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Random Expected Utility Theory with a Continuum of Prizes

Wei Ma�

Abstract

This note generalizes Gul and Pesendorfer’s random expected utility theory, a stochastic re-
formulation of von Neumann-Morgenstern expected utility theory for lotteries over a finite set
of prizes, to the circumstances with a continuum of prizes. Let Œ0; M � denote this continuum
of prizes; assume that each utility function is continuous, let C0Œ0; M � be the set of all utility
functions which vanish at the origin, and define a random utility function to be a finitely addi-
tive probability measure on C0Œ0; M � (associated with an appropriate algebra). It is shown here
that a random choice rule is mixture continuous, monotone, linear, and extreme if, and only if,
the random choice rule maximizes some regular random utility function. To obtain countable
additivity of the random utility function, we further restrict our consideration to those utility
functions that are continuously differentiable on Œ0; M � and vanish at zero. With this restriction,
it is shown that a random choice rule is continuous, monotone, linear, and extreme if, and only
if, it maximizes some regular, countably additive random utility function. This generalization
enables us to make a discussion of risk aversion in the framework of random expected utility
theory.

1 Introduction

A multitude of experimental studies have shown that the behavior of an economic agent is not
consistent with a deterministic utility function, but rather exhibits a certain kind of randomness.
For example, it has been shown in May (1954) that when a subject is asked to reveal his preference
between two objects, say x and y, he may prefer x to y in one occasion, and reverse this preference
by preferring y to x in another. Moreover, Fishburn (1991) shows that an economic agent’s choices
may reveal preference cycles. Hence, x may be chosen over y in one occasion, y over z on another
occasion and z might be chosen of x on yet another occasion. Yet another problem for deterministic
choice behavior is demand theory: aggregate demand data necessitates a model of random choice.
It is obvious that these phenomena are at variation with the fundamental tenet of deterministic
utility theory that an individual preference be a weak order (or at least a preorder).

One may explain the randomness of individual behavior in several different ways. Among
them are variations in tastes, incomplete and varied information on the alternatives, and errors of
optimization by the agent (see for example McFadden (1980)). The first, i.e. variations in tastes, is
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taken by random utility theory. To be more specific let D be a finite set of alternatives and �D.x/

the proportion of a group of individuals who choose x from D. To simplify the exposition we
assume that the subjects involved be observationally indistinguishable, so that �D.x/ represents
the probability of a subject choosing x from D. We shall henceforth call � a random choice rule.
Assume furthermore that the subject be a utility maximizer, so from his behavior of choosing x1

from D, we can deduce his utility function (or taste) u satisfies u.x1/ � u.z/ for all z 2 D. On
the other hand, when he chooses a distinct element x2 from D, we can explain his behavior by
postulating that he has changed his utility function from u to v which satisfies v.x2/ � v.z/ for all
z 2 D.

More formally, let U be a certain set of relevant utility functions and U an appropriate algebra
of subsets of U; then the fundamental question of random utility theory asks whether there exists
on .U;U/ a finitely additive probability measure �, which is customarily called a random utility
function, such that �D.x/ is equal to the �-probability of choosing from U a u that attains its
maximum at x in D for every D. If such a measure exists, we say that the random choice rule �

maximizes the random utility function �.

This question has a long history and its early attempts date back to, for instance, Block and
Marschak (1960), Luce (1958), Thurstone (1927). More recently, further attempts have been made;
among them there are, most notably, Clark (1996), Falmagne (1978), McFadden (2005). These
three theories, when adapted to the domain of decision-making under risk and assuming each indi-
vidual conform with von Neumann-Morgenstern (vNM) expected utility theory, have been shown
in Gul and Pesendorfer (2006b) to be equivalent to the random expected utility theory of Gul and
Pesendorfer (2006a), which, for easier reference, we shall call Gul-Pesendorfer theory.

More specifically, the Gul-Pesendorfer theory deals with decision-making under risk in the
situation with a finite set of prizes; that is, the objects of choice are limited to lotteries over a finite
set of prizes. This however excludes some interesting cases because in most economic models the
prize space for lotteries with monetary prizes and for lotteries over interest rates is not finite. To
cover such cases we shall in this paper take I D Œ0; M � as the set of possible prizes, and define
the lottery as a Borel probability measures on it. The object of the paper is to generalize Gul-
Pesendorfer theory to this situation. Recall that Gul-Pesendorfer theory states that a random choice
rule maximizes some regular random utility function if, and only if, the random choice rule is
monotone, mixture continuous, linear, and extreme; and that by strengthening mixture continuity
to continuity, the resulting random utility function will be countably additive. We shall show in this
paper that these statements are still true even in the case of a continuum of prizes describe above.
As a side benefit, this generalization makes it possible for us to discuss the notion of risk aversion.

The outline of this paper is as follows. In Section 2, we introduce some notations and state
formally the problem under consideration. Section 3 describes the conditions that a RCR should
fulfill in order for it to maximize some regular random utility function, and Section 4 furthers this
investigation by studying under what condition a RCR will maximize a regular, countably additive
random utility function. In Section 5 we define and characterize the notion of risk aversion, and in
Section 6 we make the proofs of all the results stated in the previous sections.
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2 Statement of the Problem

As said in the Introduction, we let I D Œ0; M � denote a set of monetary prizes and B.I/ the Borel
� -algebra of subsets of I. Let X be the space of all probability measures (which will henceforth
be called lotteries) on .I;B.I//; we denote a generic lottery as x; y, etc., and associate with X the
finite-cofinite algebra X, i.e.

X D fB � Xj either B is finite or Bc is finiteg;

where Bc denotes the complement of B in X. Let ˘ be the set of all finitely additive probability
measures on .X;X/. A decision problem is defined to be a finite subset of X; let D be the set of
all decision problems, and we shall denote its generic element as D; D0, etc. A random choice
rule (RCR), denoted by �, is a mapping from D to ˘ ; it specifies for each decision problem the
probability of choosing a lottery in B for each B 2 X. For example, given a decision problem D,
�D.fxg/ denotes the probability of choosing x; for the simplicity of notation we shall write �D.x/

for �D.fxg/. It is natural to require �D.x/ D 0 for every x … D; in other words, we shall require
throughout this paper that �D.D/ D 1 for every D 2 D.

Let U be a set of continuous utility functions on I. We assume that the economic agent behaves
in line with vNM expected utility theory, i.e., for each x 2 X, the utility level it affords is measured
by

ue.x/ D

∫M

0

u.t/dx.t/; where u 2 U: (2.1)

This means that if the agent chooses x from D, then his utility function must be a member of the
set

N.D; x/ D fu 2 Uj ue.x/ � ue.z/; 8z 2 Dg:

Let K� be the set of all N.D; x/’s, i.e. K� D fN.D; x/j x 2 D; D 2 Dg; and let U be the algebra
generated by K�. Then, a random utility function (RUF) is a finitely additive probability measure
on .U;U/.

In the following we shall restrict our consideration to a special kind of RUF’s: regular RUF’s.
Let

N C.D; x/ D fu 2 Uj ue.x/ > ue.z/; 8z 2 DnfxggI

that is, N C.D; x/ is the set of utility functions that have x as the unique maximizer in D. It is
easily seen that N C.D; x/ \ N C.D; y/ D ∅ for any distinct x; y in D. Then a RUF � is regular if

�.[x2DN C.D; x// D 1:

In words, a RUF is regular if the realized utility function has a unique maximizer with �-probability
one. When U D C.I/, the existence of a regular RUF on .U;U/ is given in the Appendix. Our
basic object of study is then given by the following

DEFINITION 2.1 A RCR � maximizes a regular RUF � if �D.x/ D �.N.D; x// for all D 2 D
and x 2 X.

It is useful to note, and this is easily verified because D is finite, that this definition can be
simplified to �D.x/ D �.N.D; x// for all D 2 D and x 2 D. Concerning the relation between a
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RCR and a RUF, we have first the following result (cf. Gul and Pesendorfer (2006a, Theorem 1, p.
126)):

THEOREM 2.1 Every regular RUF has a unique RCR as its maximizer, and every RCR can maxi-
mize at most one regular RUF.

It should be pointed out that this theorem holds valid only if U consists exclusively of contin-
uous functions. In other words, if U is allowed to include discontinuous functions, the theorem
would no longer be valid; for an example see Appendix A.2.1

It is not hard to observe that this theorem does not answer the question whether there exists
for every RCR a regular RUF which has the RCR as its maximizer. This question is the theme of
the next two sections: Section 3 describes the conditions that a RCR should satisfy in order for
it to maximize some RUF, and Section 4 sharpens the conditions of Section 3 to ensure that the
maximized RUF is countably additive.

3 Identification of Random Utility Functions

This section describes the properties that a RCR should satisfy in order to maximize some RUF.
We shall take U to be the set of continuous functions on I which are normalized to be zero at the
origin, that is,

U D fu 2 C.I/ju.0/ D 0g;

where, recall, C.I/ denotes the set of continuous functions on I. We know from functional analysis
that not every pair of lotteries can be separated by an element of U or, in other words, there exist
two lotteries which yield the same level of expected utility for all elements of U. Such lotteries
can be regarded as one and the same, because the only concern of the economic agent is with the
expected utility of a lottery. To describe this formally we shall in Section 6 introduce the notion
of quotient space, of which every element is a set of lotteries that yield the same level of expected
utility for all elements of U and every two distinct elements yield different levels of expected utility
for at least one element of U.

There are four properties to be described, among which the first is concerned with continuity.
To define it we have to introduce topological structures on D and ˘ . Observing that ˘ is simply a
set of probability measures, we can (and shall) associate with it the topology of weak convergence.
For D we impose on it the Hausdorff topology which is generated by the Hausdorff metric

dh.D; D0/ D maxfmax
x2D

min
x02D0

kx � x0
kv; max

x02D0
min
x2D

kx � x0
kvg for any D; D0

2 D;

where k � kv stands for the total variation norm.

With this topological structure on D we can now define the notion of continuity. Recall that for
D; D0 in D and ˛ in Œ0; 1�, ˛D C .1 � ˛/D0 D f˛x C .1 � ˛/x0j x 2 D; x0 2 D0g:

DEFINITION 3.1 The RCR � is said to be mixture continuous if �.˛D C .1 � ˛/D0/ is continuous
in ˛ for all D; D0 in D.

1Thanks for one of the reviewers for pointing this out and providing the example.
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The understanding of this notion of continuity may be facilitated by analogy with the weak con-
tinuity of an individual preference preorder �. Recall that � is said to be weakly continuous if
f˛ 2 Œ0; 1�j ˛x1 C .1 � ˛/x2 � ˛z1 C .1 � ˛/z2g is closed in Œ0; 1� for all xi ; zi , i D 1; 2. It is
then clear that mixture continuity of a RCR can be thought of as a stochastic analogue of the weak
continuity of �.

The second property is that of monotonicity. This property is rather intuitively appealing; it
states that the probability of choosing a certain alternative from a decision problem D should not
be increased with the number of alternatives in D. More formally,

DEFINITION 3.2 The RCR � is monotone if �D0

.x/ � �D.x/ for x 2 D � D0.

The third one is a stochastic analogue of the independence axiom of vNM expected utility
theory. Recall that this axiom states that if an individual prefers x to z, then he should also prefers
˛x C .1 � ˛/y to ˛z C .1 � ˛/y for ˛ 2 .0; 1/ and y 2 X. In probabilistic terms, this means
that the probability of an individual choosing x in D should be the same as the probability of his
choosing ˛x C .1 � ˛/y in ˛D C .1 � ˛/fyg. More formally,

DEFINITION 3.3 The RCR � is linear if for all x 2 D, y 2 X, and ˛ 2 .0; 1/

�˛DC.1�˛/fyg.˛x C .1 � ˛/y/ D �D.x/:

The last one states that only extreme points have a chance to be selected. More formally, let
extD be the set of extreme points of the convex hull of D for any D 2 D; then

DEFINITION 3.4 The RCR � is extreme if �D.extD/ D 1.

Now we can state the main result of this section:

THEOREM 3.1 A RCR is mixture continuous, monotone, linear, and extreme if and only if the
RCR maximizes some regular RUF.

4 Countably Additive Random Utility Function

Recall that a RUF is, by definition, finitely additive. It is desirable, and sometimes even necessary,
to have countable additivity. So this section aims to find out the conditions on a RCR in order for it
to be able to identify a countably additive RUF.

In the case of finite prizes, the work of Gul and Pesendorfer (2006a) reveals that this can be
achieved by strengthening mixture continuity to continuity. This achievement is based (among
others) on the fact that the unit sphere of a finite-dimensional Euclidean space is compact. It is well
known however that the unit sphere of an infinite-dimensional metric space is not compact. For this
reason we shall in this section restrict our consideration to the space of continuously differentiable
functions u on I with u.0/ D 0. Formally we shall take

U D fu 2 C 1.I/j u.0/ D 0g; (4.1)

where, recall, C 1.I/ denotes the space of continuously differentiable functions on I. The restriction
to differentiable utility functions is not only for technical reasons: it has economic content. For
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instance, Nakamura (2015) established that if a risk-averse economic agent exhibits a preference
for small positive risk taking, then his utility function must be differentiable. Here a small positive
risk is a lottery whose expectation is positive and whose support is contained in an interval .��; �/

with � being sufficiently small.

This restriction together with Gul and Pesendorfer’s notion of continuity mentioned above al-
lows us to identify a countably additive RUF. We first recount the formal definition of continuity:

DEFINITION 4.1 A RCR � is said to be continuous if �D is continuous in D for all D 2 D.

Just as mixture continuity, the understanding of continuity may be facilitated by analogy with strong
continuity of an individual preference preorder �. Recall that � is said to be strongly continuous
if xn ! x, yn ! y, and xn � yn, then x � y (see for instance Dubra et al. (2004)). It is clear that
continuity of a RCR can be thought of as a stochastic analogue of the strong continuity of �.

Armed with this concept we can now state

THEOREM 4.1 A RCR is continuous, monotone, linear, and extreme if and only if the RCR max-
imizes some regular, countably additive RUF.

We remark that following the proof of Theorem 2.1, one can demonstrate that the regular,
countably additive RUF that is maximized by a RCR is unique.

5 Risk Aversion

This section studies the notion of risk aversion in the context of random expected utility theory.
We first present two definitions, which are apparently equally intuitive and reasonable, of compar-
ative risk aversion: one in terms of RCR and the other in terms of RUF, and then examine their
relationship. We conclude the section with a discussion of Hilton (1989)’s work.

For convenience of notation we denote the risk-free lottery ıt (the Dirac measure at t 2 I) by
t . Let Dt be the set of decision problems which contain t as an alternative. Assume given two
individuals, 1 and 2, and that individual i is associated with a RCR �i which maximizes a regular,
countably additive RUF �i , i D 1; 2. With random utility theory, it appears reasonable to say that
individual 1 is more risk averse than individual 2 at t 2 .0; M/ if individual 1 always chooses t

from D with a higher probability than individual 2 for any D 2 Dt . Here we consider an open
interval .0; M/ because it seems harmless to assume that any lottery is preferred to 0 and less
preferred to M . Formally,

DEFINITION 5.1 Individual 1 is said to be more risk averse than individual 2 at t 2 .0; M/ if
�D

1 .t/ � �D
2 .t/ for any D 2 Dt .

We proceed to define comparative risk aversion in terms of RUF. Recall that, in the case of
deterministic utility, individual 1 is more risk averse than individual 2 if, and only if, individual 1’s
utility function has a larger Arrow-Pratt measure than that of individual 2. Therefore, with random
utility, it seems equally reasonable to say that individual 1 is more risk averse than individual 2 if it
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is more probable for individual 1 than for individual 2 to realize (or invoke) a utility function with
a larger Arrow-Pratt measure.

To make precise the term “more probable,”let

r.u; t/ D �
u00.t/

u0.t/

be the Arrow-Pratt measure of u 2 U at t . It induces a probability measure on the real line: for any
real number r0,

F t
i .r0/ D �i.A

t.r0//; i D 1; 2; (5.1)

where we have put At.r0/ D fu 2 Ujr.u; t/ � r0g: Assume for the moment that At.r0/ is measur-
able, so that F t

i is well define. Then the term “more probable”can be formalized as F t
1 first-order

stochastically dominating F t
2 . Formally

DEFINITION 5.2 Individual 1 is said to have a greater stochastic coefficient of absolute risk aver-
sion than individual 2 at t 2 .0; M/ if F t

1 first-order stochastically dominates F t
2 .

Although both definitions appear reasonable, it is not easy to establish their equivalence in gen-
eral. For this reason as well as for the reason of establishing the measurability of At.r0/ we shall
restrict our attention to a special set of utility functions, namely, a set U � C 2.I/ of concave func-
tions in which any function is an increasing strictly concave transformation of another function in
it, where, recall, C 2.I/ denotes the set of twice continuously differentiable functions on I. Formally
we define U � C 2.I/ to be the set of concave functions such that

(i) If u 2 U, then any increasing strictly concave transformation of u belongs to U;
(ii) If u; v 2 U, then u is an increasing strictly concave transformation of v, or vice versa.

In particular, U may be so constructed as to contain the set of CARA functions. With this restriction
we claim that

LEMMA 5.1 The set At.r0/ is measurable for all nonnegative r0 and all t 2 .0; M/.

We can now state the main result of this section:

THEOREM 5.1 The following are equivalent:

(i) Individual 1 is more risk averse than individual 2 at t 2 .0; M/;
(ii) Individual 1 has a greater stochastic coefficient of absolute risk aversion than individual 2 at

t 2 .0; M/.

To conclude this section we make a brief discussion of Hilton (1989)’s work. Hilton studied risk
aversion in the framework of random expected utility theory with a discrete2 set of utility functions,
and presented five alternative definitions of comparative risk aversion: one in terms of RCR and
the other four in terms of RUF. He then examined the relationship between the four definitions in
terms of RUF, but without investigating their relationship with the one in terms of RCR. In this
connection, the present section could be viewed as a complement to Hilton (1989)’s work.

2The term “discrete”is not explicitly defined in Hilton (1989); I understand it to mean either finite or countable.
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5.1 Proof of Lemma 5.1 and Theorem 5.1

Let us begin by proving Lemma 5.1. For this fix t; r0, and let

A1 D fu 2 Ujr.u; t/ < r0g; A2 D fu 2 Ujr.u; t/ D r0g; (5.2)

so that At.r0/ D A1 [ A2. It suffices to show the measurability of A1 and A2.

Let us begin with A2. Since in U, any function is an increasing strictly concave transformation
of another, it follows that A2 is a singleton, say A2 D fu0g. Take x0 2 X and consider the
hyperplane

H D fx 2 Xjhu0; xi D hu0; x0ig

Since X associated with the Prokhorov metric is separable, so is H ; let fx1; x2; : : :g be a countable
dense subset of H . Define

Dn D fx2n�1; x2n; yng; n D 1; 2; : : : ;

where yn D
1
2
x2n�1 C

1
2
x2n. It is not hard to see that u0 D \1

nD1N.Dn; yn/, hence that A2 is
measurable.

For the measurability of A1, we note that r0 D 0 implies A1 D ∅, which is trivially measurable.
Now suppose that r0 > 0 and let

Bn D fu 2 Ujr.u; t/ � r0 �
1

n
g; n D 1; 2; : : : ; (5.3)

so that B1 � B2 � B3 � � � � and A1 D [1
nD1Bn. It suffices therefore to show the measurability

of each Bn. Again if Bn D ∅, it is trivially measurable. So assume Bn ¤ ∅ and therefore
there exists an un 2 U such that r.un; t / D r0 � 1=n. Take a nondegenerate zn 2 X such that
un

e .t/ D un
e .zn/, where un

e is as defined in (2.1). Then applying Jensen’s inequality we can conclude
that Bn D N.En; zn/, where En D fzn; tg, and therefore Bn is measurable. This concludes the
proof of Lemma 5.1.

We turn now to the proof of Theorem 5.1. We begin by proving 1 ) 2. Since �i is countably
additive, it is continuous from below. Recall the definition of A1; Bn from above; we have

F t
i .r0/ D �i.A

t.r0// D �i.A1/ D lim
n!1

�i.Bn/;

where the second equality follows from the regularity of �i . Since individual 1 is more risk averse
in terms of RCR than individual 2 at t , it follows that �1.Bn/ � �2.Bn/ for all n, hence that
F t

1 .r0/ � F t
2 .r0/.

We proceed to show 2 ) 1. Take any D 2 Dt and consider N.D; t/. Let

r0 D minfr.u; t/ju 2 N.D; t/g;

hence N.D; t/ D fu 2 Ujr.u; t/ � r0g. We have therefore

�D
i .t/ D �i.N.D; t/ D 1 � F t

i .r0/;

which, along with individual 1 being more risk averse in terms of RUF than individual 2 at t ,
implies �D

1 .t/ � �D
2 .t/.
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6 Proofs

All the proofs of the results stated in the previous sections depend in one way or another on the
structure of the algebra U. We therefore begin with a study of U.

6.1 Structure of the Algebra U

6.1.1 Statement on the Structure

To describe the structure of U we need two notions: semiring and relative interior. Let S be an
arbitrary set; a class A of subsets of S is said to be a semiring, if it contains the empty set and is
closed under finite intersection, and A; B 2 A with A � B implies the existence of a collection
of disjoint set C1; : : : ; Cn in A such that BnA D C1 [ � � � [ Cn. For more details we refer to, for
instance, Billingsley (1995).

To define the notion of relative interior we let V be a vector space over the real numbers R.
At this juncture, it is also appropriate to introduce some concepts that, although irrelevant to the
definition of relative interior, will prove useful in a little while. Given v1; : : : ; vn 2 V and v DPn

iD1 ˛ivi , v is called a linear combination of v1; : : : ; vn if every ˛i is a real number; a positive
combination if every ˛i � 0; an affine combination if

Pn
iD1 ˛i D 1; a convex combination ifPn

iD1 ˛i D 1 and every ˛i � 0. For any subset A of V , the linear space (affine space, convex cone,
convex hull), denoted by span.A/ (aff.A/, pos.A/, conv.A/), generated by A is the set of all linear
(affine, positive, convex) combinations of elements in A. Let extA be the set of extreme points of
conv.A/. A polytope is the convex hull generated by a finite subset of V . A set A is called a cone if
A D pos.A/. A subset of V is said to be full-dimensional if it is not contained in any hyperplane of
V . The relative interior of A, denoted by riA, is the interior of A in the relative topology of aff.A/.

We endow C.I/ with the weak topology and U the relative topology. The structure of U is
described in the following proposition (cf. Gul and Pesendorfer (op. cit., Proposition 6)):

PROPOSITION 1 Let H D friKj K 2 K�g [ f∅g. Then (i) H is a semiring;
(ii) U D f[n

iD1Hi j Hi 2 H; i; n D 1; 2; : : :g.

To prove this proposition we shall establish a series of auxiliary lemmas, which are infinite-dimensional
analogues of the results in Appendix A of Gul and Pesendorfer (ibid.). The general principle in ex-
tending Gul and Pesendorfer’s results is the following. Recall that Gul and Pesendorfer (2006a)
studied random expected utility theory in the context of the n-dimensional Euclidean space and
distinguished between two types of sets: sets of dimension n and sets of dimension less than n.
These two types of sets can be seen from a more general viewpoint: full-dimensional sets and
non-full-dimensional sets, which applies not only to finite-dimension space but also to infinite-
dimensional space. We shall show that Gul and Pesendorfer (2006a)’s arguments still hold true in
C Œ0; M� if one replaces a set of dimension n with a full-dimensional set and a set of dimension less
than n with a non-full-dimensional set. But to begin with, let us recount some functional-theoretic
preliminaries.
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6.1.2 Functional-theoretic Preliminaries

Recall that C.I/ is the set of all continuous functions on I; it becomes a Banach space when asso-
ciated with the supremum norm

kuk D max
x2Œ0;M�

ju.t/j for u 2 C.I/:

Let ca.I/ be the space of Radon measures on B.I/. Given u in C.I/ and x in ca.I/, we define on
C.I/ � ca.I/ a bilinear form

hu; xi D

∫M

0

u.t/dx.t/: (6.1)

Concerning the lower limit of the integral, we remark that to avoid extra symbolism, the symbol, 0,
will be used to denote either the origin of C.I/, or that of ca.I/, or the number zero, and the context
is supposed to make clear what it indicates indeed.

As has been seen in Sections 3 and 4, we have to deal with two different sets of utility functions.
To distinguish them let

U1 D fu 2 C.I/j u.0/ D 0g; U2 D fu 2 C 1.I/j u.0/ D 0g: (6.2)

The following notion from Aliprantis and Border (1999, p. 211), is of fundamental importance to
the development that follows:

DEFINITION 6.1 A dual pair is a pair .V; V 0/ of vector spaces together with a bilinear functional
.v; v0/ ! hv; v0i from V � V 0 to R that separates the points of V and V 0. That is,

(i) The mapping v0 ! hv; v0i is linear for every v 2 V ;
(ii) The mapping v ! hv; v0i is linear for every v0 2 V 0;

(iii) If hv; v0i D 0 for every v0 2 V 0, then v D 0;
(iv) If hv; v0i D 0 for every v 2 V , then v0 D 0

According to Aliprantis and Border (op. cit., pp. 211-212), .C.I/; ca.I// is a dual pair, and by
putting on ca.I/ the weak* topology, C.I/ and ca.I/ become weakly dual to each other, and they
are both locally convex Hausdorff spaces. This fact can be thought of as an infinite-dimensional
analogue of the fact that the finite-dimensional Euclidean space Rn is self-dual. Now we have to
establish a similar fact for Ui , i.e., to find a subset QXi of ca.I/ such that .Ui ; QXi/ is a dual pair.

We shall do this for U2 only, as a similar yet easier procedure applies also to U1. To begin
with, recall that k � kv denotes the total variation norm on ca.I/. We first study the continuity of the
bilinear form (6.1) with respect to this norm:

LEMMA 6.1 For any u 2 U2, hu; xi is continuous in x with respect to the total variation norm.3

Proof. To prove this we begin with some preliminaries. Recall that for each x 2 ca.I/ there exist
two positive Radon measures xC; x� such that x D xC � x�, and any positive Radon measure z

induces on Œ0; M � a real-valued function, that is, its decumulative distribution function:

Gz.t/ D x..t; M �/:

3This result must be available in the literature, but I fail to find out a reference.
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With its aid, we define Gx D GxC �Gx� for any x 2 ca.I/. Let xn ! x in the total variation norm,
so that

∫M

0
jGxn

.t/ � Gx.t/jdt ! 0 as n ! 1: By Hirsch and Lacombe (1999, Theorem 3.8 and
Exercise 14.b) we have∫M

0

u.t/dz.t/ D �

∫M

0

u.t/dGz.t/ D

∫M

0

Gz.t/ Pu.t/dt:

It follows that

jhu; xni � hu; xij D

ˇ̌̌̌
ˇ∫M

0

.Gxn
.t/ � Gx.t// Pu.t/dt

ˇ̌̌̌
ˇ

�

∫M

0

jGxn
.t/ � Gx.t/j j Pu.t/jdt

� k Puk

∫M

0

jGxn
.t/ � Gx.t/j dt ! 0:

This means that hu; xi is continuous in x, and the proof is thus completed.

Let U?
2 D fx 2 ca.I/j hu; xi D 0 for all u 2 U2g; it is, as a consequence of Lemma 6.1, a

closed subspace of ca.I/. Let QX2 D ca.I/=U?
2 be the quotient space (for its definition see Conway

(1990, Section III.4, p. 73)). For each x 2 ca.I/ let Œx� D x C U?
2 , so that Œx� 2 QX2. There are

several points to be noted here. The first is about the norm on QX2: Set

kŒx�kv D inffkx C zkvj z 2 U?
2 g:

Since U?
2 is closed, kŒx�kv is, according to Conway (ibid.), a norm on QX2. The second is about the

bilinear form on QX2: for u 2 U2 and x0 2 Œx�, we may suppose x0 D x C z for some z 2 U?
2 ;

then noting that hu; zi D 0, we have hu; x0i D hu; x C zi D hu; xi: Based on this fact we can
unambiguously define hu; Œx�i D hu; xi for all Œx� 2 QX2. For its continuity we claim that

LEMMA 6.2 For any u 2 U2, hu; Œx�i is continuous with respect to kŒ��kv.

Proof. Suppose kŒxn�kv ! kŒx�kv. This means kŒxn � x�kv ! 0. Since U?
2 is closed, there exists

a zn 2 U?
2 such that kŒxn � x�kv D kxn � x � znkv. Then noting that hu; zni D 0, we have using

Lemma 6.1,

hu; Œxn�i � hu; Œx�i D hu; xn � xi D hu; xn � x � zni ! 0:

This completes the proof.

The third point is about X. For any x; y 2 X with x ¤ y, it is easy to deduce from the definition
of X that Œx� ¤ Œy�, and so by identifying every x 2 X with Œx� we arrive at the inclusion: X � QX2.
The last point is about notation: to reduce cumbersome notation we will write x for Œx� and suppose
x … U?

2 unless x D 0; according to this, we can write, for example, hu; xi for hu; Œx�i and kxkv for
kŒx�kv.

LEMMA 6.3 The triplet, .U2; QX2; h; i/, is a dual pair.

Proof. It is obvious that both U2 and QX2 are vector spaces, and so it remains to show that hu; xi D 0

for all x 2 QX2 implies u D 0, and that hu; xi D 0 for all u 2 U2 implies x D 0. But note that
hu; xi D 0 for all x 2 QX2 implies hu; yi D 0 for all y 2 ca.I/, and so the former is an immediate
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consequence of Corollary 1.2 in IV, �1 of Lang (1993). For the latter, hu; xi D 0 for all u 2 U2

implies x 2 U?
2 , and therefore x 2 Œ0�, which in turn, by our notational convention above, means

that x D 0. This completes the proof.

Then by putting on QX2 the weak* topology, we have that U2 and QX2 are weakly dual to each
other, and they are both locally convex Hausdorff spaces. Likewise, let U?

1 D fx 2 ca.I/j hu; xi D

0 for all u 2 U1g and QX1 D ca.I/=U?
1 . Following the above argument we can establish that

.U1; QX1; h; i/ is a dual pair, and by putting on QX1 the weak* topology, U1 and QX1 become weakly
dual to each other and they are both locally convex Hausdorff spaces. We conclude this subsection
with a notational convention: since the following development holds valid both for .U1; QX1/ and
for .U2; QX2/, we shall henceforth use .U; QX/ to denote either of them.

6.1.3 Lemmas

We begin with the introduction of some further concepts; a reference for them is to Aliprantis and
Border (ibid., p. 197). Given u 2 U, x D .x1; : : : ; xm/ with each xi in QX and m an integer, we
define a vector

hu; xi D .hu; x1i; : : : ; hu; xmi/:

For a real number ˛ (in particular, ˛ D 0), by hu; xi � ˛ we shall mean that hu; xii � ˛ for all
i , and hu; xi � ˛ that hu; xii < ˛ for all i , and hu; xi D ˛ that hu; xii D ˛ for all i . For some
x ¤ 0 in QX and some real number ˛, a set of the form Œx � ˛� D fu 2 Uj hu; xi � ˛g is called a
weak half space in U, and Œx < ˛� D fu 2 Uj hu; xi < ˛g a strict half space; similarly for Œx � ˛�

and Œx > ˛�. A hyperplane, Œx D ˛�, is the intersection of the two weak half spaces, Œx � ˛� and
Œx � ˛�. A polyhedron is the intersection of finitely many weak half spaces.

A subset K of U is said to be a polyhedral cone if it is both a polyhedron and a cone. Let K be
the set of all polyhedral cones of U. It is easily seen that a polyhedral cone must be of the form

K.xI y/ D fu 2 Uj hu; xi D 0; hu; yi � 0g; (6.3)

where x D .x1; : : : ; xm/, y D .y1; : : : ; yn/, with all xi ; yi in QX. Here we make a convention that
in Eq. (6.3), if m D 0, there are inequalities alone, i.e., hu; yi � 0; and if n D 0, then there are
equalities alone, i.e., hu; xi D 0.

The equality and inequality constraints in Eq. (6.3), or the hyperplanes and weak half spaces,
will play a distinct role in the present study, and therefore it is useful to make a distinction between
them. Motivated by this consideration we propose the following

DEFINITION 6.2 Eq. (6.3) is said to be the canonical form of K.xI y/ if K.xI y/ \ Œyi D 0� is a
proper subset of K.xI y/ for i D 1; : : : ; n.

This definition means that if K.xI y/ is of canonical form, then there exists a u 2 K.xI y/ such
that hu; yii < 0 for some yi . We make the convention that unless otherwise stated, by writing
K.xI y/ we shall mean implicitly that it is of canonical form.

Let K D K.xI y/ with x D .x1; : : : ; xm/, y D .y1; : : : ; yn/. Let I D f1; : : : ; ng and P.I/ the
power set of I; for any I1 in P.I/ let Ic

1 be the complement of I1 in I. We define F.K/ to be a

12



subset of K of the form

F.K/ D fu 2 Kj hu; y1i D 0; hu; yc
1i � 0g;

where y1 D .yi/i2I1
and yc

1 D .yi/i2Ic
1

for some I1 in P.I/. It is obvious that F.K/ is also a
polyhedral cone, and it is customarily called in convex analysis a face of K. Let F.K/ be the set of
all such F.K/’s, and note that by taking I1 D ∅, we have K 2 F.K/.

Likewise, a polyhedral cone in QX is a set of the form

fx 2 QXj hu; xi � 0g

for some u D .u1; : : : ; un/ with ui in U. We shall not discuss its canonical form here, simply
because it is irrelevant to the following investigation. Let L be a convex subset of QX; its normal
cone at x0 2 L in U, denoted by N.L; x0/, is defined by

N.L; x0/ D fu 2 Uj hu; xi � hu; x0i for all x 2 Lg:

For D 2 D and x 2 D, by N.D; x/ we shall mean N.conv.D/; x/. Let K� D fN.D; x/j D 2

D; x 2 Dg, i.e., K� is the set of normal cones of D at x for all x 2 D and D 2 D. It is obvious
that N.D; x/ D N.D � fxg; 0/ and K� � K.

LEMMA 6.4 For a polyhedral cone K.xI y/ 2 K its relative interior is given by

riK.xI y/ D fu 2 K.xI y/j hu; yi � 0g:

Proof. Let K D K.xI y/ and y D .y1; : : : ; yn/. We begin with the simplest case of n D 0. In this
case K itself is a linear subspace, so that K D affK, and hence K D riK.

Now suppose n � 1. Let A D fu 2 Uj hu; xi D 0; hu; yi � 0g. We first show that A

is nonempty. For this let X D span.fx1; : : : ; xmg/ and Y D conv.fy1; : : : ; yng/; we claim that
X \ Y D ∅. For otherwise we would have

mX
iD1

˛ixi D

nX
j D1

�j yj ; ˛i 2 R; �j � 0;
X

j

�j D 1:

Since at least one of �j ’s is non-vanishing, we assume for definiteness that �n ¤ 0; there then
follows

y1 D

mX
iD1

˛ixi. if n D 1/; or, �nyn D

mX
iD1

˛ixi �

n�1X
j D1

�j yj . if n � 2/:

Recall that hu; xi D 0 and hu; yi � 0 for all u 2 K.xI y/, and so hu; yni D 0 for all u 2 K.xI y/.
But this contradicts that K.xI y/ is of canonical form, hence X \ Y D ∅. Since QX is Hausdorff,
it follows from Aliprantis and Border (ibid., Corollaries 5.22 and 5.30) that X is closed and Y is
compact, hence from Aliprantis and Border (ibid., Theorem 5.79), that there exists a continuous
linear functional, u, such that

hu; xi > hu; yi; for all x 2 X; y 2 Y: (6.4)

As Y is compact we have hu; yi � ˛ for all y 2 Y and some real number ˛. This along with the
inequality (6.4) and the fact that X is a linear space, implies that u.x/ D 0 for all x 2 X , so that
hu; xi D 0 and hu; yi � 0. Furthermore by Aliprantis and Border (ibid., Theorem 5.93) we have
u 2 U, hence u 2 A. This proves that A is nonempty.

Let U0 D fu 2 Uj hu; xi D 0g. We next show that affK D U0. Since 0 2 K, it follows
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that affK must be a linear space. Noticing that U0 is a linear subspace of U that contains K,
we have affK � U0, as aff.K/ is the smallest affine space containing K. On the other hand, let
B.u0; �/ D fu 2 Uj ku � u0k < �g, where k � k denotes the supremum norm on U. Since A is
nonempty, it follows that there exists an �0 > 0 and a u0 2 A such that ∅ ¤ B.u0; �0/ \ U0 � K.
It is not hard to see that aff.B.u0; �0/ \ U0/ D U0, and so U0 � aff.K/, hence U0 D aff.K/.

From this result we can deduce at once that A � riK. It remains therefore to show the converse:
riK � A. Suppose by way of contradiction that there exists a u1 2 riKnA. This means that
there exist a "1 > 0 and an integer i such that B.u1; "1/ \ U0 � K and hu1; yii D 0. Since
K.xI y/ is of canonical form, it follows that yi is not a linear combination of x1; : : : ; xm, and
hence that according to Aliprantis and Border (ibid., Corollary 5.92), there exists a u2 such that
hu2; xi D 0 and hu2; yii > 0. Based on this we can find an ˛ > 0 sufficiently small such that
˛u2 C u1 2 B.u1; "1/ \ U0 and ˛u2 C u1 … K; but this contradicts B.u1; "1/ \ U0 � K. So
riK � A and thus riK D A. This completes the proof.

LEMMA 6.5 Let K1 D K.x1I y1/; K2 D K.x2I y2/ be two polyhedral cones in K. If riK1\riK2 ¤

∅, then riK1 \ riK2 D ri.K1 \ K2/. (Cf. Rockafellar (1970, Theorem 6.5).)

Proof. Let yt D .yt
1; : : : ; yt

nt
/, t D 1; 2. By Lemma 6.4 we have

riKt D fu 2 Uj hu; xt
i D 0; hu; yt

i � 0g; t D 1; 2:

Since riK1 \ riK2 ¤ ∅, it follows that there exists a u 2 K1 \ K2 but u … Œyt
i D 0�, for all

i D 1; : : : ; nt
t and t D 1; 2. As a reslult, the canonical form of K1 \ K2 must be given by

fu 2 Uj hu; xi D 0; hu; yi � 0g;

where x D .x1; x2/ and y D .y1; y2/. We then have according to Lemma 6.4,

ri.K1 \ K2/ D fu 2 Uj hu; xi D 0; hu; yi � 0g;

and therefore riK1 \ riK2 D ri.K1 \ K2/.

LEMMA 6.6 For any K 2 K, we have (cf. Gul and Pesendorfer (op. cit., Proposition 5)):

(i) riF1 \ riF2 D ∅ for any F1; F2 2 F.K/ with F1 ¤ F2.
(ii) K D

S
F 2F.K/

riF:

Proof. To see statement (i) we let K D K.x; y/ with y D .y1; : : : ; yn/, and take I1; I2 2 P.I/

such that

Fk D fu 2 Kj hu; yki D 0; hu; yc
ki � 0g; k D 1; 2;

where yk D .yi/i2Ik
and yc

k
D .yi/i2Ic

k
. Since F1 ¤ F2, it follows that I1 ¤ I2, hence that there

exists an i 2 I such that either i 2 I1 \ Ic
2 or i 2 Ic

1 \ I2. Since the two cases can be treated
likewise let us take the first; in which we have according to Lemma 6.4,

riF1 � fu 2 Uj hu; yii D 0g;

riF2 � fu 2 Uj hu; yii < 0g;

whence it follows that riF1 \ riF2 D ∅. This completes the proof of statement (i).

As regards statement (ii), it is evident that[
F 2F.K/

riF � K:
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To show the converse we take u 2 K. By the definition of K there must exist an I1 2 P.I/, which
may possibly be empty or just I itself, such that hu; y1i D 0 and hu; yc

1i � 0, where y1 D .yi/i2I1

and yc
1 D .yi/i2Ic

1
. Let

F D fu 2 Kj hu; y1i D 0; hu; yc
1i � 0gI

then u 2 riF . So K �
S

F 2F.K/

riF , and this completes the proof of statement (ii).

The previous lemmas have studied the properties of K; the next one specializes to K� (cf. Gul
and Pesendorfer (ibid., Propositions 1 and 3)):

LEMMA 6.7 (i) The set K� is closed under finite intersection.
(ii) For any K 2 K�, we have F.K/ 2 K�.
(iii) N.D; x/ 2 K� is of full dimension if and only if x 2 extD.

Proof. The validity of statement (i) is an immediate consequence of the observation that for N.Di ; zi/ 2

K�

m\
iD1

N.Di ; zi/ D N.

mX
iD1

1

m
Di ;

mX
iD1

1

m
zi/:

To see statement (ii) let K D N.D; z/ 2 K� with its canonical form given by K.x � z; y � z/,
where x D .x1; : : : ; xm/ and y D .y1; : : : ; yn/ and all xi ; yj 2 D � X. Let F.K/ D fu 2

Kj hu; y1 � zi D 0; hu; yc
1 � zi � 0g; where y1 D .yi/i2I1

and yc
1 D .yi/i2Ic

1
for some I1

in P.I/. To show F.K/ 2 K�, we assume for definiteness and without loss of generality that
I1 D f1; : : : ; kg and Ic

1 D fk C 1; : : : ; ng. Let Nz D
1

kC1
.y1 C � � � C yk C z/, so that Nz 2 X.

Let D1 D fy1; : : : ; yk; z; Nzg, D2 D fykC1; : : : ; yn; zg, so that D1; D2 2 D and N.D1; Nz/ D

fu 2 Uj hu; y1 � zi D 0g, N.D2; z/ D fu 2 Uj hu; yc
1 � zi � 0g. Hence we get F.K/ D

N.D; z/ \ N.D1; Nz/ \ N.D2; z/. From statement (i) we have F.K/ 2 K�.

To see statement (iii) we assume in the first place that x 2 extD. It then follows from Aliprantis
and Border (op. cit., Corollary 7.90) that x is a strongly exposed point of the polytope conv.D/,
which means that hu; zi < hu; xi for some u 2 U and all z 2 Dnfxg. So there exists a neighbor-
hood of u that is contained in N.D; x/. This implies that N.D; x/ has a nonempty interior, hence
is full-dimensional.

We assume in the second place that N.D; x/ is of full dimension, and, by way of contradiction,
that x … extD. This means that x is a convex combination of some points in D, say z1; : : : ; zn, and
consequently N.D; x/ must be contained in the hyperplane Œx � z1 D 0�. But this contradicts that
N.D; x/ is of full dimension. The proof is thus completed.

6.1.4 Proof of Proposition 1

All the preliminary machinery having been developed, the proof of Proposition 1 will proceed quite
swiftly. For statement (i) we take Kt D N.Dt ; zt/ 2 K�, t D 1; 2; let H1 D riK1, H2 D riK2. We
first show that H1\H2 2 H, which is trivially true if H1\H2 D ∅. So suppose that H1\H2 ¤ ∅.
Then, in view of Lemma 6.5, H1 \ H2 D ri.K1 \ K2/; from statement (i) of Lemma 6.7 we have
K1 \ K2 2 K�, hence H1 \ H2 2 H.
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We next show that H2nH1 is the union of a collection of disjoint sets in H. To see this let the
canonical forms of Kt , t D 1; 2 be given by

fu 2 Uj hu; xt
� zti D 0; hu; yt

� zti � 0g;

where xt D .xt
1; : : : ; xt

mt
/ and yt D .yt

1; : : : ; yt
nt

/. We have by reference to Lemma 6.4,

Ht D fu 2 Uj hu; xt
� zti D 0; hu; yt

� zti � 0g:

The complement, H c
1 , of H1 is then the union of a collection of disjoint sets of the following forms

A0 Dfu 2 Uj hu; x1
1 � z1i ¤ 0g; Ak D fu 2 Uj hu; x1

k � z1i D 0; hu; Nzki < 0g; or

B0 Dfu 2 Uj hu; x1
� z1i D 0; hu; z1 � y1

1i � 0g;

Bl Dfu 2 Uj hu; x1
� z1i D 0; hu; y1

l � z1i � 0; hu; z1 � y1
lC1i � 0g;

where x1
1 D .x1

1 ; : : : ; x1
k
/, Nzk D ˙.x1

kC1
� z1/, k D 1; : : : ; m1 � 1, and y1

1 D .y1
1 ; : : : ; y1

l
/,

l D 1; : : : ; n1 � 1.

Let us take Bl , l D 1; : : : ; n1 � 1, for example; a similar but easier argument holds for all other
sets. Let

Bl1 Dfu 2 Bl j hu; z1 � y1
lC1i < 0g;

Bl2 Dfu 2 Bl j hu; z1 � y1
lC1i D 0g;

and therefore Bl D Bl1 [ Bl2. If Bli is empty, then Bli \ H2 2 H, i D 1; 2.

Now suppose that neither of Bli is empty. For Bl1, let K11 D N.E11; z1/, K12 D N.E12; y1
lC1

/,
K13 D N.E13; Qz1/, where E11 D fy1

1 ; : : : ; y1
l
; z1g, E12 D fy1

lC1
; z1g, E13 D fx1

1 ; : : : ; x1
m1

; z1; Qz1g,
and Qz1 D

1
m1C1

.x1
1 C� � �Cx1

m1
Cz1/. Then we have K11; K12; K13 2 K�, and Bl1 D ri.K11\K12\

K13/. If Bl1 \H2 D ∅, then Bl1 \H2 2 H; otherwise Bl1 \H2 D ri.K11 \K12 \K13 \K2/ 2 H.

Similarly, for Bl2, let K21 D K11, K22 D N.E22; Qz2/, K23 D K13, where E22 D fy1
lC1

; z1; Qz2g,
Qz2 D

1
2
y1

lC1
C

1
2
z1. Then we have K21; K22; K23 2 K�, and Bl2 D ri.K21 \ K22 \ K23/. If if

Bl2 \H2 D ∅, then Bl2 \H2 2 H; otherwise Bl1 \H2 D ri.K21 \K22 \K23 \K2/ 2 H. Apply-
ing the above reasoning to all of A0; Ak; B0, we are then able to conclude that H2nH1 D H1 \ H c

1

is the union of a collection of disjoint sets in H. This completes the proof of statement (i).

As regards statement (ii) we first show that U is an algebra. For this it suffices, as H is a
semiring, to show that U 2 U. Take two distinct elements x1; x2 2 X, and set K1 D Œx1 � x2 � 0�,
K2 D Œx1 � x2 � 0�, K3 D Œx1 � x2 D 0�. It is obvious that K1; K2; K3 2 K�. We then have
according to Lemma 6.4, riK1 D Œx1 � x2 < 0�, riK2 D Œx1 � x2 > 0�, riK3 D Œx1 � x2 D 0�,
so that U D riK1 [ riK2 [ riK3, hence U 2 U. And secondly, we show that K� � U. But this is
simply a joint consequence of the second statements of Lemmas 6.6 and 6.7. Finally we show that
U is the smallest algebra containing H; for this we refer the reader to the concluding paragraph of
the proof of Gul and Pesendorfer (op. cit., Proposition 6). This completes the proof of statement
(ii).

6.2 Proof of Theorem 2.1

The proof is essentially the same as that of Theorem 1 of Gul and Pesendorfer (2006a); but we shall
detail it here for the sake of completeness.
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We begin with the first statement: every regular RUF has a unique RCR as its maximizer. To
see this let � be a regular RUF, and we define for every D 2 D and every x 2 D:

�D.x/ D �.N.D; x//:

It is easily seen that if � constitutes a RCR, then it must be the unique one that can maximize �.
Therefore it remains to show that � is a RCR. For this we have but to checkX

x2D

�D.x/ D 1:

Appealing to the regularity of �, we have �D.x/ D �.N C.D; x//; since N C.D; x/\N C.D; y/ D

∅ for any distinct x; y in D, it follows thatX
x2D

�D.x/ D
X
x2D

�.N C.D; x// D �.[x2DN C.D; x/ D 1:

This indicates that � is indeed a RCR, and so the proof of the first statement is completed.

We turn now to the second statement: every RCR can maximize at most one regular RUF. Let �

be a RCR and �; �0 be two regular RUF’s that are maximized at �. We have to show � D �0, that
is, �.A/ D �0.A/ for all A 2 U. According to Proposition 1, there exists for every A 2 U a finite
number of Hi 2 H, i D 1; : : : ; n, such that A D [n

iD1Hi , so it suffices to show that

�.[n
iD1Hi/ D �0.[n

iD1Hi/ for all Hi 2 H; n D 1; 2; : : : : (6.5)

Let us prove this by induction on n. When n D 1, if H1 D ∅, then �.H1/ D �0.H1/ D 0;
otherwise we have, as H1 2 H, H1 D riN.D; x/ for some D 2 D and x 2 D. Since �; �0 are
regular and both maximized at �, it follows that �.H1/ D �0.H1/ D �D.x/. This completes the
proof of the base case.

For the inductive step, suppose that equation (6.5) holds true for n � k, and we have to show
that it also holds for n D k C 1. For notational convenience let B D [k

iD1Hi , C D B \ HkC1. By
the induction hypothesis we have �.B/ D �0.B/ and �.HkC1/ D �0.HkC1/. Moreover, since

C D [
k
iD1.Hi \ HkC1/;

and since H is a semiring, it follows that Hi \ HkC1 2 H for all i D 1; : : : ; k, hence, again by the
induction hypothesis, that �.C / D �0.C /. This implies that �.BnC / D �0.BnC /, �.HkC1nC / D

�0.HkC1nC /. By noting that �.[kC1
iD1 Hi/ D �.BnC / C �.HkC1nC / C �.C /, the inductive step

is completed, hence also the proof of the second statement.

6.3 Proof of Theorem 3.1

We begin with the sufficiency part. Let � be a RCR which maximizes a regular RUF �; we have to
show that � is mixture continuous, monotone, linear, and extreme. The proof is essentially the same
as that of Theorem 2 of Gul and Pesendorfer (2006a), with the checking of the last three properties
exactly the same as the latter, and so we shall here prove but the mixture continuity of �.

To this end take D; D0 2 D and ˛n; ˛ 2 Œ0; 1� with ˛n ! ˛. Recall that ˘ is endowed with the
topology of weak convergence, and so it suffices to show

�.˛nD C .1 � ˛n/D0/ ! �.˛D C .1 � ˛/D0/ in the weak topology: (6.6)

When ˛ 2 .0; 1/, we have for n sufficiently large: N.˛nD C .1 � ˛n/D0; ˛nx C .1 � ˛n/x0/ D
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N.D; x/ \ N.D0; x0/, which means that �.˛nD C .1 � ˛n/D0/ is constant, hence the validity of
statement (6.6).

For ˛ D 0 or 1, the proofs of the two cases are alike, and therefore we shall prove the case
˛ D 0 only. Take any x0 2 D0 and take � > 0 small enough such that B�.x

0/ \ D0 D fx0g. We
split f˛ng into two subsequences: f˛nj ˛n > 0g and f˛nj ˛n D 0g, and it is sufficient to show the
validity of statement (6.6) for each of these two subsequences. Noting that the statement is trivially
true for the second subsequence, it remains to verify its validity for the first one. Without loss of
generality we assume ˛n 2 .0; 1/. Since ˛n ! 0, we can take n to be sufficiently large so that
˛nD C .1 � ˛n/D0 \ B�.x

0/ D ˛nD C .1 � ˛n/fx0g. We have therefore

�˛nDC.1�˛n/D0

.B�.x
0// D

X
x2D

�.N.˛nD C .1 � ˛n/D0; ˛nx C .1 � ˛n/x0//:

Since ˛n 2 .0; 1/ it follows that N.˛nD C .1 � ˛n/D0; ˛nx C .1 � ˛n/x0/ D N.D; x/ \ N.D0; x0/.
This, together with the regularity of �, implies that

�˛nDC.1�˛n/D0

.B�.x
0// D �..

[
x2D

N.D; x// \ N.D0; x0/ D �D0

.x0/;

and therefore � is mixture continuous.

We turn now to the necessity part. Suppose that � is a RCR that is mixture continuous, mono-
tone, linear, and extreme; we intend to show the existence of a regular RUF � that is maximized at
�. To this end, we define for each K D N.D; x/ 2 K�,

�.riK/ D �D.x/ and �.∅/ D 0: (6.7)

To see that � is well defined, we first claim that

LEMMA 6.8 Let A be a finite subset of QX and K D posA. Then K D N.N.K; 0/; 0/.

Proof. (Cf. Schneider (1993, Theorem 1.6.1).) Let L D N.K; 0/. For any x in K, we have
hu; xi � 0 for all u in L, and so x 2 N.L; 0/, hence K � N.L; 0/.

To show the converse we shall show equivalently that z … K implies z … N.L; 0/. For this
take z … K. Since K is weakly* closed (Aliprantis and Border (op. cit., Corollary 5.25)) and the
singleton, fzg, is compact, it follows from Aliprantis and Border (ibid., Theorems 5.79 and 5.93)
that there exists a nonzero continuous linear functional u 2 U such that

hu; xi < hu; zi for all x 2 K:

Remembering that K is a cone with 0 2 K, we must have hu; xi � 0 for all x 2 K and hu; zi > 0.
The former means u 2 L, which, in combination with the latter, implies z … N.L; 0/. It follows
that N.L; 0/ � K, hence K D N.L; 0/. This completes the proof.

By virtue of this lemma, it is not difficult to see that Gul and Pesendorfer (op. cit., Lemma 1)
continues to hold in the current infinite dimensional situation, that is, if � is monotone, linear, and
extreme, then x 2 D, x0 2 D0, and N.D; x/ D N.D0; x0/ implies �D.x/ D �D0

.x0/. It then
follows that Eq. (6.7) is well defined.

We first show that � is a finitely additive probability measure on U. We begin with an obser-
vation. For K D N.D; x/, if K is not full-dimensional (hence intK D ∅), then by statement (iii)
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of Lemma 6.7, x … extD, and therefore, by Eq. (6.7) and the fact that � is extreme, �.riK/ D

�.intK/ D 0; if K is full-dimensional, then riK D intK. In short, we have �.riK/ D �.intK/

for every K 2 K�. From this observation and the argument of Gul and Pesendorfer (ibid., pp. 140-
142), it follows that � is finitely additive on U. There remains to show �.U/ D 1. For this we take,
as above, two distinct measures of X, say x1; x2, and let D D fx1; x2; x3g with x3 D

1
2
x1 C

1
2
x2.

Let Ki D N.D; xi/, so that Ki 2 K�. Referring to Lemma 6.4 we see that riKi ’s are pairwise
disjoint and U D riK1 [ riK2 [ riK3. Since � is finitely additive, we obtain

�.U/ D

3X
iD1

�.riKi/ D

3X
iD1

�D.xi/ D 1:

We next show that � is maximized at �. Before turning to this we first present a lemma:

LEMMA 6.9 Suppose that � and � are related by Eq. (6.7) and that � is finitely additive. Then
given x1; x2 2 X with x1 ¤ x2, any subset in U of the hyperplane Œx1 � x2 D 0� has �-measure
zero.

Proof. Let D D fx1; x2; x3g with x3 defined as above. Then Œx1 � x2 D 0� D N.D; x3/. Since
x3 is not an extreme point, we have �D.x3/ D 0, hence �.N.D; x3// D 0, i.e. Œx1 � x2 D 0� is
of �-measure zero. Since � is finitely additive, any of its subset in U must also be of �-measure
zero.

For any K D N.D; x/ 2 K�, if F 2 F.K/ but F ¤ K, then F must be contained in some
hyperplane, and therefore, by Lemma 6.9, is of �-measure zero. From Lemma 6.6 it then follows
that

�.N.D; x// D �.ri.N.D; x/// D �D.x/; (6.8)

hence that � is maximized at �.

Finally we show that � is regular. For this we need the following (cf. Schneider (op. cit., the
remark after Lemma 2.2.3)

LEMMA 6.10 For any D 2 D and x1; x2 2 D with N.D; x1/ ¤ N.D; x2/, riN.D; x1/ \

riN.D; x2/ D ∅.

Proof. To see this we let D D fy1; : : : ; yng (it is assumed implicitly that x1 D yi and x2 D yj for
some yi ; yj 2 D). Let Ik 2 P.I/, k D 1; 2, be such that the canonical form of N.D; xk/ is given
by

N.D; xk/ Dfu 2 Uj hu; yki D hu; xki; hu; yc
ki � hu; xkig

where yk D .yi/i2Ik
and yc

k
D .yi/i2Ic

k
. Since N.D; x1/ ¤ N.D; x2/, it follows that either

u 2 N.D; x1/nN.D; x2/ or u 2 N.D; x2/nN.D; x1/ for some u 2 U.

Let us take the former case; a similar argument holds also for the latter case. Noting that
u 2 N.D; x1/nN.D; x2/ implies hu; x1i > hu; x2i, we have x2 ¤ yi for all i 2 I1. Hence
according to Lemma 6.4,

riN.D; x1/ � Œx2 � x1 < 0�I

observing that the intersection with N.D; x2/ of the right-hand member is empty, we get riN.D; x1/\

riN.D; x2/ D ∅. This completes the proof.
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Note that if x 2 extD, then N C.D; x/ D ri.N.D; x//; if x … extD, then N C.D; x/ D ∅.
Note also that for any x1; x2 2 extD with x1 ¤ x2, N.D; x1/ ¤ N.D; x2/, hence riN.D; x1/ \

riN.D; x2/ D ∅ by Lemma 6.10. We have therefore

�.[x2DN C.D; x// D
X

x2extD

�.ri.N.D; x/// D
X

x2extD

�D.x/ D 1:

This completes the whole proof.

6.4 Proof of Theorem 4.1

Recall that for Theorem 4.1, we take U D fu 2 C 1.I/j u.0/ D 0g. Again we begin by proving the
sufficiency of the conditions. The following lemma is a generalization of Gul and Pesendorfer (op.
cit., Proposition 7) to the case where the decision problems involved may not be of full dimension.
In order to facilitate comparison, the notation of that proposition will be retained as much as is
convenient. With this generalization, the proof of the sufficiency of the conditions will proceed in
the same way as in Gul and Pesendorfer (ibid., Lemma 7), and therefore will not be presented here.

It is perhaps worthy of mention that the proof of Lemma 7 of Gul and Pesendorfer (2006a) is
divided into two cases: D being full-dimensional, in which case the proof depends on their Propo-
sition 7, or non-full-dimensional. The reason for such a division is that their Proposition 7 holds
valid only for full-dimensional D. Since Lemma 6.11 below (the counterpart of Gul and Pesendor-
fer’s lemma 7) is shown to be true for any D, either full-dimensional or non-full-dimensional, it is
no longer necessary to distinguish between the full-dimensional and non-full-dimensional circum-
stances in the present context.

LEMMA 6.11 Let Di 2 D, i D 1; 2; : : :, and suppose they converge to D. Let K D N.D; x/ for
some x 2 D. Then there exist Kj 2 K�, kj , and "j > 0 for j D 1; 2; : : : such that (i) Kj C1 � Kj

for all j ; (ii) \j Kj D K; (iii) [xi 2Di \B"j
.x/N.Di ; xi/ � Kj for i > kj .

Proof. Since conv.D/ is nonempty, convex, and of finite dimension, it follows from Aliprantis
and Border (op. cit., Lemma 7.33) that ri.conv.D// ¤ ∅. Take y� 2 ri.conv.D//; let QDj D

fxg [ . j

j C1
D C

1
j C1

y�/ and Kj D N. QDj ; x/. The proof of statements (i) and (ii) is the same as
that of the first two statements in Gul and Pesendorfer (op. cit., Proposition 7), and so is omitted
here.

For statement (iii) it is equivalent to showing that u … Kj implies u … [xi 2Di \B"j
.x/N.Di ; xi/.

It follows from statement (ii) that u … Kj implies u … K, and so there exist a y 2 D and an ˛ > 0

such that hu; yi > hu; xi C ˛.

Let B.x; �/ D fz 2 QXj kz � xkv < �g. According to Lemma 6.2, hu; zi is continuous in z,
and so there exists a "j > 0 such that jhu; zij < ˛=2 for all z 2 B.0; "j /. Since the sequence fDig

converges to D, we can choose kj sufficiently large such that B.y; "j / \ Di ¤ ∅ for every i > kj .
Take yi 2 B.y; "j / \ Di ; then we have for any xi 2 B.x; "j / \ Di ,

hu; yii � hu; xii

Dhu; yii � hu; yi C hu; yi � hu; xi C hu; xi � hu; xii

> � ˛=2 C ˛ � ˛=2 D 0I

hence u … N.Di ; xi/ for every i > kj . This completes the proof.
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We turn now to the necessity part. Recall that Pu denotes the derivative of u; let S D fu 2

Uj kuk C k Puk D 1g, so that S is a compact subset of C.I/. A subtlety here is that S is not compact
in U, which explains why the following lemma seeks to find an open cover of S in C.I/, instead of
in U. With this lemma, the proof of the necessity of the conditions will proceed in the same way as
in Gul and Pesendorfer (ibid., Lemma 6), and therefore will not be presented here.

LEMMA 6.12 Let � be a RUF that is maximized by a continuous random choice rule �. For each
K 2 K� and each � > 0, there exist an open subset O of C.I/ and a set QK 2 U such that K\S � O ,
O \ U � QK, and �. QK/ � �.K/ < �.

Proof. Let K D N.D; x/ for some D 2 D and x 2 D; let fıi j i D 0; 1; : : :g be the set of all
Dirac measures at the rational numbers in Œ0; M � with ı0 the Dirac measure at zero. Since the set
of rational numbers is dense in Œ0; M �, we have

Unf0g D

1[
iD1

fu 2 Uj hu; ıii ¤ 0g:

Let Ki1 D K \ Œıi < 0�, Ki2 D K \ Œıi > 0�, Ki D Ki1 [ Ki2, i D 1; 2; : : :. Hence Knf0g D

[1
iD1Ki .

Let us first consider Ki1. Set Di D fı0; ıig, Di1 D
1
2
DC

1
2
Di , xi1 D

1
2
xC

1
2
ı0. Since u.0/ D 0,

we have hu; ı0i D 0, so that Ki1 � N.Di1; xi1/ and �.Ki1/ D �.N.Di1; xi1//. Let B.u0; �/ D

fu 2 C.I/j ku � u0k < �g. Let Qxi1 D �xi1 C .1 � �/ı0, QDi1 D .�Di1nfxi1g C .1 � �/ıi/ [ f Qxi1g

for some � 2 .0; 1/, and QKi1 D N. QDi1; Qxi1/. We then have for any u 2 Ki1,

hu; Qxi < hu; Qxi1i for all Qx 2 QDi1nf Qxi1g;

so that there exists some �u > 0 such that B.u; �u/ \ U � QKi1. Letting Oi1 D [u2Ki1
B.u; �u/,

we obtain Ki1 � Oi1 and Oi1 \ U � QKi1. Furthermore, since � is maximized at �, it follows that
�. QKi1/ D �

QDi1. Qxi1/ and �.Ki1/ D �Di1.xi1/, hence, by continuity of �, that �. QKi1/ � �.Ki1/ <
�

2iC1 for � sufficiently close to unity.

Likewise, we obtain for Ki2 an open set Oi2 and a set QKi2 such that Ki2 � Oi2, Oi2 \ U �

QKi2, and �. QKi2/ � �.Ki2/ < �
2iC1 for � sufficiently close to unity. Letting Oi D Oi1 [ Oi2,

QKi D QKi1 [ QKi2, we conclude that Ki � Oi , Oi \ U � QKi , where Oi is open in C .I/, and
�. QKi/ � �.Ki/ < �

2i for � sufficiently close to unity.

Repeating the above argument for all Ki , we will obtain

Knf0g � [
1
iD1Oi ; .[1

iD1Oi/ \ U � [
1
iD1

QKi ; and [
1
iD1 Oi is open in C .I/:

Since S is compact in C.I/, so is K \ S . As a consequence there exist a finite number of open sets,
say O1; : : : ; Om, such that

K \ S � [
m
iD1Oi ; .[m

iD1Oi/ \ U � [
m
iD1

QKi :

Let O D [m
iD1Oi , QK D [m

iD1
QKi ; it is evident that QK 2 U, K \ S � O , and O \ U � QK. Note that

u 2 QK implies ˛u 2 QK for any ˛ � 0, so that K � QK. Since � is finitely additive it follows that
�. QK/ � �.K/ < �. This completes the proof.
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6.5 Proof of Lemma 5.1 and Theorem 5.1

Let us begin by proving Lemma 5.1. For this fix t; r0, and let

A1 D fu 2 Ujr.u; t/ < r0g; A2 D fu 2 Ujr.u; t/ D r0g; (6.9)

so that At.r0/ D A1 [ A2. It suffices to show the measurability of A1 and A2.

Let us begin with A2. Since in U, any function is an increasing strictly concave transformation
of another, it follows that A2 is a singleton, say A2 D fu0g. Take x0 2 X and consider the
hyperplane

H D fx 2 Xjhu0; xi D hu0; x0ig

Since X associated with the Prokhorov metric is separable, so is H ; let fx1; x2; : : :g be a countable
dense subset of H . Define

Dn D fx2n�1; x2n; yng; n D 1; 2; : : : ;

where yn D
1
2
x2n�1 C

1
2
x2n. It is not hard to see that u0 D \1

nD1N.Dn; yn/, hence that A2 is
measurable.

For the measurability of A1, we note that r0 D 0 implies A1 D ∅, which is trivially measurable.
Now suppose that r0 > 0 and let

Bn D fu 2 Ujr.u; t/ � r0 �
1

n
g; n D 1; 2; : : : ; (6.10)

so that B1 � B2 � B3 � � � � and A1 D [1
nD1Bn. It suffices therefore to show the measurability

of each Bn. Again if Bn D ∅, it is trivially measurable. So assume Bn ¤ ∅ and therefore
there exists an un 2 U such that r.un; t / D r0 � 1=n. Take a nondegenerate zn 2 X such that
un

e .t/ D un
e .zn/, where un

e is as defined in (2.1). Then applying Jensen’s inequality we can conclude
that Bn D N.En; zn/, where En D fzn; tg, and therefore Bn is measurable. This concludes the
proof of Lemma 5.1.

We turn now to the proof of Theorem 5.1. We begin by proving 1 ) 2. Since �i is countably
additive, it is continuous from below. Recall the definition of A1; Bn from above; we have

F t
i .r0/ D �i.A

t.r0// D �i.A1/ D lim
n!1

�i.Bn/;

where the second equality follows from the regularity of �i . Since individual 1 is more risk averse
in terms of RCR than individual 2 at t , it follows that �1.Bn/ � �2.Bn/ for all n, hence that
F t

1 .r0/ � F t
2 .r0/.

We proceed to show 2 ) 1. Take any D 2 Dt and consider N.D; t/. Let

r0 D minfr.u; t/ju 2 N.D; t/g;

hence N.D; t/ D fu 2 Ujr.u; t/ � r0g. We have therefore

�D
i .t/ D �i.N.D; t/ D 1 � F t

i .r0/;

which, along with individual 1 being more risk averse in terms of RUF than individual 2 at t ,
implies �D

1 .t/ � �D
2 .t/.
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A Appendix

A.1 Existence of a Regular RUF

In this subsection we shall take U D U1 (for whose definition one may refer to Eq. (6.2)); the
purpose is to show the existence of a regular RUF on .U;U/, and a similar argument holds also for
the set U2. In the case of finite prizes, the existence of a regular RUF is demonstrated in Gul and
Pesendorfer (ibid., Lemma 3) with the aid of the notion of volume. This notion however is not well
defined in an infinite-dimensional setting, and so we have to look for a different method.

Observe that the notion of volume is a kind of measure, and Gul and Pesendorfer’s lemma
makes use of two properties of this measure: Consider the n-dimensional Euclidean space Rn; then
the volume of any open set of Rn is positive, and that of any set of dimension less than n is zero.
So to look for a regular RUF on .U;U/ it suffices to look for a measure on it with the above two
properties. The answer consists in the notion of a Radon Gaussian measure. We shall not present
the precise definition of this notion, for which we refer to Bogachev (1998, Chapter 3), but just state
two of its relevant properties. Recall that U is endowed with the supremum norm; we let B.U/ be
the corresponding Borel �-algebra on U. Recall from Bogachev (ibid., Definition 3.6.2, p. 119)
that a nondegenerate Radon Gaussian measure on .U;B.U// is one that has U as its support; then
according to its Problems 3.11.33 and 3.11.32 on page 154, we know that

PROPOSITION 2 There exists on .U;B.U// a nondegenerate Radon Gaussian measure.

PROPOSITION 3 A Borel linear subspace in U has measure zero with respect to every nonde-
generate Radon Gaussian measure on U precisely when it contains no continuously and densely
embedded into U separable Hilbert space.

According to Proposition 2 it makes sense to let � be a nondegenerate Radon Gaussian measure
on .U;B.U//. By definition of nondegeneracy it follows that any open subset of U is of positive
�-measure. Now we show that any linear subspace of the form

H D fu 2 Uj hu; xi D 0g; x ¤ 0

is of zero �-measure. To this end we note first that H is a Borel linear subspace, as H D \1
nD1Hn,

where

Hn D fu 2 Uj hu; xi 2 .�1=n; 1=n/gI

and secondly, according to Aliprantis and Border (op. cit., Lemma 5.55 and Corollary 5.81), that
H is closed and not dense in U. Then from Proposition 3 we infer that H is of zero �-measure.

To summarize, we have demonstrated that every open subset of U has positive �-measure and
every linear subspace H has zero �-measure. Using this fact and following through the argument
of Gul and Pesendorfer (ibid., Lemma 3) (with � as a substitute for their V ) we can conclude the
existence of a regular RUF on .U;U/.

A.2 Discontinuous Utility Functions

This subsection shows that when discontinuous utility functions are taken into account, the RUF
that can be maximized by a given RCR may not be unique.
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Specifically, consider the following family of discontinuous utility functions on Œ0; 1�

ua.x/ D �eax
C

(
1 if x �

1
2

0 if x < 1
2

; a 2 Œ0; 1�:

Let � be some Borel measure on Œ0; 1� that admits a density. It is not hard to verify that for every
D 2 D and every x 2 D, the set

Nd .D; x/ D fa 2 Œ0; 1�j

∫1

0

ua.t/dx.t/ �

∫1

0

ua.t/dz.t/ for all z 2 Dg

is a Borel set, where the subscript d is a shorthand for “discontinuous.”It therefore makes sense to
define a RCR � as follows:

�D.x/ D �.Nd .D; x//:

It then follows that there exists a RUF which is defined on the algebra generated by

fNd .D; x/jD 2 D; x 2 Dg

and which at the same time is maximized by �.

On the other hand, it can be checked without much difficulty that � is mixture continuous,
monotone, linear and extreme. From Theorem 3.1, therefore, we may conclude that there exists a
regular RUF on .U;U/ (whose definition is given in Section 2) which is maximized also by �. To
summarize, we have constructed two distinct RUF’s that are both maximized by the same RCR.
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