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Abstract

In applied studies, the influence of balance measures on the perfor-
mance of matching estimators is often taken for granted. This paper
considers the performance of different balance measures that have been
used in the literature when balance is being optimized. We also propose
the use of the entropy measure in assessing balance. To examine the effect
of balance measures, we conduct a simulation study where we optimize
balance using Genetic Algorithm (GenMatch).

We found that balance measures do influence matching estimates un-
der the GenMatch algorithm. The bias and Root Mean Square Error
(RMSE) of the estimated treatment effect vary with the choice of balance
measure. In the artificial Data Generating Process (DGP) with one co-
variate considered in this study, the proposed entropy balance measure
has the lowest RMSE.

The implication of these results is that sensitivity of matching esti-
mates to the choice of balance measure should be given greater attention
in empirical studies.

Keywords: Genetic matching, balance measures, information theory,
entropy metric

JEL Classification: I38, H53, C21, D13

1 Introduction

Randomized Control Trials (RCTs) are popular because researchers hope to
easily achieve balance using RCTs. This is because, with randomization, the
treated and untreated units are drawn from the same population, at random.

∗The authors are grateful to the Centre for High Performance computing, Rosebank, Cape
Town, South Africa (https://www.chpc.ac.za/) for giving us access to their machine without
which most of the simulations in this study would not have been possible. The authors are
also grateful for the comments of the Editor and reviewers of Empirical Economics (where the
full version of this paper is published), these comments have helped to shape the ideas in this
paper.
†University of the Witwatersrand, South Africa
‡DataFirst and University of Cape Town, South Africa
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This ensures that the treatment and control samples have identical distributions
of covariates (or are balanced in expectation) in both observed and unobserved
covariates. Therefore, under an RCT the control sample provides the appropri-
ate counterfactual for the treated sample. Although we note that randomization
may fail as a result of chance imbalance, and there are other methods that may
help improve balance (see Lock, Morgan and Rubin (2012) for details).
However, when randomization is not possible, estimation is based on an

observational study or quasi-experiment. The key challenge for observational
studies, therefore, is to replicate the kind of result one would expect from a
randomized experiment (as argued in Lalonde (1986)). Consequently, similar to
the situation under a randomized experiment, balance is important under quasi-
experiments. The term ‘balance (under randomization)’, as it is used here, is in
terms of the distribution of covariates and not just in some moments, like Mean
and Variance. Under the relevant assumption (i.e. Conditional independence
and Common support assumptions (CIA and CSA)), when a control group that
balances the distribution of covariates in the treatment group is used in evalu-
ation, the treatment effect will be unbiased (i.e. replicate experimental result)
and robust across econometric methods, as one would expect from randomized
data.
To assess balance, a researcher has to rely on balance measures which quan-

tify the level of balance or lack thereof. However, there are a number of balance
measures that have been used in the literature. Each measure compares differ-
ent parts of distributions to assess balance and more often than not, the ability
of a balance measure to provide adequate information about balance in a par-
ticular application is taken as a given. Hence, the central question in this study
is: do balance measures vary in their performance? In this study, we argue that
the choice of balance measure does, indeed, matter under the matching algo-
rithm (and the DGP) considered in this paper —and by extension any matching
algorithm that seeks to optimize balance.
In this study, we focus on one approach: Genetic Matching (GenMatch)

which is a generalization of two popular matching approaches —Mahalanobis
distance and propensity score matching (Diamond and Sekhon, 2013). Although
the idea in this paper can be extended to other matching and weighting methods,
the choice of GenMatch in this study is because using one matching approach
allows for focus on the main idea in the paper — the sensitivity of matching
estimates to balance measures —without having to deal with nuances associated
with other matching methods (see Lehrer and Kordas (2013))1 . Beyond evalu-
ating the sensitivity of matching estimates to balance measures, this paper also
introduces a new (distributional) balance measure. We discuss the rationale
behind this balance measure and compare its performance with other popu-
lar balance measures in our simulation study. The possible implication of our

1The traditional implementation of propensity score matching requires discussion of the
propensity score specification (see Lehrer and Kordas (2013) and their discussion on estimation
of propensity scores). This, in itself, may affect the results, apart from the impact of balance
measures. Here we fix the matching method and check if the result is sensitive to the choice
of balance measure.
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findings for other matching methods are also discussed.
Our result builds on the result of Diamond and Sekhon (2013) who showed

that GenMatch produces lower Bias and Root Mean Square Error (RMSE) when
compared to other matching methods. We demonstrate that the performance of
GenMatch itself varies, in terms of Bias and RMSE, with the choice of balance
measure. Specifically, under the univariate stylised DGP considered in this
study, the proposed entropy measure has higher precision than other measures2 .
The rest of the study is organized as follows. Section 2 first reviews the liter-

ature on Genetic Matching and balance measures, then introduces the entropy
balance measure and, finally, presents the balance measures used in this study.
Section 3 discusses the Simulation study, the results and the implication of our
findings for other matching methods while Section 4 concludes.

2 Literature review andMotivation for the study

A number of matching methods has been proposed in the literature and their
finite sample properties have been studied (see Busso et al., (2014), Zhao (2004)
and Frolich (2004)). The main focus of previous studies was the relative perfor-
mance of different matching and weighting methods. However, as noted by Zhao
(2004) and Caliendo and Kopeinig (2008), there is no clear winner among differ-
ent matching estimators. This is because the performance of different matching
estimators depends largely on the data structure (Caliendo and Kopeinig, 2008).
Although the above-mentioned studies mostly focus on the performance of

estimators that rely on the propensity score, a number of studies in the litera-
ture have sought to solve the problems associated with estimating the propensity
scores using various propositions. These propositions include Covariate Balanc-
ing Propensity Scores (Imai and Ratkovic, 2014), Entropy balancing (Hain-
mueller, 2012) and Genetic Matching (Diamond and Sekhon, 2013). These
methods seek to optimize balance in the covariates in various ways: directly
without relying on the propensity score (under the CIA and CSA); or by es-
timating propensity scores that incorporate the balancing condition. Simula-
tion results suggest that optimizing balance with these methods yield gains in
MSE or/and Bias over propensity score matching (see Imai and Ratkovic (2014),
Hainmueller (2012) and Diamond and Sekhon (2013)). GenMatch is one of these
methods in that it seeks to optimize balance. It, however, adopts a different ap-
proach called Genetic Algorithm —a machine learning method for optimization
—to optimize balance.
One important aspect of the matching literature that has largely been over-

looked is the possibility that balance measures can affect the performance of
matching estimators. This is especially important when genetic algorithm is

2Note that the Simulation design considered in this working paper is limited in many
ways, the full analysis that is expected to be published soon contain more realistic simulation
designs. Our result in the full analysis suggests that the performance of the proposed entropy
measure do not persist in real data. Instead the standardized difference in means tent to
out-perform other measures.
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used to optimize balance. Genetic algorithms depend on user-specified fitness
function to guide it through the optimization process (Mitchell, 1998; Carr,
2014). In the context of GenMatch, the fitness function for the optimization
is defined by the balance measure. In theory, one should not expect different
fitness functions (i.e. balance measures) to give similar results. This is because
the performance of balance measures may vary based on the form of imbalance
they are designed to capture (e.g., distributional balance measures will be sen-
sitive to imbalance in the form of shape differences and these may be ignored
by balance measures that focus on the first two moments (see Diamond and
Sekhon (2013: pg. 934) and Huber (2009)).
We build on the results in Diamond and Sekhon (2013) by showing that

GenMatch, like other genetic algorithms, is sensitive to the choice of fitness
function. Since the fitness function is defined by the balance measure, variation
in performance as a result of variation in balance measures should be expected.
Kinnear (1994; pg. 9), explains that genetic algorithm will “ruthlessly exploit”
all subtle defects in the fitness function and this is why it is important for the
fitness function to concisely reflect the intention of the optimization process.
Therefore, variation in the form of imbalance that is captured by different bal-
ance measures may result in differences in matching results. In contrast to
existing studies, this study, hence, fixes the matching method and explore the
variation in Bias and RMSE across balance measures.

2.1 Genetic Matching

GenMatch performs multivariate (or univariate) matching using an evolutionary
search algorithm. GenMatch is a non-parametric approach and does not depend
on the estimation of propensity scores. The method seeks to maximise covariate
balance by finding covariate weights that optimize balance. This is achieved
by optimising a user-specified fitness function, which is, in turn, a function of
some balance measure. In general, the aim is to optimize balance as much as
possible rather than using a stopping rule (i.e., critical value in a statistical test).
Diamond and Sekhon (2013) argue that this method helps to address some of the
limitations of popular matching procedures such as the Mahalanobis distance
and propensity score matching. Genmatch can be thought of as a generalisation
of the Mahalanobis metric to include an additional weight matrix:

d (wi, wj) =

{
(wi − wj)

′ (
S−1/2

)′
M S−

1
2 (wi − wj)

}1/2
(1)

where wi is a vector of covariates for individual i, M is a t x t positive definite
weight matrix and S

1
2 is the Cholesky decomposition of the variance-covariance

matrix of the covariates (X). The goal is to find the weight matrix M that
achieves the best balance when the distance produced by d (wi, wj) is used to
match observations in the sample. GenMatch searches for the best balance
possible by generating random solutions (i.e., it generates a number of random
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weight matricesM 3). These solutions are then used to estimate Equation (1),
and for each solution, balance is checked in the matched sample produced by
using the distance d (wi, wj). A solution that arises from weight matrix Mi is
preferred to another solutionM j , if Mi produces more balance in the matched
sample according to the fitness function supplied by the user4 . The default fit-
ness function optimizes balance using lexical optimization. This approach sorts
the balance statistics (from all covariates) from the most discrepant to the least.
The algorithm then aims to optimize the first, second, third . . . , nth component.
If multiple sets of weights (M) result in the same maximum discrepancy, the
second-largest discrepancy is examined to choose the best weight. This process
continues iteratively until all ties are broken (Sekhon, 2011). After assessing
balance and ranking the solutions in the first population according to their fit-
ness values, a new population of solutions is formed. This is done using genetic
operations: mutation, crossover, and selection. These operators work on one or
more current trial solutions to produce one or more trial solutions in the new
population5 . The new population is then assessed and ranked using their fitness
values. This process continues until the balance can no longer be improved. We
refer interested readers to Diamond and Sekhon (2013) for a detailed discussion
on how GenMatch works.

2.2 Choice of balance measure

Ideally, imbalance should be thought of in terms of differences in the joint densi-
ties of covariates across treatment arms (Iacus et al., 2012). However, in applied
studies, balance is often assessed in univariate densities of covariates. The prac-
tice of comparing univariate densities may be informed by the expectation that,
if all the univariate densities are balanced, then the joint density will also be
balanced.
In the applied literature, balance often refers to identical first moments of

covariates in the two treatment arms. This is often accomplished by a t-test of
difference in means. However, Imai et al. (2008) suggest that rather than limit
the comparison to the first moment, one can compare higher-order moments of
baseline covariates. The standard deviation of covariates can be compared (in
addition to the mean) in assessing balance (as in the standardized difference
in means). What this suggests is that, by comparing variance and means, one
can obtain a broader description of balance, which is especially important for
continuous covariates (Austin, 2009).
There are other proposals in the literature that go beyond the Mean and

3This number is called population size in Genetic Algorithm.
4This fitness function can be to minimize the mean of the balance statistics across all

covariates or perform lexical optimization (see Diamond and Sekhon, 2013).
5Selection gives preference to improve the solution to make it into the next generation of

solutions (or the offspring population). Crossover combines two or more current solutions
to form a new solution (offspring in the new population). Mutation is used to encourage
diversity amongst solutions. This is achieved by changing parts of a candidate solution in the
current population randomly to produce new solutions. See Mabane and Sekhon (2011) for
more details.
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Variance in assessing balance. One can speculate that the distributional mea-
sures of balance may be more appropriate since they are more in line with
what one would expect randomization to achieve (i.e., balance in distribution).
Austin (2009) and Huber (2009), among others, suggest comparing quantiles
of the covariate distributions to allow for a broader description of balance in
continuous variables. Other proposals include side-by-side box plots (Hoaglin
et al., 1983), empirical cumulative distribution functions (Casella and Berger,
2002; Austin, 2009), quantile-quantile plots (Imai et al., 2008; Ho et al., 2007),
non-parametric density functions (Austin, 2009), the Kolmogorov Smirnov (KS)
test/statistic (Belitser et al. (2011); Diamond and Sekhon (2013); Huber (2009)
and the entropic distance metric (Oyenubi, 2018). What these measures have in
common is that they can provide a broader description of balance relative to the
first two moments. However, as noted by Oyenubi (2018), these distributional
measures differ in their usability and performance. Apart from the KS statistic
and the entropy measure, the other distributional balance measures involve the
use of subjective assessment of balance (i.e., based on visual inspection), for
example, see the use of kernel densities in Austin (2009). On the other hand,
the KS statistic and the entropy measure provide a summary statistic that can
be used to compare different levels of imbalance.

2.3 Entropic distance metric as a balance measure

One of the main contributions of this paper is to propose a new balance measure
that can be used to assess imbalance for causal inference. The motivation behind
this proposal is to have a balance measure that is sensitive to imbalance in all
moments, or one that is sensitive to all forms of imbalance in the distributions
being compared. To achieve this, we are interested in measures that quantify
the overlap between distributions, or one that quantifies the “distance”between
distributions.
The proposed Entropy measure builds on the idea of comparing non-parametric

density functions (Austin, 2009). However, unlike the application in Austin
(2009; pg. 3100; figure 4) where visual inspection was used, one can summarize
the difference between the kernel densities of covariates using the entropy mea-
sure. This proposal (to use entropy measure as a balance metric) was first put
forward in Oyenubi (2018). The main argument is that since entropy measure
compares (entire) distributions, it provides a broader description of balance.
This argument is similar to the one by Huber (2009) who proposed the use of
non-parametric quantile regression, distribution-free Kolmogorov-Smirnov (KS)
and Cramer-von-Mises-Smirnov (CMS) test statistics to check for differences in
entire distribution. The author argues that restricting balance checks to the
Mean is necessary but not suffi cient.
Entropy measure is the normalization of the Bhattacharya-Matusita-Hellinger

measure of distance between probability distributions. The measure is given by

Sρ=
1

2

∫ ∞
−∞

(
f
1/2
1 − f1/20

)2
dx
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for continuous covariates. For discrete covariates, we have

Sρ=
1

2

∑(
p
1/2
1 − p1/20

)2
where f1 and f0 represent the density of the two distributions being compared
(treatment and control, in our case) and p1 and p0 represent the mass in the
discrete case. The fact that this measure is defined for both discrete and contin-
uous variables (see Maasoumi and Racine (2008)) means that it can be used to
assess balance across different types of variables on the same scale. Therefore,
unlike the default measure under GenMatch that combines p-values of t-test and
KS tests, the entropy measure does not need to use the p-values to facilitate
comparisons.
The metric entropy, Sρ, is a function of the differences between the kernel

density estimate across the support of the distributions being compared. This
means that, apart from picking up imbalance in the conventional sense, it will
also pick up cases where imbalance manifests as thin or no common support
problem (see Lechner & Strittmatter (2019)). Such areas of thin or no support
may increase biases and variances of estimators (e.g. Crump et al, 2009; Khan
and Tamer, 2010). Furthermore, this is in contrast to a measure like the KS
statistic that is based on the maximum distance between cumulative distribution
functions. Certain kinds of imbalance, especially at the tails, may be ignored by
the KS measure because it places all its weight on the largest difference between
cumulative distributions (see Tan et al. (2003); Parizzi and Brcic (2011) and
Kvam and Vidakovic (2007) for a similar argument).
The entropy measure is normalized such that its value ranges between 0 to 1.

Sρ = 0 when the densities overlap completely (i.e., overlap in terms of support
and the density on the support), while Sρ = 1 when the densities don’t share
the same support (i.e., the densities don’t overlap)6 . The greater the value of
Sρ the higher the level of imbalance.

2.4 Balance measures used in this study

To compare the performance of different balance measures under GenMatch, we
use seven popular balance measures namely: a combination of the p-value of
t-tests and KS tests (default balance measure under GenMatch); the mean; the
p-value of the t-test; the standardized difference in means; the KS statistic; the
p-value of the KS statistic; and the proposed entropy distance metric. These
measures range from those that compare only the means of covariates, to those
that compare both Mean and Variance, and those that compare distributions to
assess balance. Another dimension is that the first measure combines two mea-
sures (p-value of t-tests and KS tests) to assess balance, while others optimize
the p-value instead of the measure itself. The implementation of the Entropy

6We do not expect this extreme case in our context because of the common support assump-
tion. However, there may be areas of thin/no support in finite samples which this measure
will be useful picking up.
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measure, and other balance measures used in our simulation, is presented in the
appendix A.

3 Simulation study and results

In this section, the details of the simulation study is presented, and the results
discussed.

3.1 Simulation Study

Monte Carlo studies are useful in examining the small sample properties of
different matching estimators. We use a simulations design that have been used
previously in the literature to assess if the performance of GenMatch varies with
the choice of balance measure.
We use the simulation design of Frolich (2004) (also been used by Busso

et al., (2014)). The author uses a stylised data generating process (DGP),
which may be unrealistic in an empirical setting, to assess the performance of
matching estimators. Frolich’s (2004) simulation is limited by the fact that it
is based on one covariate. However, the design is useful in that it allows for the
manipulation of the shape of the covariate distribution across treatment arms.
Such designs may be, however, harder to simulate in a multivariate setting. This
stylised design has also been criticized by Huber et al, (2013) and Busso et al.
(2014) for being unrealistic. Therefore the interpretation of our results is only
valid in the context of this design.
Since the simulation design is not new, we relegate the presentation of the

design to the appendix (see appendix B). Across all simulations, we estimate the
average treatment effect on the treated (ATT). The treatment effect is homo-
geneous and is set equal to 0. The sample size is 300. The number of iterations
is 500, and population size for each generation of GenMatch is 1000.

3.2 Results

The Bias and RMSE results are shown in Table 1. The Bias is presented in
relative terms (i.e., Bias is presented as the percentage difference relative to
the minimum Bias estimate). Bold zeros (0) indicate that the balance measure
produces the minimum Bias estimate, while the actual minimum Bias is pre-
sented in the last row (i.e. the row labelled ”Min”).7 The raw RMSEs are also
presented.
Simulation 1 has six designs controlled by the parameters (αβ). As we move

from (0.15, 0.17 ) to (0, 3 ) the difference in the shapes of the propensity scores

7 i.e. %Bias =

∣∣∣∣∣∣∣
500∑
i=1

(θ̂−θ)
500

θ

∣∣∣∣∣∣∣ ∗ 100 where θ is the minimum ATT and θ̂ is the estimate of θ

in each iteration of the simulations. The RMS s given by
500∑
i=1

(θ̂−θ)2
500

.
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distributions becomes more extreme (see Table B1 and Figure B1-B6 in Appen-
dix B for the initial balance under each design, the ratio of treatment to control
observations and a sample of the shape of the propensity score distributions
under each design). In other words, balance becomes worse as we move from
(0.15, 0.17 ) to (0, 3 ).
The result presented in Table 1 is for the case where the outcome is lin-

ear and shows that as initial imbalance increase, the minimum Bias (“Min”)
increases and the variance in the performance of balance measures (in terms
of Bias) generally reduce. This implies that the choice of balance measure be-
comes less important as initial imbalance gets worse under this DGP. The result
also shows that there is considerable variation in Bias under different balance
measures. While the variation in Bias does not follow any particular pattern
in terms of a best-performing measure across designs, the RMSE results show
that the entropy measure performs better than other measures under the DGP,
irrespective of design.
Table B2 and B3 in Appendix B presents the result when the outcome is

nonlinear. The results show a clear pattern: the default balance measure (a
combination of p-values of KS statistic and t-test) has the lowest Bias when
initial imbalance is low, and the entropy measure has the lowest Bias for higher
levels of initial balance. The RMSE results show that the entropy measure
dominates other measures across the designs. In all, under this DGP the default
and the proposed entropy measure perform better than competing measures8 .
These results show that the performance of GenMatch varies under differ-

ent balance measures. This is important for the application of this matching
method. For example, Diamond and Sekhon (2013) show that GenMatch per-
forms better than other matching estimators, however, our result shows that this
performance is sensitive to the choice of balance measure. Specifically, under the
stylized DGP considered here, the proposed entropy measure would have out-
performed the default balance measure under GenMatch. We, however, note
that this result cannot be generalized and is only valid under the stylized DGP
considered here.
The full version of this paper (this is a working paper) presents the results

when different balance measures are used under a more realistic DGP. The
result shows that the superior performance of the entropy measure did not
persist under realistic DGPs. Instead, the results suggest that the standardized
difference in means is a robust balance measure across different DGPs.

4 Conclusion

Our results support the hypothesis that the performance of balance measures
vary under GenMatch.

8We note that GenMatch is a pre-processing algorithm. Therefore the resulting estimate
after matching with GenMatch may still be sensitive to the econometric method used to
calculate the treatment effect from the matched data. For example we found the results with
and without bias correction can be very different.
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Giving the variation in our results, one recommendation that can be helpful
is for researchers to incorporate balance measures in Monte Carlo experiments
that are designed to pick the preferred estimator.
Balance is a general word that means different things depending on what

the balance measure is designed to capture. Being mindful of this is useful for
minimizing Bias and MSE for matching estimators.
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Table 1: Simulation Results 

Simulation 1  
% Bias (relative to minimum bias) RMSE 

  

 
(0.15,0.7) (0,1) (0,1.5) (0,2) (0,2.5) (0,3) (0.15,0.7) (0,1) (0,1.5) (0,2) (0,2.5) (0,3) 

  

d 1520.36 191.28 1.96 0.37 0.68 0.41 3.33 7.09 18.68 17.14 17.36 14.16 
  

m 15064.89 2.02 3.79 6.27 4.53 0.00 2.09 3.58 9.18 5.51 3.01 0.79 
  

p 907548.68 2595.88 0.12 0.52 0.00 0.25 86.33 41.39 22.75 17.67 17.09 13.87 
  

s 14990.22 0.00 3.02 4.88 3.50 0.38 2.40 3.21 10.25 7.05 5.79 3.87 
  

KS 3980.80 70.83 10.23 8.84 2.66 0.50 2.06 2.67 5.56 3.28 3.01 2.83 
  

KSp 14484.66 177.41 0.00 0.00 0.68 0.41 10.80 11.66 22.76 17.68 17.36 14.16 
  

e 0.00 145.66 14.44 10.69 4.77 1.07 0.00 0.00 0.00 0.00 0.00 0.00 
  

Min 6x10-6 0.001 0.06 0.111 0.151 0.203 0.049 0.064 0.16 0.215 0.264 0.292 
  

d the default measure (i.e. a combination of the p-values of t-test of mean difference and KS distance); m mean difference; p p-value of t-test of mean difference; s the standardized difference in 

means; KS the KS statistic; KSp p-value of the KS statistic; e entropy distance metric 
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Appendix A 

 

A1.1 Estimating entropic distance by kernel techniques 

In practice, implementing the entropy measure (𝑆𝜌) to compare two distributions involves a 

two-step procedure. First, the densities to be compared,  𝑓1 and 𝑓0 , must be estimated, then the 

distance between the estimated densities is measured. Naturally, any error in estimating the 

densities will filter into the resulting distance measure. Following Granger, et al. (2004), 

Maasoumi & Racine (2008) and Maasoumi & Wang (2012), the kernel density estimates of 𝑓1 

and 𝑓2 will be used so that  

𝑆�̂� =
1

2
∫ (𝑓1̂

1/2
− 𝑓0̂

1/2
 )

2∞

−∞

𝑑𝑥  

where 𝑓1̂
1/2

 𝑎𝑛𝑑 𝑓0̂
1/2

 are kernel density estimates of 𝑓1 and 𝑓0  respectively (Note similar 

expression can be written for the discrete case). To do this, the choice of bandwidth and kernel 

becomes important in making sure that the distance measure in the second step is reliable.  

 The implementation of 𝑆𝜌 in this study follows the implementation in Maasoumi & Wang 

(2012). Like these authors, we use the Gaussian kernel and a robust version of the “normal 

reference rule-of-thumb” bandwidth (= 1.06 min (𝜎,
𝐼𝑄𝑅

1.349
) 𝑛− 

1

5)  where 𝜎 is the standard 

deviation and  𝐼𝑄𝑅 is the interquartile range. We use the “npunitest” in R to implement 𝑆𝜌 

(Racine, 2012). 

A1.2 Other balance measures 

The formulae used to compute the other balance measures are presented below 

 𝑚𝑒𝑎𝑛 = 𝐸(𝑥𝑡) − 𝐸(𝑥𝑐) 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡 𝑡𝑒𝑠𝑡 makes use of the mean statistic, the p-value of the t-test is used 

to assess balance  (this is implemented with the t-test command in R) 
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 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑎𝑛𝑠 =
𝐸(𝑥𝑡)−𝐸(𝑥𝑐)

√(𝑛𝑡−1)𝜎�̂�
2

+(𝑛𝑐−1)𝜎�̂�
2

𝑛𝑡+𝑛𝑐

  

Where 𝑛𝑡 and 𝑛𝑐 represent the  sample size for treatment and control observations and 

𝜎�̂�
2
 and 𝜎�̂�

2
 is the sample variance for the treatment and control samples. This is 

implemented by the command “smd” in the R package MBESS. 

 𝐾𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝑠𝑢𝑝𝑥|𝐹(𝑥𝑡) − 𝐺(𝑥𝑐)|  

Where 𝐹(𝑥𝑡) and 𝐺(𝑥𝑐) represent the cumulative distribution function of the treated 

and control samples. The command “ks.test” in R is used to implement the KS 

statistic 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐾𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 makes use of the KS statistic and p-value is computed 

by Monte Carlo Simulation (as implemented in the R command) 

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑢𝑛𝑑𝑒𝑟 𝐺𝑒𝑛𝑀𝑎𝑡𝑐ℎ combines the p-value of t-test and the KS test 

Appendix B 

B.1.1 Simulation  I  (Frolich (2004)) 

The design consist of two parts. The first part deals with the distribution of propensity scores 

across treatment arms while the second part deals with the specification of the conditional 

expectation of the outcome given the propensity scores. 

The set up can be written as 

𝑌𝑖(𝑇) = 𝑚(𝑍𝑖) + 𝜎𝜀𝑖 … … . (1) 

𝑇𝑖
∗ = 𝛼 + 𝛽𝑍𝑖 − 𝑈𝑖 … … . . (2) 

where  𝑍𝑖 = Λ(√2 ∗ 𝑋𝑖) is a function of a single standard normal covariate 𝑋𝑖, 𝜀𝑖 the error term 

is independent and identically distributed (i.i.d) uniform with mean 0 and variance 1.  𝑋𝑖 and 

𝜀𝑖 are independent. The error term 𝑈𝑖 is i.i.d. uniform and is independent of 𝜀𝑖 and 𝑋𝑖. 𝑇𝑖
∗ is the 
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latent variable that determines treatment status. A unit is in the treatment group if 𝑇𝑖
∗ > 0. 𝛼 

and 𝛽 are parameters that determine the shape of the propensity scores distributions.  

𝑌𝑖(0) and 𝑌𝑖(1) represent the counterfactual outcome under control and treatment respectively, 

lastly, we set 𝜎 = 0.1. By manipulating the values of 𝛼 and 𝛽 one can generate different designs 

for the propensity scores across treatment arms where the propensity score densities are 

denoted by 𝑓𝑝|𝑇=0 and 𝑓𝑝|𝑇=1 for the control and treatment distributions respectively. The true 

propensity score is given by 

𝑝(𝑋𝑖) =  𝛼 + 𝛽 Λ(√2 ∗ 𝑋𝑖) − 𝑈𝑖 … … … (3) 

Frolich (2004) consider a total of thirty DGPs i.e. six specifications of 𝑌𝑖(𝑇) – the outcome 

equation and five designs of 𝑓𝑝|𝑇=0 and 𝑓𝑝|𝑇=1 – the propensity score designs (this is controlled 

by the parameters 𝛼 and 𝛽). In this study, we use twelve DGPs. This consist of two 

specifications of 𝑌𝑖(𝑇) (specification 1 and 6 in Frolich (2004)). These specifications are given 

by  

𝑌𝑖(𝑇) = 𝜃 + 0.15 + 0.7𝑍𝑖  ≡ 𝑚1(𝑍𝑖) … … … (4) 

𝑌𝑖(𝑇) = 𝜃 + 0.4 + 0.25 sin(8𝑍𝑖 − 5) + 0.4 exp[−16(4𝑍𝑖 − 2.5)2] ≡ 𝑚2(𝑍𝑖) … … (5) 

The outcome surface 𝑚1(𝑍𝑖) is linear while 𝑚2(𝑍𝑖) is nonlinear. The motivation behind this 

choice is to check if the performance of the matching estimator varies with the outcome surface. 

We consider 6 propensity score designs corresponding to values  (0.15, 0.17) (0,1) (0,1.5) (0,2) 

(0,2.5) (0,3) for (𝛼, 𝛽) 1.  The support of the propensity score densities is given by (𝛼, 𝛼 + 𝛽), 

therefore to make sure that the support is always in (0,1) we use the rescaled propensity score  

                                                      
1 According to Frolich (2004) 𝛼 shifts the average value of the propensity upwards so that the treated-control 

ratio increase while 𝛽 controls the spread of the propensity score. However, we use a different approach, to 

simulate cases where there are common support (thin and no support problems) problems we found that 

increasing  𝛽 has the same effect of increasing treated-control ratio while also introducing increasing common 

support problem.  
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�̂�(𝑋) =
(𝑝(𝑋𝑖) − 𝛼)

𝛽
… … … (6)  

The first two designs correspond to designs 2 and 1 (respectively) in Frolich (2004). The other 

designs increase the value of 𝛽 in steps of 0.5. Progressively increasing the value of 𝛽 from 1 

to 3 has two effects. First, it increases the control-treated ratio form 1:1 in the first two designs 

to 7:1 in the last design (when 𝛽 =3).  Second, it generates different shapes for 𝑓𝑝|𝑇=0 and 

𝑓𝑝|𝑇=1 such that the imbalance in the propensity score density increases for all balance 

measures.  

B1.2 Set-up of the Simulation 

The important thing about the stylized simulation is that one can manipulate the parameters to 

generate different shapes for the treatment and control distributions. As a consequence, the 

ratio of treatment to control observations change from one design to another. Table B1 shows 

the average balance (before matching) under the different measures for all the designs and the 

average treatment to control ratio. These designs are controlled by setting parameters 𝛼 and 𝛽 

which controls the shape of the distributions across treatment arms. 
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Figure B1: Design 1 

 

Figure B2: Design 2 

 

Figure B3: Design 3 

 

Figure B4: Design 4 

 

Figure B5: Design 5 

 

Figure B6: Design 6 

 

*pX is the propensity score. The red and green lines represent the density for the control and treatment group 

respectively.  
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It is clear from the results in table B1 that imbalance increase across the designs. Figure B1 to 

B6 show a sample of the kernel density estimates under the different designs. Notice that not 

only did the difference in density increase as one move from design1  (with parameter setting 

0.15, 0.7) to design 6 (0,3) the thin / no support problem increase in the same direction. 

We use GenMatch to optimize balance using the DGP described2. Recall that the focus here is 

on univariate matching such as one would have under PSM or when GenMatch reduces to 

PSM. The weight matrix 𝑀 is no longer relevant since there is only one variable to balance. 

All that is important is how the different balance measures guide the optimization algorithm 

towards the optimal point. 

As mentioned in the main text, we set the treatment effect (𝜃) equal to zero, the sample size is 

300 (sample size in Frolich (2004) was 1003). We estimate the treatment effect for 500 samples. 

The population size for the GenMatch is set to 1000 (i.e. each generation of the genetic 

algorithm contain 1000 random solutions). The algorithm stops if there are no improvements 

in balance after two consecutive generations. 

To make sure that the true effect estimate does not vary across designs we focus on the ATT. 

This means treated observation are never dropped in the process of matching but control 

observation can be dropped if dropping them improves balance. If the choice of balance 

measure does not matter the effect estimate under different balance measures should be very 

similar. 

  

                                                      
2 The Stata code to generate the DGP is provided by  Busso et al, (2014) and it is available on the publishers 

website. We merely re-write the code in R. 
3 Note that this choice did not affect our results 
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Table B2: Initial balance and the treated-control ratio 

 Initial balance 

Design 1 2 3 4 5 6 

(𝜶, 𝜷) (15,0.7) (0,1) (0,1.5) (0,2) (0,2.5) (0,3) 

Default #N/A #N/A #N/A #N/A #N/A #N/A 

Mean difference 0.192 0.275 0.359 0.389 0.327 0.419 

p-value of t-test 0.007 0.000 0.000 0.000 0.000 0.000 

Standardized difference 0.796 1.244 1.806 1.918 1.542 1.932 

KS statistic 0.383 0.514 0.688 0.777 0.673 0.874 

p-value of KS statistic 0.013 0.000 0.000 0.000 0.000 0.000 

Entropy 0.079 0.163 0.364 0.473 0.435 0.593 

 
      

Treatment: control ratio 1:1 1:1 2:1 3.5:1 5:1 7:1 

*Default refers to the default balance measures under GenMatch i.e. a combination of the p-value of t-tests 

and the KS test.  

 

 

 

 

Table B2: Bias Estimate (Nonlinear outcome equation) 
 

Bias 

Design 1 2 3 4 5 6 

(𝜶, 𝜷) (0.15,0.7) (0,1) (0,1.5) (0,2) (0,2.5) (0,3) 

Default 0.00 0.00 3709.88 1.46 8.04 14.57 

Mean difference 58.46 43.42 2942.43 1.32 3.96 1.99 

p-value of t-test 1734.61 178.28 4313.87 1.66 7.36 13.34 

Standardized difference 61.72 42.59 3164.11 1.35 5.24 6.41 

KS statistic 28.32 34.55 1562.09 1.06 1.88 4.10 

KS p-value 25.50 5.92 4324.99 1.52 8.04 14.57 

entropy 12.98 21.28 0.00 0.00 0.00 0.00  
      

min Value 0.001 0.004 0.001 0.261 0.204 0.139 
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Table B3: RMSE  Estimate (Nonlinear outcome equation) 
 

RMSE 

Design 1 2 3 4 5 6 

(𝜶, 𝜷) (0.15,0.7) (0,1) (0,1.5) (0,2) (0,2.5) (0,3) 

Default 3.06 6.41 21.61 10.57 18.56 23.42 

Mean difference 1.95 3.36 11.94 4.14 4.42 2.36 

p-value of t-test 33.04 20.34 26.14 10.94 18.24 22.77 

Standardized difference 2.22 3.00 13.06 5.09 7.36 7.61 

KS statistic 1.97 2.51 6.87 2.56 3.69 5.27 

KS p-value 10.15 10.54 26.19 10.90 18.56 23.42 

entropy 0.00 0.00 0.00 0.00 0.00 0.00  
      

min Value 0.050 0.064 0.163 0.315 0.295 0.248 
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