20 20904	 1.3127		F(20, 20)	3) = 1.99 = 0.0090
Residual	2130625.96				R-squared	= 0.1640
+					-	red = 0.0817
Total	2548712.21	223 11429	9.2028		Root MSE	= 102.45
i	Coef	Std. Err.		P> t		 nf. Interval]
+						
il1	5812747	.1682108	-3.456	0.001	912939	2496104
il2	3763166	.1932975	-1.947	0.053	757445	.0048118
i13	0580727	.1996446	-0.291	0.771	4517158	.3355704
i14	1828651	.2006594	-0.911	0.363	578509	.2127788
i15	3578235	.1998587	-1.790	0.075	7518887	.0362418
il6	0949178	.1956661	-0.485	0.628	4807164	.2908807
i17	1143382	.1888268	-0.606	0.546	4866515	.2579752
i18	0507476	.1816305	-0.279	0.780	408872	.3073767
i19	0099692	.1728353	-0.058	0.954	3507519	.3308135
il10	0105856	.1500114	-0.071	0.944	306366	.2851947
fl1	.63731	.1386685	4.596	0.000	.3638947	.9107252
f12	.4203171	.1662464	2.528	0.012	.0925259	.7481083
f13	.076524	.1745642	0.438	0.662	2676675	.4207156
f14	.1956486	.1765661	1.108	0.269	15249	.5437873
f15	.3117121	.1774368	1.757	0.080	0381433	.6615675
f16	.1412557	.174664	0.809	0.420	2031326	.485644
f17	.1087563	.168432	0.646	0.519	2233442	.4408568
f18	.0831364	.1616593	0.514	0.608	2356104	.4018831
f19	.0744152	.1541192	0.483	0.630	2294646	.3782949
f110	.1672528	.1361076	1.229	0.221	101113	.4356186
_cons	9508739	6.861953	-0.139	0.890	-14.48072	12.57897

Figure 3: Consistent End-of-Day Results

Source	SS	df M	IS		Number of obs	
Model	329304.101	20 1646	5.2051		F(20, 203 Prob > F	3) = 1.06 = 0.3961
Residual	3157300.89		3.2064		R-squared	= 0.0944
+					-	ed = 0.0052
Total	3486605.00	223 150	635.00		Root MSE	= 124.71
f	Coef.	 Std. Err.	t.	P> t	 [95% Cor	 nf. Intervall
+						
il1	0078409	.2047661	-0.038	0.969	4115821	.3959004
i12	086665	.2353048	-0.368	0.713	5506198	.3772898
i13	.266616	.2430312	1.097	0.274	2125732	.7458051
i14	.1200816	.2442665	0.492	0.624	3615432	.6017064
i15	2537559	.2432918	-1.043	0.298	7334589	.2259472
il6	0557085	.2381881	-0.234	0.815	5253484	.4139314
i17	1403411	.2298625	-0.611	0.542	5935652	.3128831
i18	.0516996	.2211023	0.234	0.815	3842519	.4876511
i19	0118109	.2103957	-0.056	0.955	4266522	.4030303
il10	0648156	.1826118	-0.355	0.723	4248746	.2952435
f11	.120681	.1688038	0.715	0.475	2121526	.4535146
f12	.1251068	.2023749	0.618	0.537	2739197	.5241332
f13	238066	.2125003	-1.120	0.264	6570569	.1809249
fl4	0954563	.2149372	-0.444	0.657	5192521	.3283394
f15	.1186974	.2159971	0.550	0.583	3071882	.544583
f16	.0899032	.2126218	0.423	0.673	3293272	.5091336
f17	.0472798	.2050354	0.231	0.818	3569924	.451552
f18	0110393	.196791	-0.056	0.955	3990557	.3769772
f19	.0661684	.1876122	0.353	0.725	3037502	.4360869
f110	.2253662	.1656863	1.360	0.175	1013206	.552053
_cons	-1.957144	8.353186	-0.234	0.815	-18.42728	14.51299

Figure 4: Consistent End-of-Day Results

Source	SS	df	MS		Number of obs =	10094
Model	127441.24	20 6	372.062		F(20, 10073) Prob > F	= 40.07
Residual	1601791.44		59.01831		R-squared	= 0.0737
					Adj R-squared	
Total	1729232.68	10093 1	71.3299		Root MSE	= 12.61
i	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
il1	.2630445	.0100012	26.301	0.000	.24344	.2826489
i12	.0036443	.010339	0.352	0.724	0166222	.0239108
i13	0107404	.0103389	-1.039	0.299	0310066	.0095259
i14	.0005484	.0103393	0.053	0.958	0197186	.0208155
i15	0033921	.0103391	-0.328	0.743	0236587	.0168746
il6	.0107359	.0103377	1.039	0.299	0095281	.0309999
i17	0103996	.0103373	-1.006	0.314	0306628	.0098636
i18	0098596	.0103361	-0.954	0.340	0301204	.0104012
i19	.010516	.010334	1.018	0.309	0097407	.0307726
il10	0072279	.009985	-0.724	0.469	0268005	.0123447
f11	.0038667	.0016042	2.410	0.016	.0007222	.0070112
f12	.0043527	.0016046	2.713	0.007	.0012073	.007498
f13	.0020984	.0016052	1.307	0.191	0010481	.0052449
f14	0027741	.0016052	-1.728	0.084	0059207	.0003725
f15	0029198	.0016055	-1.819	0.069	006067	.0002273
f16	0011269	.0016058	-0.702	0.483	0042745	.0020208
f17	.0000845	.0016057	0.053	0.958	0030629	.003232
f18	0004622	.0016057	-0.288	0.773	0036096	.0026853
f19	.0007684	.0016056	0.479	0.632	002379	.0039157
f110	.0011032	.0016055	0.687	0.492	0020439	.0042503
_cons	0600304	.1255302	-0.478	0.633	3060947	.1860339

Figure 5: Ten Minute Frequency Results

Source	SS	df	M	IS		Number of F(20, 10	
Model	36263.6714	20	1813	.18357		F(20, 10 Prob > F	
Residual	62265432.4			.41888		R-squared	= 0.0006
+						-	uared = -0.0014
Total	62301696.1	10093	6172	.76291		Root MSE	= 78.622
f	Coef.	Std.	Err.	t	P> t	[95%	Conf. Interval]
 il1	.0725087	.0623	 554	1.163	0.245	049720	4 .1947378
i12	0473815	.0644	613	-0.735	0.462	173738	4 .0789755
i13	.0114202	.0644	605	0.177	0.859	114935	3 .1377756
i14	0634244	.064	463	-0.984	0.325	189784	8 .062936
i15	.0118124	.0644	618	0.183	0.855	114545	6 .1381704
i16	.0006722	.0644	534	0.010	0.992	125669	4 .1270137
i17	0576524	.0644	509	-0.895	0.371	18398	9 .0686842
i18	0585728	.0644	431	-0.909	0.363	184894	1 .0677484
i19	.0325742	.06	443	0.506	0.613	093721	4 .1588699
il10	.0321962	.0622	542	0.517	0.605	089834	5 .1542268
f11	0013332	.0100	016	-0.133	0.894	020938	5 .018272
f12	0013211	.0100	044	-0.132	0.895	020931	8 .0182895
f13	.0028332	.0100	079	0.283	0.777	016784	2 .0224507
f14	.0075012	.0100	082	0.750	0.454	012116	9 .0271193
f15	0011485	.01	001	-0.115	0.909	020770	2 .0184732
f16	.0003599	.0100	117	0.036	0.971	01926	5 .0199848
f17	.0001838	.010	011	0.018	0.985	019439	8 .0198075
f18	.0002656	.010	011	0.027	0.979	01935	8 .0198891
f19	.0003263	.0100	107	0.033	0.974	019296	7 .0199492
f110	0003224	.0100	098	-0.032	0.974	019943	7 .0192988
_cons	0956756	.7826	523	-0.122	0.903	-1.6298	3 1.438479

Figure 6: Ten Minute Frequency Results

Source	SS	df	MS			Number of ob F(20, 1665	
Model	96257.1014	20	 4812.85507	_ 7		F(20, 1665 Prob > F	= 0.0000
Residual	1459088.68		87.617167			R-squared	= 0.0619
+				_		Adj R-squa	red = 0.0608
Total	1555345.78	16673	93.2852986	5		Root MSE	= 9.3604
i	Coef.	Std. I	 Err.		P> t	 [95% Co	nf. Interval]
+							
il1	.202587	.00777	02 26.	072	0.000	.1873566	.2178174
il2	.0900061	.00792	71 11.	354	0.000	.0744681	.1055442
il3	.0082946	.00795	78 1.	042	0.297	0073034	.0238926
i14	0001808	.00795	66 -0.	023	0.982	0157765	.015415
il5	0072308	.00795	54 -0.	909	0.363	0228243	.0083627
il6	0163874	.00795	46 -2.	060	0.039	0319793	0007955
i17	.0098861	.00795	55 1.	243	0.214	0057075	.0254797
i18	.0015694	.00795	56 0.	197	0.844	0140243	.0171632
i19	.0051038	.00792	23 0.	644	0.519	0104248	.0206325
il10	.0009445	.00776	02 0.	122	0.903	0142662	.0161552
f11	.0031908	.00118	98 2.	682	0.007	.0008586	.005523
f12	.0033238	.00119	01 2.	793	0.005	.0009911	.0056565
f13	.0009597	.00119	03 0.	806	0.420	0013734	.0032929
fl4	.0019845	.00119	03 1.	667	0.096	0003487	.0043177
f15	.0024189	.00119	04 2.	032	0.042	.0000856	.0047523
f16	0013666	.00119	06 -1.	148	0.251	0037003	.000967
f17	0028813	.00119	06 -2.	420	0.016	005215	0005476
f18	0003536	.00119	08 -0.	297	0.766	0026877	.0019804
f19	0001135	.00119	08 -0.	095	0.924	0024477	.0022206
f110	0019966	.00119	08 -1.	677	0.094	0043307	.0003374
_cons	0347533	.07249	53 -0.	479	0.632	1768518	.1073453

Figure 7: Six Minute Frequency Results

Source	SS	df	MS			Number of obs	
Model	23130.786	20	1156.5393	-		Prob > F	= 0.31
Residual	62233904.9		3737.09871			R-squared	= 0.0004
+				_		Adi R-squar	ed = -0.0008
Total	62257035.7	16673	3734.00322	2		Root MSE	= 61.132
f	Coef.	Std. 1	 Err.	 t	P> t	[95% Con	nf. Interval]
 il1	.0733668	.05074	63 1.	446	0.148	0261013	.1728349
i12	.0288565	.05177	13 0.	557	0.577	0726207	.1303337
i13	0328367	.05197	12 -0.	632	0.528	1347058	.0690325
i14	0067266	.05196	36 -0.	129	0.897	1085807	.0951275
i15	0102267	.0519	56 -0.	197	0.844	112066	.0916126
il6	0392677	.05195	08 -0.	756	0.450	1410969	.0625615
i17	0221971	.05195	65 -0.	427	0.669	1240374	.0796431
i18	.0095836	.05195	69 0.	184	0.854	0922574	.1114247
i19	.0276578	.051	74 0.	535	0.593	0737581	.1290737
il10	0424763	.05068	07 -0.	838	0.402	1418159	.0568634
f11	0009264	.00777	07 -0.	119	0.905	0161578	.014305
f12	0004484	.00777	24 -0.	058	0.954	015683	.0147863
f13	0004934	.00777	39 -0.	063	0.949	0157311	.0147442
f14	0015904	.0077	74 -0.	205	0.838	0168282	.0136474
f15	0007154	.00777	45 -0.	092	0.927	0159542	.0145234
f16	.0024032	.00777	54 0.	309	0.757	0128375	.0176439
f17	.0002641	.00777	57 0.	034	0.973	0149772	.0155053
f18	.0086443	.0077	77 1.	112	0.266	0065994	.023888
f19	000454	.00777	72 -0.	058	0.953	0156982	.0147901
f110	.0004611	.0077	77 0.	059	0.953	0147826	.0157048
_cons	0558788	.47345	94 -0.	118	0.906	9839095	.8721519

Figure 8: Six Minute Frequency Results

Source	SS	df	M	S		Number of obs	
Model	41697.8231	20	2084	89116		F(20, 49553 Prob > F	= 79.44 $= 0.0000$
Residual	1300527.05			51727		R-squared	= 0.0311
+						Adi R-squar	ed = 0.0307
Total	1342224.87	49573	27.0	75724		Root MSE	= 5.123
i	Coef.	Std.	Err.	t	P> t	[95% Cor	nf. Interval]
il1	.0593704	.0045	 014	13.189	0.000	.0505476	.0681933
i12	.0982479	.0045		21.788	0.000	.0894098	.107086
i13	.06915	.0045		15.263	0.000	.0602697	.0780302
i14	.038386	.0045		8.453	0.000	.0294853	.0472868
i15	.0395582	.0045		8.707	0.000	.0306529	.0484634
i16	.0204023	.004		4.491	0.000	.011498	.0293066
i17	.0088209	.0045		1.943	0.052	0000786	.0177204
il8	0032587	.0045		-0.719	0.472	012137	.0056196
i19	.0022664	.0045		0.503	0.615	0065685	.0111013
il10	.001207	.0044	996	0.268	0.789	0076122	.0100262
f11	.0007619	.0006	507	1.171	0.242	0005135	.0020372
f12	.0015601	.0006	507	2.398	0.017	.0002847	.0028355
f13	.0010226	.0006	507	1.571	0.116	0002529	.0022981
f14	.0006293	.0006	508	0.967	0.334	0006462	.0019048
f15	.0017295	.0006	508	2.658	0.008	.000454	.003005
f16	.0006445	.0006	508	0.990	0.322	0006311	.0019201
f17	.0000176	.0006	508	0.027	0.978	001258	.0012932
f18	0002921	.0006	508	-0.449	0.654	0015676	.0009835
f19	.0013901	.0006	508	2.136	0.033	.0001146	.0026657
fl10	.0010015	.0006	508	1.539	0.124	0002741	.0022771
_cons	0110885	.0230	097	-0.482	0.630	0561879	.0340108

Figure 9: Two Minute Frequency Results

Source	SS	df	MS		Number of obs	
Model	11861.4369	20 59	3.071847		F(20, 49553 Prob > F	(3) = 0.47 = 0.9772
Residual	62240560.7		56.04021		R-squared	= 0.0002
+					-	ed = -0.0002
Total	62252422.2	49573 12	55.77274		Root MSE	= 35.441
f	Coef.	Std. Err	. t	P> t	[95% Cor	nf. Interval]
il1	.0685982	.0311407	2.203	0.028	.0075621	.1296342
i12	.0352992	.0311944		0.258	0258421	.0964406
i13	.01038	.0313432		0.741	0510529	.071813
il4	0027134	.0314156	-0.086	0.931	0642884	.0588616
i15	.0031831	.0314314		0.919	0584229	.0647891
i16	019188	.0314282	-0.611	0.542	0807876	.0424116
i17	.0297202	.0314112	0.946	0.344	0318461	.0912865
i18	0086608	.0313363	-0.276	0.782	0700803	.0527588
i19	0091719	.0311831	-0.294	0.769	0702912	.0519475
il10	0315378	.0311277	-1.013	0.311	0925485	.0294729
fl1	.0000804	.0045015	0.018	0.986	0087426	.0089034
f12	0005395	.0045015	-0.120	0.905	0093626	.0082836
f13	0006186	.0045018	-0.137	0.891	0094422	.008205
fl4	0001127	.0045019	-0.025	0.980	0089364	.0087111
f15	0003489	.0045019	-0.078	0.938	0091727	.0084748
f16	0000717	.0045022	-0.016	0.987	0088961	.0087527
f17	0008805	.0045022	-0.196	0.845	0097049	.0079439
f18	.0001708	.0045021	0.038	0.970	0086534	.0089951
f19	0002294	.0045021	-0.051	0.959	0090537	.0085948
fl10	0006536	.0045023	-0.145	0.885	0094782	.0081709
_cons	0177348	.1591799	-0.111	0.911	3297294	.2942598

Figure 10: Two Minute Frequency Results

as the spot implies that it is thinner than the spot market, and thinner markets are informationally poorer than thick markets. The South African futures market is therefore not as efficient as it might ideally be. On the other hand, since the US market suffers from similar though less severe problems, provides some grounds for reassurance.

There is an additional advantage that attaches to the present model. Some information concerning the role of arbitraging in markets emerges from the evidence. Where arbitrage is present, we would anticipate that the lag lengths in the models are relatively short, such that price information comes to be reflected in market prices rapidly. By contrast, where the arbitrage is relatively weak, we would expect lag lengths to be relatively long. As such the findings that should emerge from the present section should carry at least some implications for our understanding of the impact of arbitrage (perverse, or beneficial) in the South African markets. Given that the maximum lag with which changes in futures prices lead the spot market appears to be of the order of 7 six minute periods (see Tables 7 and 15 by way of example), the implication is that the maximum lag for price discovery is no greater than 40 minutes. One interpretation here is thus that the brevity of this lag effect is such as to give some prior expectation that arbitrage effects will be found to be present between futures and spot markets in South Africa. This question is explored in greater detail in Fedderke and Joao (1999).

Since the futures market in South Africa leads the spot market, we cannot conclude in favour of Fama (1970) informational efficiency. However, the possibility of no-arbitrage efficiency cannot be precluded. And indeed, in Fedderke and Joao (1999) we establish that no-arbitrage efficiency is present in South Africa's futures market.

References

Betts, A., 1994b, *Hedge Ratios: The Optimal Choice*, Simpson McKie Inc Publication, Johannesburg, June.

Bhar, R. and O'Callaghan, D., 1995, Cointegration, Error Correction and Forecasting of the All Ord's Index and SPI Futures Price Index May and June 1993, Paper presented at the Seventh Annual Australian Finance and Banking Conference, Sydney.

Chan, K., 1992, "A Further Analysis of the Lead-lag Relationship Between the Cash Market and Stock Index Futures Market," *Review of Financial Studies*, 5, 123-152.

Fedderke, J.W., and Joao, M., 1999, "Arbitrage, Cointegration and Efficiency in Financial Markets in the Presence of Financial Crisis," University of the Witwatersrand: Mimeo.

Ferret, A. and Page, M.J., 1998, "Cointegration of South African Index Futures Contracts and their Underlying Spot Market Indices," *Journal for Studies in Economics and Econometrics*, 22, 69-90.

Finnerty, J.E. and Park, H.Y. 1987 "Stock Index Futures: Does the Tail Wag the Dog? A Technical Note," *Financial Analysts Journal*, 43, 57-61.

Fisher, L., 1966, "Some New Stock Market Indexes," *Journal of Business*, 39, 191-225.

Ghosh, A., 1993, "Cointegration and Error Correction Models: Intertemporal Causality Between Index and Futures Prices," *Journal of Futures Markets*, 13, 193-198.

Harris, L., 1989, "The October 1987 S&P 500 Stock Futures Basis," *Journal of Finance*, 44, 77-99.

Herbst, A.F., McCormack, J.P., and West, E.N., 1987, "Investigation of a Lead-lag Relationship Between Spot Indices and their Futures Contracts," *Journal of Futures Markets*, 7, 373-381.

Hung, M. and Zhang, H., 1995, "Price Movements and Price Discovery in the Municipal Bond Index and the Index Futures Markets," *Journal of Finance*, 42, 1309-1329.

Johansen, S., 1988, "Statistical Analysis of Cointegration Vectors," Journal of Economic Dynamics and Control, 12, 231-254.

Johansen, S, and Juselius, K., 1990 "Maximum Likelihood Estimation and Inference on Cointegration - With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, 52, 169-210.

Johnstone, K.B., 1996 The Relationship Between the JSE All Share Index and ALL share Index Futures Contracts, Unpublished MBA Report, University of the Witwatersrand.

Kawaller, I.G., Koch, P.D. and Koch, T.W., 1987, "The Temporal Price Relationship Between S&P 500 Futures and the S&P 500 Index," *Journal of Finance*, 42, 1309-1329.

Ng, N., 1987, "Detecting Spot Prices Forecasts in Futures Prices Using Causality Tests," *The Review of Futures Markets*, 6, 250-267.

Powers, M., and Vogel, D., 1981, *Inside the Financial Futures Markets*, First Edition, New York: John Wiley and Sons.

Stoll, H.R., and Whaley, R.E., 1990, "The Dynamics of Stock Index and Index Futures Returns," *Journal of Financial and Quantitative Analysis*, 25, 441-468.

Tse, Y.K., 1995, "Lead-lag Relationship Between the Spot Index and Futures Price of the Nikkei Stock Average," *Journal of Forecasting*, 14, 553-563.

Wahab, M., and Lashgari, M., 1993, "Price Dynamics and Error Correction in Stock Index and Stock Index Futures Markets: A Cointegration Approach," *Journal of Futures Markets*, 13, 711-742.

Wiese, V., 1978, "Use of Commodity Exchanges by Local Grain Marketing Organisations," in A. Peck (ed.), *Views from the Trade* (Chicago: Board of Trade of the City of Chicago).

Working, H., 1948, "Theory of the Inverse Carrying Charge in Futures Markets," *Journal of Farm Economics*, 30.

Zeckhauser, R., and Niederhoffer, V., 1983, "The performance of Market Index Futures Contracts," *Financial Analysts Journal*, 39, 59-65.