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Abstract

Stunting (low height-for-age) is known to be a good proxy for a child’s
wellbeing. Several studies have suggested that the South African Child
Support Grant (CSG) reduces stunting in benefiting children. However,
all of these studies have estimated the impact of the CSG on the mean of
the height-for-age distribution. This paper investigates how this benefit
varies across the quantiles of the height-for-age distribution.

The result suggests that the positive effect at the mean is driven by
children in the high quantiles and this group of children are more likely
to be girls that did not experience low birth weight at birth. I argue
that the CSG has not been able to address the malnutrition inequality
that disadvantage male children and children born with low birthweight.
The finding in this paper suggests that addressing low birthweight may
potentially increase the impact of CSG across the distribution of height-
for-age score. In the concluding remarks, I discuss how the pregnancy
grant proposal can help mitigate this problem.

Keywords: unconditional cash transfer, child health, causal inference
and nutrition

JEL: I38 H53 C21 D13

1 Introduction

The literature has shown that adequate nutrition is important for children. This
is because nutritional deprivation and malnutrition early in life have long-term
negative consequences on the physical and cognitive development of children
(Delany et al, 2008; Walker et al, 2015). Stunting (low height-for-age) which is
one of the manifestations of malnutrition is associated with poverty and may be
irreversible in older children (Delany et al, 2008)1 . Furthermore, early childhood

∗University of the Witwatersrand, South Africa
1A stand of the literature suggests the possibility of catch up growth (e.g. Zhang. et. al,

(2016))
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stunting is likely to contribute to the intergenerational transmission of poverty
(Grantham-McGregor et al, 2008). Walker et al, (2015) found that children born
to a stunted parent are likely to have a lower score on the cognitive scale, lower
development quotient and are likely to be stunted themselves. These studies
suggest that the impact of stunting continues in the next generation of children.

One way to address poverty, which is a root cause of malnutrition, is through
social transfers such as child support grants (CSG). The South African Child
Support Grant (CSG) has been found to boost child nutrition as measured
by children’s height-for-age (Aguero et al, 2006; Coetzee, 2013 and Grinspun,
2016). However, these studies focus on the impact of the CSG on the mean
of the height-for-age distribution. From the policy perspective, this may be
misleading if the effect of the CSG is heterogeneous across the height-for-age
distribution. In other words, the effect of CSG may vary at different quantiles of
the height-for-age distribution. For example low-birthweight increases the risk
of stunting in children (Rahman et al, 2016; Aryastami et al, 2017), and early
childhood stunting may not be reversible (Duflo, 2003), these taken together
implies that poor children that do not start benefiting from the CSG early may
not record significant improvement in their height-for-age score. The effect of
CSG on stunting for such children may be very different from the effect of CSG
for children that do not experience low birthweight or that start receiving CSG
early even though they experienced low birthweight.

Existing studies on the impact of CSG on height-for-age of children ignore
the role of low birthweight and its differential impact on child health by gender
(see Aguero et al, (2006) and Coetzee, (2013) for example). Whereas, results
from the medical literature suggests that boys show more postnatal complica-
tions as a result of low birthweight. This phenomenon is referred to as the male
disadvantage hypothesis. According to this hypothesis, boys are the weaker
sex and are more sensitive to adverse environmental factors during gestation,
infancy and childhood (Kirchengast & Hartmann, 2009). It is therefore impor-
tant to investigate the effect of these variables (gender and low birthweight)
on the height-for-age of vulnerable children benefiting from the CSG. This in-
formation may assist policymakers to fine-tune the delivery of this policy for
enhanced impact.

Therefore, in this study, I estimate the quantile effects of CSG on its ben-
eficiaries with particular emphasis on the role of gender and low birthweight.
To do this the entropy balancing method (Hainmueller, 2012 & 2013) is used
to balance the first three moments of all the relevant covariates. The weights
that balance the covariates are then used to estimate the unconditional quantile
effect of the CSG.

The results show that children at the top of the height-for-age distribution
are driving the positive result observed at the mean. This result holds even
after controlling for low birthweight. I further investigate if there are differ-
ences between the characteristics of beneficiaries at either end of the outcome
distribution. The result shows that in the distribution of benefiting children,
the bottom quintile contains significantly more boys and children with low birth
weight compared to the top quintile. To investigate gender differences in the
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effect of the CSG the analysis is disaggregated by gender. The result suggests
that CSG has no significant effect on height-for-age for male children. In fact,
all of the significant quantile effects holds only for female children. The im-
plication of this is that inequality in malnutrition that favour the girl child is
not being adequately addressed by the CSG. I discuss a policy recommendation
that could address this trend in the concluding remarks.

The rest of the paper is organized as follows; section 2 discusses the methods
and the data used. Sections 2.1 and 2.2 briefly discuss entropy balancing and
why the unconditional quantile regression is preferred to the conditional quantile
regression in estimating the quantile effects. Section 2.3 discusses the estimation
of the caregiver2 motivation variable, which captures caregivers’ eagerness to
take up CSG while section 2.4 explores the summary of the data used. Section
3 present the results and section 4 discusses the robustness of the results. Finally,
section 5 concludes.

2 Methods and Data

Many studies that have investigated the impact of CSG (in the South African
context) have noted that apart from observed covariates that may confound the
impact estimate of the CSG, caregiver motivation is a key factor (Oyenubi, 2018;
Coetzee, 2011 & 2013). Motivation captures the eagerness of caregivers to take
up the grant. Higher caregiver motivation is therefore associated with a lower
delay in taking up of the grant. This variable is important because it influences
the treatment effect through the length of time (dosage) a child benefits from
the CSG. Those with high motivation and consequently high dosage are likely to
experience more benefit relative to those with low motivation (Oyenubi, 2018).

One problem with controlling for caregiver motivation is that motivation is
unobserved and therefore has to be estimated. To estimate this variable existing
research use delay before applying for CSG to recover caregiver motivation. This
is achieved by modelling the delay as a function of the child’s age and location
(rural versus urban) using censored regression. However, Coetzee (2011 & 2013)
found that when the estimated motivation is included in the set of covariates
under Propensity Score Matching (PSM), it becomes difficult to balance the
distribution of covariates in the binary treatment case. This is because by
construction motivation in the treatment group will be higher than motivation
in the control group since this variable is a function of delay in applying for
the CSG. This observation and the fact that dosage of treatment matters is
the reason why Coetzee (2013) considered the Generalized Propensity Scores
(GPS) in estimating the impact of the CSG. Under the GPS framework, CSG
is seen as a continuous treatment, while this is a valid approach3 , Oyenubi
(2018) argues that instead of relying on PSM balance can be optimized using
Genetic Matching (GenMatch) while still controlling for caregiver motivation in

2The primary caregiver is the person that takes care of the needs of the child without
payment.

3Note that the GPS rules out the quantile treatment approach.
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the binary treatment case. PSM seeks to balance the propensity score density,
however, balance in the propensity score density may not translate into balance
in the other covariates. GenMatch, on the other hand, is a machine learning
approach to optimizing balance. GenMatch directly balances the distribution of
all covariates (including the propensity scores). This approach has been shown
to outperform PSM in terms of mean square error (Diamond and Sekhon, 2013).

Oyenubi (2018)’s result shows that it is possible to balance the distribution
of covariates that includes the estimated motivation variable under a method
that seeks to optimize balance in all covariates rather than the propensity
scores alone. Lack of balance in relevant covariates after matching on estimated
propensity scores may signal misspecification of the propensity score equation
(Caliendo and Kopeinig, 2008).

More recent methods side-line this problem by focusing on balancing the
relevant covariates directly (e.g. Diamond and Sekhon (2013)) or estimating
propensity scores that incorporates the balancing condition (Imai and Ratkovic,
2014). Another strand of the literature views the balancing problem as a cal-
ibration problem (Hainmueller, 2012 & 2013, Chan et al, 2016). Under the
calibration approach, weights are calculated for each unit so that the weighted
treatment and control groups satisfy prespecified balancing conditions. This
approach has also been shown to deliver better performance than the PSM in
terms of mean square error (Hainmueller, 2012).

In this paper, I use entropy balancing method (Hainmueller, 2012 & 2013)
to balance the distribution of covariates including the estimated motivation
variable. This method balances the mean, variance and skewness of the dis-
tribution of covariates. The balancing weights from entropy scheme can be
combined with any estimator that one may wish to use to estimate treatment
effect (Hainmueller, 2012). Therefore, we use the balancing weights to recover
the unconditional quantile effect of the CSG on its beneficiaries.

2.1 Entropy weights

Entropy balancing is a pre-processing procedure that allows researchers to cre-
ate balanced samples for the subsequent estimation of treatment effects (Hain-
mueller, 2012). This is achieved by reweighting the covariate distributions such
that the reweighted data satisfy a set of specified moment conditions. Pre-
processing reduces model dependency for the subsequent analysis of the treat-
ment effects in the pre-processed data using standard methods such as regression
(Abadie and Imbens, 2011). Similar to methods in the survey adjustment litera-
ture (Deming and Stephan 1940; Ireland and Kullback 1968), entropy balancing
is based on a maximum entropy-reweighting scheme. It allows exact balance on
the first, second and possibly higher moments. In this analysis, we use entropy
reweighting to balance the mean, variance and skewness of the covariate dis-
tributions as implemented in Hainmueller (2013). The balancing weights are
such that they satisfy the specified balancing conditions and remains as close
as possible to uniform base weights to prevent loss of information and retain
efficiency.
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At the mean, we are interested in estimating the average treatment effect on
the treated (ATT) given by

ATT = E(Y (1)|D = 1)−E(Y (0)|D = 1) (1)

where D = 0 or 1 represent the treatment status (1 for treated and 0 for con-
trol). Y (1) |D is the outcome given the treatment status. While Y (1) |D = 1
can be estimated from the treated sample, Y (0) |D = 1 is unobserved since it
represents the counterfactual outcome i.e. the outcome of the control observa-
tions had they been treated. Rosenbaum and Rubin (1983) show that assuming
selection on observables and overlap condition is satisfied for all covariates x in
the support of the treatment distribution fx|D=1 we can write

ATT = E(Y (1)|D = 1)−

∫
E(Y |X = x,D = 0)fx|D=1(x)dx ... ... ... (2)

The last term in equation (2) is the covariate-adjusted mean. This requires
adjusting the covariate distribution in the control group so that it is similar to
the covariate distribution in the treatment group. This will make the treatment
indicator orthogonal to the covariates. The second term in equation (2) can be
estimated as

E(Y (0̂)|D = 1) =

∑
{i|D=0} Yiwi∑
{i|D=0}wi

... ... ... (3)

where wi, i = 1, ... ... ..no are the weights that balance the distribution of
covariates across treatment arms and no is the number of control observations.
These weights can be propensity score weights. To estimate ATT using propen-
sity score weights control units receive weights given by

wi =
p̂(xi)

1− p̂(xi)

where p̂(xi) is the propensity score. As mention earlier, the main problem
with this approach is that the equation that estimate p̂(xi) is unknown and
can be mis-specified. When this happens, the weights will not balance the
distribution of covariates and this will bias the treatment effect estimate.

Under entropy balancing, the weights are estimated by minimizing the en-
tropy distance metric

min
wi

H(w) =
∑

{i|D=0}

wi log

[
wi
qi

]
... ... ... (4)

subject to balancing and normalizing constraints
∑

{i|D=0}

wicri(X) = mr... ... ... (5)

∑

{i|D=0}

wi = 1... ... ... (6)
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with r ∈ 1, .....R and wi ≥ 1 for all i

qi = 1/n0 is the base weights, cri (X) = mr describes the set of R balance
constraints imposed on the moments of the reweighted control group. The
entropy balancing scheme then searches for a set of weights W = (w1, ... ...
..., wn0) that minimizes equation (4) subject to the balancing and normalizing
constraints of equations (5 and 6). Details of the numerical implementation can
be found in Hainmueller (2013).

2.2 Conditional versus unconditional quantile effects

The weights recovered from the optimization in the previous section can be used
to estimate the ATT but it can also be used to recover the unconditional quan-
tile effects (since these estimators are based on regression equations). Another
alternative is to use them to recover the conditional quantile effect estimates,
which are defined conditionally on the value of the regressors. Unconditional
quantile estimates, on the other hand, are independent of the values of the co-
variates. For example, if we are interested in a low quantile, conditional quantile
effect will summarize the effect for individuals with a relatively low height-for-
age score in each included covariate class even if their absolute height-for-age
score is high. The unconditional effect, on the other hand, will estimate the
effect for observations with a relatively low absolute height-for-age score. This
is important for the interpretation of the quantile results. Unconditional quan-
tile effect summarizes the effect of treatment for the entire population; they
represent the difference between unconditional quantile of the treated outcome
and the non-treated outcome for the population of interest. Therefore, they are
often of interest to policymakers because of the ease of interpretation (Frolich
and Melly, 2008). This is in contrast to conditional quantile effects that change
with the set of conditioning variables.

The distinction between conditional and unconditional quantile effects is
also important if we are interested in who seats where in the outcome distri-
bution. Conditional effects may change the placement of individuals in the
outcome distribution based on the included covariates while individuals retain
their placement in the unconditional quantile. Therefore, with the uncondi-
tional quantile effect, one can find out who the gainers and the losers are based
on their quantiles.

For the quantile effect, I use the unconditional quantile estimator of Firpo
et al, (2009). The method involves estimating the RIF (Regression Influence
Function) of any distributional functional of interest. Since we are interested in
quantiles the RIF is given by

RIF (Yi; qτ ) = qτ +
τ − 1[Yi < qτ ]

fY (qτ )
(7)

where Yi is the outcome, qτ is the τ thquantile of Yit, 1[Yi < qτ ] is an indicator
variable that denotes when Yi is below qτ and fY (qτ ) is the estimated density
at qτ . The RIF is then regressed on the covariates. In essence, our estimation
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involves including entropy weights in each (quantile) regression to recover the
unconditional quantile effects.

2.3 Estimation of caregiver motivation

The estimation of the unobserved caregiver motivation follows the work of
Oyenubi (2018). Caregiver motivation for the treated observation is estimated
as the number of years between the birthday of the child and the day CSG was
first received for the child. For control observations, the delay is approximated
by the number of years between the birthday of the child and the date the care-
giver applied for the CSG on behalf of the child (where the data is available).
If the date of application is not available or CSG has never been applied for
on behalf of the child, delay is equal to the age of the child. To accommodate
the control observations without data on application date, censored regression
is employed to estimate the expected delay equation. These observations are
regarded as being right censored, with a variable censoring point that is equal to
the age of the child (since an application has not been made for these children
but may be made sometime in the future).

The expected delay is calculated as the ordinary least squares prediction of
the delay as a function of the child’s age, relationship to primary caregiver and
location (rural or urban). The difference between actual and expected delay
is then standardized4 to arrive at a variable that represents the unobserved
variation in caregiver’s motivation to apply for CSG.

2.4 Data

We use the wave 1 data of the National Income Dynamic Study (NIDS). NIDS
is a nationally representative panel data, with the first wave undertaken in 2008.
Eligibility for CSG is determined by age and a means test5 as it was applied
in 2008. The age and means test conditions are used to identify children who
should benefit from CSG. The treatment group is defined in two ways. In the
first sample (Sample 1), the treatment group consists of children for whom CSG
is being received currently. Note that this excludes children who are living in a
household where another child is benefiting from CSG (these children will belong
to the control group along with eligible children in non-benefiting households).
In the second sample (sample 2), a child is assigned to the treatment group if
it is indicated that the CSG is currently being received for the child or another
child who lives in the household (similar to Coetzee (2011) & Oyenubi (2018)).
Control group for Sample 2 consists only of children in eligible households that
are not receiving the CSG. We use the second sample to check the robustness of
the result in the first sample since the definition of a household in NIDS survey

4Calculated as delay minus mean of delay over standard deviation of delay.
5At the time of the NIDS 2008 survey a caregiver (who does not have to be a family

member of the child) must have a monthly income below R800 in urban areas or R1,100 in
rural areas (see Coetzee (2011)).
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required that members of a household share food from a common source6 .
We restrict the sample to only black children since they are the majority in

the population and genetic factors may affect the height-for-age score of children
differently across all race groups. Table 1 presents the summary statistics for
sample 1. Caregivers of benefiting children delay for about 2 years on average
before assessing the grant while caregivers of eligible non-benefiting children
delay for around 7 years on average. The implication of this is that motivation
is significantly higher in the treatment group compared to the control group.
However even in the treated group, the average delay is relatively high because
stunting does not change rapidly, and it may be irreversible in children older
than two years (Cogill, 2003).

On average, there are significant differences at the mean for most of the
covariates. Included variables include caregiver characteristics; marital status,
employment status, caregiver years of education, age, health-seeking behaviour
in form of the number of times the child has visited the hospital in the last 12
months7 and the relationship of the primary caregiver to the child. Household
characteristics; household location (rural or urban), type of dwelling (informal
or otherwise), the gender of head of household, availability of electricity, water,
telephone, toilet and household food expenditure per adult equivalent8 . Child
characteristics; gender and age of the child. Table A1 in the appendix presents
the summary statistics for sample 2. The differences across groups are similar.

3 Results

We start from the mean estimate of CSG on height-for-age. Table 2 presents
the summary statistics after applying entropy weights.

Note that birth weight is excluded from this analysis9 . The result shows that
the entropy method balances the mean, variance and skewness of all variables
as required. Columns 1 and 2 of table 3 show the treatment effect for samples
1 and 2.

At the mean, the treatment effects are 24% and 19% of standard deviation
for samples 1 and 2 respectively. These effects are significant at 1% and 10%
for samples 1 and 2 respectively. Note that we include other covariates (i.e.
covariates listed in table 2) in this regression for efficiency but the results are
not shown in the table since our focus is on the effect of the CSG. These results
indicate that the CSG has a positive effect on height-for-age at the mean. It
also shows that the effect in sample 1 is stronger than the effect in sample 2,
suggesting that caregivers might be favouring the children for whom the CSG is
received even though households tend to pool resources. However, this may also

6See “http://www.nids.uct.ac.za/documentation/faqs/data-about-nids”
7We use a dummy variable for this. The variable is equal to 1 ids the child never visited

the hospital in the last 12 months and 0 otherwise.
8Food expenditure per adult equivalent scale (AES)=
9We add indicator for low birthweight in subsequent analysis to isolate its relationship with

height-for-age after accounting for the effect of the treatment.
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be an artefact of the fewer observations in sample 2. Either way at the mean,
the effect of CSG is significant across samples.

We now turn to the question of heterogeneity of the effect of the CSG
across the height-for-age distribution. Figure 1 shows the unconditional quan-
tile treatment effects using RIF regressions (note that the quantile regressions
were weighted by the entropy weights). The results10 show that children at the
high quantiles of the height-for-age distribution drive the positive effect at the
mean.

A significant positive effect of about 50% of standard deviation exists at the
highest quantiles while there is no significant effect for children below the 40th
quantile of the height-for-age distribution.

The implication of this result is that the mean effect does not apply to all
children that are receiving the CSG. Children with high height-for-age score
benefit more from CSG than those with low height-for-age score.

One can argue that policymakers will be more interested in making a differ-
ence for children at the lower quantiles since they are more likely to be stunted.
We note that children at the 20th centile of the unconditional outcome distrib-
ution have a height-for-age score of about -2 standard deviations11 , this means
children below the 20th centile are actually stunted and receipt of the CSG does
not appear to improve this condition.

One could look at this dynamics across the height-for-age distribution in a
number of ways. This could be the effect differences in the motivation of care-
givers at different parts of the height-for-age distribution. If this is the case
then there should be a significant difference in the motivation of caregivers of
children at low (unconditional) quantiles relative to those at higher (uncon-
ditional) quantiles. Another plausible explanation is that children at the low
quantiles may have experienced low birthweight and have not recovered from
it even though they are getting better nutrients (relative to non-beneficiaries)
because of the CSG. If this is the case then low birthweight should have a neg-
ative sign and be significant when included in the regression shown in columns
1 and 2. It could also be some combination of these two effects.

To examine the second proposition (low birthweight at low quantiles) we
include a dummy variable that indicates low birthweight12 in the regression
shown in columns 1 and 2 of table 3. The result is shown in columns 3 and 4 of
table 3. The CSG treatment effect increased in both samples to 25% and 22% of
the standard deviation in samples 1 and 2 respectively, this effect is significant
at the 1% level. More importantly, low birth weight has a negative sign and
is significant in explaining variation in height-for-age scores. In sample 1, low
birth weight is associated with a reduction of 45% of standard deviation in the
outcome variable, while in sample 2 it is associated with a reduction of 75%
of standard deviation. This means that after accounting for the effect of the

10The treatment effect is also estimated using conditional quantile estimator. The result is
presented in figure 1A of the appendix.

11Stunting is defined as height-for-age score less than -2 standard deviations of World Health
Organization’s reference standard.

12A child is born with low birthweight if the weight of the child at birth is below 2.5kg
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CSG, low birthweight explains significant variation in the height-for-age score.
The difference in effect in the two samples also suggests that the effect of low
birthweight is stronger in eligible households that are not benefiting from CSG
(sample 2). Note that the inclusion of low birthweight indicator did not change
the result in figure 1. The quantile results that include low birthweight indicator
is shown in figure A2 of the appendix and it shows a similar pattern to figure 1
(i.e. quantile effects without low birthweight).

In terms of the first proposition: motivation differs for children at low and
high quantiles. I exploit the fact that the effects are not conditioned on covari-
ates. This means that children’s placement in the height-for-age distribution
does not change during estimation. In other words, those with high values of
height-for-age are the ones experiencing significant positive effect and children
with low values of height-for-age are the ones not experiencing significant benefit
relative to eligible non-beneficiaries. This means the (unconditional) outcome
distribution of treated observations can be divided into quintiles to examine if
there are differences in the covariates of children at either end of the height-for-
age distribution (i.e. the first and fifth quintile). The result is shown in table 4.
Although the result shows that on average children in quintile 5 have caregivers
with higher motivation than children in quintile 1, the difference in caregiver
motivation is not significant. This suggests that the significant effect at the
high quantiles may not be due to the difference between caregivers’ motivation
at different parts of the outcome distribution.

The result also shows that children in quintile 5 are more likely to have
older, married and more educated caregivers who live in a rural area and are
more likely to be the child’s father or mother. They are more likely to live in
a male-headed household that has a toilet, is without electricity13 and spends
more on food per adult equivalent. However, like motivation, all these differences
are not significant.

Covariate differences that are significant include the child’s gender, availabil-
ity of water, access to telephone and low birthweight. The first quintile has a
higher percentage of children (4% higher) that experienced low birthweight rela-
tive to the fifth quintile. Given that low birthweight is associated with stunting
(Espo et al, 2002; Rahman et al, 2016; Aryastami et al, 2017), and children that
experience stunting early in life may not recover from it (Delany et al, 2008),
birthweight at the low quintile may be a factor driving the non-significant effect
at the lower quantiles14 . Since all of the variables that show significant differ-
ence are dummy variables, differences at the mean will suffice to describe the
difference between the two quantiles. However, the cumulative distribution of
the (raw) birthweights is provided in the appendix (Figure A3) and it shows
that the distribution of birthweight for quantile 5 dominates the distribution of
birthweight in quantile 1.

Table 4 throws up a few more possibilities. The fact that quintile 5 children
are more likely to live in households that have access to water suggests that they

13perhaps because they are in rural areas
14The effect of low birthweight may be compounded by the lower motivation at the lower

quantiles.
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are living in cleaner environments than children at the lower quantiles. This is
because stunting captures multiple dimensions of children’s health, development
and the environment where they live (Wamani et al, 2007). There could also
be a gender dimension to the effect. Wamani et al, (2007) noted that boys are
more stunted than girls in Sub-Saharan Africa, similar results have been found
by other studies conducted in African (Espo et al, 2002; Wamani et al, 2004;
Zere and McIntyre, 2003). This observation agrees with the gender entry in
table 4 which shows that the low quintile contains more male children (11%
more) than the high quintile. We, therefore, investigate the gender dimension
in the next section.

3.1 Gender differences in height-for-age score

If stunting is more prevalent in male children than female children, then the
quantile results might be driven by the proportion of male children in the low
quintile. To investigate this we re-estimate the quantile effects by gender while
still controlling for birthweight. The results are shown in figures 2 and 3. CSG
has no significant effect across the height-for-age distribution for male children,
on the other hand, female children above the 40th quantile experience significant
improvement in height-for-age.

This effect increases for female children as we approach the higher quantiles
with the highest effect being about 50% of standard deviation. We note that
this is exactly the dynamics observed in figure 1.

The implication of these results is that the effect in figure 1 is purely driven
by female children. We note that Zere and McIntyre (2003) who used South
African data collected in 1993 noted that there is inequality in height-for-age
across gender that favours the girl child. CSG was introduced in 1998 and has
since expanded in coverage over the years. While one can argue that it has led
to a significant improvement in the wellbeing of benefiting children, our result
suggests that it is not having the expected impact on malnutrition inequality
that favours the girl child.

Even though table 4 shows that male children are more at the lower quantile,
the results in figures 2 and 3 suggest that this is not what is driving the result
at the lower quantiles. CSG has no significant effect on the height-for-age of
children at the lower quantiles irrespective of their gender. Furthermore, at the
high quantiles, only the girls experience a significant benefit.

I then examine the role of low birthweight in the gender-specific regressions
(at the mean). Table 5 shows the effect of low birthweight and CSG on height-
for-age scores by gender. For the boys, there is a significant negative relationship
between low birthweight and the height-for-age scores while the effect of CSG is
not significant. On the other hand, for girls, CSG has a positive and significant
effect on height-for-age while low birth weight is not a significant predictor of
the outcome. Even though the prevalence of low-birthweight is higher among
female children in our sample (57% for girls and 43% for boys) low birth weight
affect the height-for-age of male children significantly while it does not have a
significant relationship with the outcome for female children.
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This is not surprising since the literature on the effect of low birthweight
suggests that it has a more detrimental effect on male compared to female
children (Roy et. al, 2014). Existing literature on the effect of CSG also shows
that receiving CSG early in life significantly boost child height especially for
girls (Grinspun, 2016). These findings suggest that when it comes to the effect
of low birth weight on height-for-age, girls are likely to recover better than boys.
The implication is that a reduction in the prevalence of low birthweight may
unlock a stronger positive effect for the CSG as far as the height-for-age of the
boy child is concerned. This may reduce the inequality in the effect of CSG
observed in figure 1.

4 Robustness

In this section, I examine the robustness of the results. The use of entropy
weights comes with a caveat. The higher the level of imbalance in the covariate
distributions, the further weights have to be adjusted to meet the balancing
constraints (Hainmueller, 2013). In situations where there is limited overlap
across treatment arms, the solution may involve extreme adjustments to the
weights of some control units. Large weights increase the variance of the result-
ing estimate and may create a situation where the analysis relies too heavily on
a small number of highly weighted controls15 . One way to deal with this prob-
lem is to trim the weights. Hainmueller (2013) describes a weight refinement
algorithm that can be implemented by iteratively calling the entropy balance
search algorithm. In each iteration the set of solution weights w∗ is trimmed at
the user specified threshold and passed as a vector of starting weights q (instead
of the uniformly distributed weights) for the subsequent call. The idea behind
this weight refinement algorithm is to lower the variance of the weights.

To implement the algorithm we trim weights by setting weights larger than
the 99 percentile of current weight solution to the value of the weight at the 99
percentile. Then the adjusted set of weights are passed as a vector of starting
weights to the subsequent call of entropy balance. This iterative process reduced
the standard deviation of the weights from 2.1 to 1.7 (after which the variance
of weights stabilized). It also help reduce the value of the maximum weight by
about 60% while still balancing the first three moments of the distribution of
covariates. We then re-estimate the quantile effects with the new set of weights.
The result presented in figure 4 shows that the result if figure 1 is robust to
extreme weights.

5 Conclusion

This paper explores the impact of the CSG beyond the mean to uncover the
dynamics of its effect on the quantiles of the height-for-age distribution. To

15We note that similar problem is shared by many pre-processing methods when matching
with replacement reuses the good controls many times.
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do this we estimate the quantile effect of CSG after balancing the first three
moments of the relevant covariate distributions.

Our result shows that in the combined population of boys and girls, children
above the 40th percentile of the height-for-age distribution drive the significant
positive effect observed at the mean. For children below this threshold, CSG has
no significant effect. We also show that while low birth weight is a significant
correlate of height-for-age the effect of CSG remains in the combined population
even after controlling for low birthweight.

More importantly, we found that the mean and the quantile effects hold
only for female children. For male children, CSG has no significant effect on
height-for-age at the mean or at the quantiles. We argue that this has a lot
to do with low birthweight. Even though the low birthweight is more preva-
lent among female children, its negative effect is stronger in the population of
male children. We also argue that caregiver motivation may be a factor since
nutritional deficiencies in the early stages of life may not be reversible (Duflo,
2003).

The implication of this result is that while it is known that the effect of low
birth weight continues to manifest in the growth of children, in the case of our
sample it seems this effect is stronger for male children. Therefore reducing the
prevalence of low birthweight in general for the beneficiaries of CSG will unlock
more benefit for the CSG in terms of the height-for-age score of benefiting
children. Furthermore, reducing the prevalence of low birthweight for boys, in
particular, may reduce the inequality in malnutrition and boost the effect of the
CSG across the quantiles of the height-for-age distribution.

There is one more possibility that has not been considered in our analysis.
Duflo (2003) found that pension received by grandmothers in South Africa has
a significant effect the girl child while it has no effect on the boy child. If similar
effect exist for the CSG part of the effect can be due to caregiver bias. However,
I believe this is unlikely due to a number of reasons. First, the old age pension is
income for pensioners so the caregiver will feel he/she has freedom to spend it as
he/she feels appropriate. For this grant the possibility that there is preferential
treatment for girls is higher than in the case of the CSG which is attached to
each child. It will at least be harder for a caregiver to receive a grant for one
child and spend more of it on another child because of gender.

One policy proposal that can mitigate the effect of low birthweight is provid-
ing support for women during pregnancy (Chersich, et. al, 2016). The current
practice of providing support only when the child is born limits the effectiveness
of the support. Evidence in the literature and my result suggests that damage
done by maternal deprivation during pregnancy may not be reversed by the
CSG, especially for boys. This policy proposal will also help address the prob-
lem of delay and caregiver motivation to a large extent. If pregnant women are
supported, their children will not lack support in the critical first two years of
life. This will also increase the effect of the CSG on child nutrition and outcome
later in life.
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Table 1: Summary statistics (sample 1) 

 Treatment group Control group   

Variable Mean SD Min Max Mean SD Min Max Mean 
difference 

t stat 

delay years 2.05 2.07 0.00 9.26 7.67 5.39 0.00 16.05 5.612*** (43.78) 

motivation 0.14 1.15 -1.45 4.39 -0.22 0.65 -1.18 3.59 -0.356*** (-10.60) 

employed 0.24 0.43 0.00 1.00 0.24 0.43 0.00 1.00 -0.00412 (-0.28) 

married 0.35 0.48 0.00 1.00 0.41 0.49 0.00 1.00 0.0543** (3.29) 

Primary caregivers edu 7.36 4.38 0.00 19.00 6.10 4.79 0.00 20.00 -1.266*** (-8.16) 

Primary caregivers age 38.16 13.65 14.00 89.00 43.83 17.69 15.00 88.00 5.673*** (10.81) 

HH head gender 0.36 0.48 0.00 1.00 0.35 0.48 0.00 1.00 -0.00964 (-0.59) 

Child’s gender 0.50 0.50 0.00 1.00 0.50 0.50 0.00 1.00 0.000321 (0.02) 

electricity 0.64 0.48 0.00 1.00 0.63 0.48 0.00 1.00 -0.00634 (-0.39) 

water 0.17 0.37 0.00 1.00 0.19 0.39 0.00 1.00 0.0242 (1.87) 

telephone 0.03 0.16 0.00 1.00 0.04 0.19 0.00 1.00 0.00897 (1.51) 

toilet 0.20 0.40 0.00 1.00 0.24 0.43 0.00 1.00 0.0478*** (3.42) 

Food expenditure (AES) 183.92 120.82 4.51 1704.96 195.55 151.87 4.45 1809.98 11.63* (2.54) 

Child’s age 6.64 3.74 0.26 15.25 7.85 5.40 -0.63 16.05 1.204*** (7.89) 

rural 0.74 0.44 0.00 1.00 0.72 0.45 0.00 1.00 -0.0274 (-1.81) 

Child’s relationship to 
grant recipient 

0.74 0.44 0.00 1.00 0.00 0.00 0.00 0.00 -0.743*** (-64.03) 

Informal dwelling 0.08 0.27 0.00 1.00  0.08 0.26 0.00 1.00 -0.00345 (-0.38) 

Hospital visits (No=1) 0.45 0.50 0.00 1.00 0.49 0.50 0.00 1.00 0.0367* (2.15) 

observations 2170 1418 3588  

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 
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Table 2: First three moments before and after entropy balancing 

Entropy weighting 

  Treat   Control             

 mean variance skewness mean variance skewness  

motivation .1414 1.327 .7458 .1413 1.327 .7458  

employed .2429 .184 1.199 .2428 .184 1.2  

married .3521 .2282 .6194 .352 .2283 .6198  

Primary caregivers edu 7.365 19.2 -.2611 7.365 19.2 -.2612  

Primary caregivers age 38.16 186.4 .8362 38.16 186.5 .8362  

HH head gender .3618 .231 .5754 .3617 .231 .5758  

Child’s gender .5046 .2501 -.01843 .5046 .2502 -.01844  

electricity .6373 .2312 -.5713 .6374 .2313 -.5716  

water .1659 .1384 1.796 .1659 .1384 1.797  

telephone .02765 .0269 5.762 .02765 .0269 5.762  

toilet .1959 .1576 1.533 .1958 .1576 1.533  

Food expenditure (AES) 183.9 14598 3.71 183.9 14603 3.71  

Informal dwelling .0788 .07263 3.127 .07878 .07263 3.127  

Hospital visits 0.4535 0.2479 0.187 0.4535 0.2479 0.187 

Note that by definition any difference between the moments are not significant  

 

Table 3: Effect of CSG with and without low birthweight 

Dependent variable 

height-for-age score 

(1) (2) (3) (4) 

     

Treatment (Individual) 0.24***  0.25***  

 (0.07)  (0.07)  

     

     

Treatment (Household)  0.19*  0.22** 

  (0.11)  (0.11) 

Low birthweight   -0.45*** -0.74*** 

   (0.16) (0.24) 

Constant -1.45*** -1.09*** -1.44*** -1.11*** 

 (0.18) (0.31) (0.18) (0.31) 

     

Other covariates included included included included 

Observations 2,837 1,976 2,837 1,976 

R-squared 0.02 0.02 0.02 0.02 
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.  

By other covariates I mean the covariates listed in table 2. 
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Table 4: Covariate difference in the first and last quintile of height-for-age scores for 
benefiting children 

 5
th

 Quintile minus 1
st
 Quintile 

delay years -0.197 (-1.27) 

motivation -0.0664 (-0.79) 

employed 0 (0.00) 

married -0.0440 (-1.21) 

Primary caregivers edu -0.118 (-0.35) 

Primary caregivers age -2.047 (-1.91) 

HH head gender -0.00824 (-0.22) 

Child’s gender 0.114** (3.04) 

electricity 0.0366 (0.99) 

water -0.0811** (-2.84) 

telephone -0.0239* (-2.06) 

toilet -0.00951 (-0.33) 

Food expenditure (AES) -13.09 (-1.53) 

Child’s age -0.216 (-0.77) 

rural 0.0199 (0.62) 

Child’s relationship to grant 
recipient 

0.0404 (1.21) 

Informal dwelling -0.0120  (0.63) 

Low birthweight 0.0433** (2.76) 

Hospital visits -0.0142 (-0.38) 

Observations 702 
 

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 

 

Table 5: Effect of CSG with and without low birthweight (by gender) 

Dependent variable (1) (2) (3) (4) 

height-for-age score Girls  Boys 

     

Treatment(individual) 0.32*** 0.33*** 0.14 0.13 

 (0.09) (0.09) (0.10) (0.10) 

Low birthweight  -0.32  -0.57*** 

  (0.33)  (0.15) 

Constant -1.45*** -1.45*** -1.48*** -1.46*** 

 (0.23) (0.23) (0.24) (0.24) 

     

Observations 1,401 1,401 1,436 1,436 

R-squared 0.03 0.03 0.02 0.03 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

19



Figure 1: Unconditional quantile effect of CSG 

 

 

Figure 2: Unconditional quantile effect of CSG (male children) 
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Figure 3: Unconditional quantile effect of CSG (female children) 

 

 

Figure 4: Unconditional quantile effect of CSG (Trimmed weights) 
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Appendix 
 

Table A1: Summary statistics (sample 2) 

Treatment group Control group   

Variable Mean SD Min Max Mean SD Min Max Mean 
difference 

t stat 

delay years 2.04 2.08 0.00 9.26 7.53 5.19 0.04 15.33 5.479*** (37.24) 

motivation 0.13 1.16 -1.45 4.39 -0.20 0.62 -1.11 3.59 -0.330*** (-7.93) 

employed 0.25 0.44 0.00 1.00 0.25 0.43 0.00 1.00 -0.00659 (-0.36) 

married 0.35 0.48 0.00 1.00 0.41 0.49 0.00 1.00 0.0623** (3.10) 

Primary caregivers edu 7.56 4.34 0.00 19.00 6.30 4.84 0.00 20.00 -1.260*** (-6.69) 

Primary caregivers age 38.11 13.61 14.00 89.00 44.60 18.41 15.00 88.00 6.483*** (10.05) 

HH head gender 0.38 0.48 0.00 1.00 0.36 0.48 0.00 1.00 -0.0199 (-0.99) 

Child’s gender 0.50 0.50 0.00 1.00 0.50 0.50 0.00 1.00 -0.00596 (-0.29) 

electricity 0.66 0.47 0.00 1.00 0.67 0.47 0.00 1.00 0.00903 (0.46) 

water 0.16 0.37 0.00 1.00 0.21 0.41 0.00 1.00 0.0500** (3.11) 

telephone 0.03 0.16 0.00 1.00 0.04 0.19 0.00 1.00 0.0110 (1.51) 

toilet 0.21 0.41 0.00 1.00 0.29 0.45 0.00 1.00 0.0820*** (4.64) 

Food expenditure (AES) 192.57 123.40 4.51 1479.61 213.34 166.13 4.45 1809.98 72.59*** (4.21) 

Child’s age 6.69 3.81 0.26 15.25 7.68 5.19 -0.16 15.33 0.985*** (5.43) 

rural 0.72 0.45 0.00 1.00 0.67 0.47 0.00 1.00 -0.0566** (-2.98) 

Child’s relationship to 
grant recipient 

0.76 0.43 0.00 1.00 0.00 0.00 0.00 0.00 -0.759*** (-53.51) 

Informal dwelling 0.09 0.29 0.00 1.00 0.10 0.30 0.00 1.00 0.00842 (0.70) 

Hospital visit (No=1) 0.45 0.50 0.00 1.00 0.49 0050 0.00 1.00 0.0345 (1.66) 

observations 1596 907 2503 

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001
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Figure A1: Conditional quantile effect of CSG (sample 2) 
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Figure A3: Cumulative distribution of birth weight 
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