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Abstract

In this paper, we extend the literature on modelling exchange rate
volatility in South Africa by estimating a range of models, including some
that attempt to account for structural breaks and long memory. We ex-
amine the key nominal exchange rates of the South African rand and
replicate common findings in the literature; particularly that volatility is
‘persistent’. We investigate whether this ‘persistence’ is due to structural
breaks or long memory, and the extent of asymmetric responses of the rand
to ‘good news’ and ‘bad news’. Our results show that while long mem-
ory is evident in the actual processes, a structural break analysis reveals
that this feature is partially explained by unaccounted shifts in volatility
regime; the most striking finding is the remarkable fall in the estimates of
volatility persistence when considerably more structural breaks than those
identified in recent studies are detected and integrated into the generalised
autoregressive conditional heteroscedasticity (GARCH) framework. Fur-
thermore, the asymmetrical GARCH model results provide evidence of
leverage effects, indicating that negative shocks imply a higher next pe-
riod volatility than positive shocks. The empirical results also shed light
on the timing and likely triggers of volatility regime switching.
Keywords: Asymmetry, GARCH, long memory, modelling volatility,

structural change, volatility persistence
JEL classification: C13, C32, F31, G10 and G15

1 Introduction

Since the collapse of the Bretton Woods international monetary system, ele-
vated volatility is a conspicuous attribute of exchange rates; emerging market
currencies, in particular. With the demise of the dual exchange rate system on
10 March 1995, the ensuing gradual relaxation of exchange controls and the cur-
rent ‘noninterventionist’ exchange rate policy of the South African authorities,
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rand volatility is perhaps not surprising.1 ,2 However, the frequent and often per-
sistent gyrations of the rand in the short-term (and the medium- to long-term
swings in the currency) are of concern and require rigorous investigation.

Heightened exchange rate instability can have serious adverse and perva-
sive ramifications. In the absence of well-developed derivatives markets, un-
predictable variations of exchange rates could mean large private and public
sector losses or profits.3 Even though exchange rate volatility — a short-run
phenomenon — can have undesirable effects, its impact is lessened substantially
by the availability of foreign exchange derivatives in the well-developed global
foreign exchange market. However, the limited amount of long-term hedging
instruments compared with their short-term counterparts has cost implications
for international investors, importers and exporters; persistent medium- and
long-run exchange rate misalignments can have depressing effects on the vol-
ume of trade, mainly exports. Price instability also impacts on the real sector
of the economy: it can negatively affect fixed investment, economic growth and
employment. In South Africa, currency volatility is an important element of ex-
change rate, monetary and macroeconomic policy decisions and there is thus a
strong need for modelling and forecasting volatility. Understanding the sources
of currency volatility can also go a long way in trying to contain this (largely
but not entirely undesirable) phenomenon, and in turn curtailing its effects.4

A number of studies — largely in developed countries — employ GARCH
models to characterize time-varying volatility of financial asset returns. Recent
research builds on the earlier foundational work by Engle (1982), Bollerslev
(1986), Nelson (1991), Ding et al (1993), Glosten, et al (1993), Inclan and Tiao
(1994), Baillie et al (1996), Bollerslev and Mikkelsen (1996), Ding and Granger
(1996), and Andersen and Bollerslev (1997a and 1998). Generally, failure to
account for structural breaks and long memory can lead to spurious results.
Furthermore, empirical evidence shows that exchange rates tend to be more
sensitive to bad news than good news.

In this paper, we estimate the volatility — conditional and unconditional vari-
ances — of the key nominal bilateral and effective exchange rates of the rand. In

1Noninterventionist policy in this context means that the central bank does not intervene
in the foreign exchange market to influence the rand, but instead occasionally accumulates
foreign currency reserves, albeit nonaggressively and when market conditions are conducive
(during spells of rand strength), to diminish exchange rate risk arising from external liquidity.
The latter economic rationale for central bank intervention is a contentious issue though.

2Although the impact of structural features of the foreign exchange market such as ex-
change controls is also a controversial issue, a cross-section study by Canales-Kriljenko and
Habermeier (2004) uncovers lower nominal effective exchange rate (NEER) volatility in coun-
tries where trade in domestic currency by non-residents is restricted; the limitation of banks’
foreign exchange positions also tends to dampen NEER instability.

3National Treasury formulates exchange rate policy, although the central bank is man-
dated to implement the policy. So profits and losses incurred by the central bank related to
its operations in the foreign exchange market are largely absorbed by National Treasury as
expenditure in its budget.

4Exchange rate volatility may be desirable though for speculators and currency derivative
sellers. Currency volatility also acts as a signal of uncertainty to market participants and
policymakers.
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summary, our key findings are: i) statistical test results indicate strong and wide-
spread instability in unconditional volatility — between 20 and 44 breakpoints
are detected; ii) volatility persistence falls markedly when fractional integration
and a larger set of sudden and gradual structural shifts are accounted for; iii)
results suggest an asymmetric response to news — negative shocks raise volatility
more than positive ones of equal magnitude; and, iv) the timing of changes in
volatility regimes, and thus their likely causes, are more or less consistent with
the exchange rate level shifts detected in a recent study by May (2015a).

The paper unfolds as follows. Section 2 reviews the related literature. Sec-
tion 3 provides a motivation for the GARCH-type modelling approach, followed
by a discussion of the volatility models that we include in this analysis. Data
description and preliminary tests on the returns series are presented in section
4. Regression analysis estimates are reported and interpreted in section 5 —
preceded by a detection of the structural break points. Section 6 presents a
descriptive analysis of the volatility structural change points identified in the
preceding section. Concluding remarks and some directions for future research
are proposed in the epilogue.

2 Literature review

Measuring the extent of exchange rate volatility is useful, and a necessary pre-
cursor for prognosis of plausible sources of exchange rate instability and es-
tablishing the (direct and indirect) effects of such volatility, which can have
economy-wide repercussions. The extensive research on exchange rate volatility
undertaken over the past two decades or so, time-varying volatility in particular,
reflects its importance in a host of financial areas such as investment, portfolio
diversification, security valuation, risk management and derivative pricing.

A subset of these studies focuses specifically on the international currency
prices of developed countries and some emerging markets to explore the pres-
ence of long-range dependence in the volatility of exchange rates. The common
conclusion in a number of studies is that the volatility process of exchange rate
returns is well described by a long-memory process implying that shocks to the
volatility process tend to be persistent, having long-lasting effects. Andersen
et al (2001), Andersen and Bollerslev (1997b), Baillie et al. (1996), Ding and
Granger (1996), and Dacorogna et al. (1993) are some cases in point.

Another group of studies explores the significance and nature of structural
shifts in exchange rate volatility and its impact on estimation results. In this
second set of studies, strong persistent conditional exchange rate volatility is to
some extent a spurious feature due to unaccounted structural change. Structural
shift adapted models change the dynamics of volatility — volatility persistence is
much weaker suggesting that both structural breaks and long memory are im-
portant characteristics of the currency returns data. The magnitude of decline in
estimated persistence varies across different exchange rates and samples. Thu-
payagale and Jefferis (2011), Duncan and Liu (2009), Morana and Beltratti
(2004), Malik (2003), Nakatsuma (2000), and Beine and Laurent (2000) fall
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into the latter category of studies.
The asymmetrical response of volatility to positive and negative shocks

is an additional property of exchange rate returns. The occurrence (or non-
occurrence) and degree of asymmetry though is exchange rate series specific.
Estimates from a Panel of nineteen Arab countries provide evidence of leverage
effects for the majority of currencies,5 indicating that negative shocks imply
a higher next period volatility than positive shocks (Abdalla, 2012). Further-
more, some empirical results also tend to be asymmetric model specific; for
example, exponential generalised autoregressive conditional heteroscedasticity
(EGARCH) results suggest the existence of asymmetric behaviour in volatil-
ity, while the threshold generalised autoregressive conditional heteroscedasticity
(TARCH) model remains insignificant in evidence from Pakistan (Mughal and
Kamal, 2009).

3 Econometric methodology and motivation

GARCH-type models, employed in this study, are popular not only for their
simplicity and parsimony, but also because of their generalisation of other mea-
sures of volatilities. We present a brief overview of the broad set of conditional
volatility measures estimated in this study, to facilitate the interpretation of
the estimation results in section 5. More detailed presentations are provided
in the literature we cite. Stylised facts about volatility note several salient
characteristics about financial time series. These include fat tail (leptokurtic)
distributions of risky asset returns, asymmetry, time-varying volatility, volatil-
ity clustering, (pronounced) persistence, mean reversion, and comovements of
volatilities across assets and financial markets. The GARCH class of conditional
volatility models — probably the most extensively applied family of volatility
models — are designed to deal with just this set of issues.

In the basic (G)ARCH models, returns, rt, are assumed to have the follow-
ing process defined as conditionally normally distributed with time-depending
variance:

rt = γ + χ+ φ+ τ + εt (1)

εt = htzt (2)

zt ∼ N(0, 1) (3)

where the parameter γ is the mean return, χ is the 1-lag autoregressive (AR(1))
parameter, φ is the 1-lag moving average (MA(1)) parameter, τ is the ARCH-
in-mean (ARCH-M) parameter,6 εt(= htzt) is the disturbance term and zt is
purely random or white noise.7 By assumption, zt is serially uncorrelated with

5Asymmetric models in conditional variance have been applied mainly to stock returns. A
‘leverage effect’ — when stock prices change, in response to news shocks, induces an inverse
change in its volatility — is an additional property of financial time series (Black, 1976)

6Parameter τ captures the conditional variance (or standard deviation) impact (Engle et
al. (1987)).

7Alternative specifications of the mean equation also include exogenous factors.
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a mean equal to zero but the conditional variance, h2t , is time varying. The
conditional variance denoted by h2t is specified according to one of the competing
GARCH class models presented below. The standardised residuals (or shocks)
are measured as zt =

εt
ht
.8

3.1 Standard linear symmetrical ARCH andGARCHmod-
els

This group of models assumes that positive and negative shocks have a sym-
metric impact on conditional volatility:

ARCH(p) : h
2

t= ω+

p∑

k=1

αkε
2
t−k ; α1> α2> ... > αp;ω > 0;αk≥ 0 (4)

and 0 ≤

p∑

k=1

αk< 1

GARCH(p, q) : h2t= ω+

p∑

k=1

αkε
2
t−k+

q∑

j=1

βjh
2
t−j ; (p, ω > 0); (q, αk, βj≥ 0),

(5)

and




p∑

k=1

αk +

q∑

j=1

βj



< 1

IGARCH(p, q) : h2t=
ω

[1− β(L)]
+
{
1− ϕ(L)(1− L)[1− β(L)]−1

}
ε2t ; (6)

p∑

k=1

αk+

q∑

j=1

βj= 1

where p refers to the lag on the disturbance term, ε2t , and q to the lag on the
conditional variance, h2t .

9 The ARCH (p) model (equation 4) proposed by En-
gle (1982) is the simplest case in the ARCH family. The original GARCH(p, q)
model introduced by Bollerslev (1986), an extension of the basic ARCH model
which includes lags of h2t to avoid long lag lengths on ε2t , is given by specifica-
tion (5). To account for persistence of volatility, a limitation of the standard
GARCH model, Bollerslev and Mikkelsen (1996) developed the IGARCH model

8The estimated residuals, ε̂t, and estimated conditional standard deviation, ĥt, are mea-
sured in the units in which the regressand is measured. The values of the standardised
estimated residuals, ẑt, will therefore be pure numbers (devoid of units of measurement) and
can be compared to the standardised residuals of other regressions.

9Note that for h2t to be interpreted as a (conditional) variance, it must always be nonneg-
ative.
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in equation (6).10 If
p∑

k=1

αk +
q∑

j=1

βj = 1,
11 then shocks to conditional variance

are persistent and the shock is always present, in contrast to where the shock

dies out when
p∑

k=1

αk +
q∑

j=1

βj < 1.
12 In the IGARCH model, conditional vari-

ance is now a hyperbolic function representing a gradual decay in the effects
of shocks. An integrated model has been shown to be powerful for prediction
over a short horizon, as it is not conditioned on a mean level volatility, and
as a result it adjusts to changes in unconditional volatility quickly (Poon and
Granger, 2003).

3.2 Standard nonlinear asymmetrical GARCH models

In the symmetric GARCHmodels, positive and negative shocks of the same mag-
nitude have the same effect on conditional volatility. The nonlinear extensions
of the GARCH model presented below were designed to allow for asymmetries;
for example, different effects of ‘good news’ (positive shocks) and ‘bad news’
(negative shocks):

EGARCH(p, q) : lnh2t= ω+

p∑

k=1

αkg(zt−k)+

q∑

j=1

βj lnh
2
t−j ; g(zt) ≡ θ

1
(7)

zt+θ2 [|zt| −E|zt|]

GJR−GARCH(p, q) : h2t= ω+

p∑

k=1

(αkε
2
t−k+α

∗

kS
−

t−kε
2
t−k) (8)

+

q∑

j=1

βjh
2
t−j

APARCH(p, q) : hδt= ω+

p∑

k=1

αk (|εt−k| − α
∗

kεt−k)
δ (9)

+

q∑

j=1

βjh
δ
t−j

10Using the lag or backshift operator, α (L) = α1L1+...+αpLp and β (L) = β
1
L1+...+βqL

q

and manipulating equation (5), this GARCH(p, q) process mayalso be expressed as an
ARMA (m,p) process in ε2t : [1− α (L)− β (L)] ε2t = ω + [1− β (L)]

(
ε2t − h

2

t

)
. When

the [1− α (L)− β (L)] ε2t polynomial contains a unit root, that is, the sum of all the αk
and the βj equals unity, the IGARCH model in equation (6) is derived, where ϕ (L) =

[1− α (L)− β (L)] (1− L)−1. (Mathematical derivation in May (2015b).

11This condition can also be written as an approximation:
p∑

k=1

αk +
q∑

j=1

βj ≈ 1.

12Conditional variance in equation (5) is stationary but nonstationary in equation (6).
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In the conditional variance equation (7) of the exponential GARCH (EGARCH)
model, proposed by Nelson (1991), the asymmetry effect is introduced by the
nonlinear function g (zt): the term θ2 [|zt| −E |zt|] represents the magnitude ef-
fect (deviations between realised and expected standardised shock) and the term
θ1zt is the sign effect (negative shock or positive shock). The EGARCH model
allows financial markets to respond asymmetrically to ‘bad news’, a negative
shock (zt < 0), and ‘good news’, a positive innovation (zt > 0), even though the
observed shocks are of same magnitude or absolute value. The GJR-GARCH
model (equation (8)), proposed by Glosten, Jagannathan, and Runkle (GJR)
(1993) presents an alternative where S−t−k is a dummy variable that takes the

value unity when α∗k is negative and zero when it is positive.13 In the asym-
metric power ARCH (APARCH) model (specification (9)), introduced by Ding,
Granger, and Engle (1993), the parameter δ plays the role of a Box-Cox power
transformation of the conditional standard deviation process and the asymmet-
ric absolute residuals,14 while α∗k reflects the so-called ‘leverage effect’. A benefit
of this model is that it combines the flexibility of a varying exponent with the
asymmetry coefficient to account for the ‘leverage effect’. The APARCH model
nests several of the most popular univariate parameterizations such as the stan-
dard linear GARCH and GJR-GARCH models.

3.3 Modelling short and long memory: Fractionally-integrated
GARCH (FIGARCH) models

In some financial time series, volatility tends to die off quite slowly thus mak-
ing the razor’s edge distinction between stationary, I(0), and unit root, I(1),
processes too restrictive. The FIGARCHmodel proposed by Baillie et al. (1996)
allows for non-integer orders of integration I(d), (0 < d < 1), and thus for more
subtle mean reverting behaviour in time series. This class of GARCH structure
is based on a ARFIMA-type representation model so that the ARMA para-
meters capture the short-run behaviour of the time series while the fractional
parameter allows for modelling the long-run dependence. Muller et al. (1997)
provide economic justifications for long memory behaviour in a heterogeneous
market with diverse agents: “Short-term traders evaluate the market at a higher
frequency and have a shorter memory than long-term traders” while “long-term
traders may look at the market only once a day or less frequently”. The FI-
GARCH model is an extension of the IGARCH model,

FIGARCH(p, d, q) : h2t=
ω

[1− β(L)]
+
{
1− ϕ(L)(1− L)d1− β(L)−1

}
ε2t (10)

13Engle and Ng (1993) find that the EGARCH model leads to a conditional variance that
is too high and more volatile than the GJR-GARCH, although it captures most of the asym-
metry. Thus, the EGARCH model is more appropriate for capturing heightened short-term
volatility during a crisis.

14Statisticians Box and Cox’s (1964) method is one particular way of parameterising a power
transform — a suitable power transformation is automatically identified for the data which can
make big improvements in model fit.
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where the fractional differencing parameter, d, indicates the rate of decay; that
is, the speed at which shocks die out over time. Although mean reverting, shocks
to h2t will die out at a slow hyperbolic rate of decay determined by d in the vari-
ance equation, while the short-run dynamics are modelled by the conventional
AR(1) and MA(1) parameters in the GARCH model variance equation. The
IGARCH has d = 1, and the standard GARCH has d = 0.

Bollerslev and Mikkelson (1996) extend the fractional integration idea to the
EGARCH model,

FIEGARCH(p, d, q) : lnh2t= ω + ϕ (L)
−1
(1− L)

d
[1 + α (L)] g (zt−1) . (11)

Tse’s (1998) FIAPARCH(p, d, q) model is represented by:

FIAPARCH(p, d, q) : hδt= ω+
{
1− [1− β (L)]−1 ϕ (L) (1− L)d

}
(|εt| − α

∗εt)
δ .

(12)

3.4 Modelling structural change

In some instances, there may be obvious points at which a break in structure
might have taken place — a war, geopolitical tensions, a piece of legislation, an
oil shock, a policy framework shift, financial market liberalisation, a change in
investors’ behaviour, etcetera. Ignoring structural changes in estimations is a
misspecification of the conditional variance which may produce estimates incor-
rectly suggesting persistence; that is, a stationery process being misinterpreted
as a non-stationery one. A second consequence is that forecasting may be un-
dermined.
Sudden Structural Change GARCH (SSC-GARCH) Class Models
The simplest way to account for structural breaks involves the use of dummy

variables — SSC-GARCH models account for known and unknown breaks in the
data using dummy variables. Inclan and Tiao (IT) (1994) propose a proce-
dure based on an iterated cumulative sums of squares (ICSS) to detect multiple
change points in the variance of a sequence of independent observations or sto-
chastic process. Sanso et al. (2004) note drawbacks in the IT test. The IT test
assumes that the disturbances are independent and Gaussian, while preliminary
tests in section 4 show that the distributions are leptokurtic and asymmetric
conditional volatility is persistent. Thus the IT test is strictly appropriate only
when the stochastic process is mesokurtic and the conditional variance is con-
stant. The test may exhibit large size distortions for leptokurtic and platykurtic
innovations, possibly (but not certainly) invalidating its use in the time series
of floating exchange rates, and financial time series in general. If the distri-
bution is leptokurtic or heavy tailed, one can expect many rejections of the
constant variance null hypothesis, implying that some (but not necessarily all)
of the structural breaks detected by IT tests may be spurious. To overcome these
problems, Sanso et al. (2004) propose new tests that take the fourth order mo-
ment properties of disturbances and conditional heteroscedasticity into explicit
account. The ICSS (κ1) statistic controls for the kurtosis of the series, while
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the ICSS (κ2) statistic controls for kurtosis and conditional heteroskedasticity
(Sanso et al, 2004).

Following Vyrost et al. (2011), the structural breaks that are detected are
used to partition the observations into groups corresponding to regimes, dur-
ing which the variance is considered to be constant. For example, the simple
GARCH(1,1) model with breaks is expressed as:

h2t= ω+

p∑

k=1

αkε
2
t−k+

q∑

j=1

βjh
2
t−j+

NT∑

i=0

γiDi (t) (13)

where
NT∑

i=0

γiDi (t) is the additional explanatory variable in the variance equa-

tion of a standard GARCH model, and the persistence of volatility is still given
by (α+ β). An advantage of all the above breakpoint tests — IT tests and mod-
ifications of IT tests, κ1 and κ2 tests — is that once the ‘potential’ breakpoints
have been identified and verified, one can further explore the possible and likely
causes of each of the structural shifts.
Adaptive-GARCH (A-GARCH) Class Models
To account for the persistence of the conditional variance process, Ding

and Granger (1996) and Baillie et al. (1996), amongst others, proposed the
adaptive-GARCH (A-GARCH) class models, an alternative to the SSC-GARCH
approach. Simpler ARCH and GARCH models allow the conditional variance to
change over time leaving the unconditional variance constant. A-GARCH mod-
els allow for time variance in both the conditional and unconditional variance.
Baillie and Morana (2009) introduced the long memory volatility adaptive-
FIGARCH (A-FIGARCH) model to account for both long memory and struc-
tural change in the unconditional variance. Allowing for the intercept ω in
the conditional variance equation to be time-varying according to Andersen
and Bollerslev’s (1997a and 1998) flexible functional form, Baillie and Morana’s
(2009) A-FIGARCH conditional variance equation may be written in a form
analogous to the FIGARCH model as:

h2t = ω0+
k∑

j=1

[
ψj sin (2πjt/T ) + ρj cos (2πjt/T )

]
(14)

+
[
1− ϕ (L) (1− L)d [1− β (L)]−1

]
ε2t .

In order for the conditional variance to be positive almost certainly at each
point in time requires

ωt= ω0+
k∑

j=1

[
ψj sin (2πjt/T ) + ρj cos (2πjt/T )

]
> 0 (15)

and
[
1− ϕ (L) (1− L)d [1− β (L)]−1

]
ε2t≥ 0.
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In this study, the flexible functional form or time-varying unconditional vari-
ance is extended to the other GARCHmodels; A-FIEGARCH and A-FIAPARCH
models are two innovations in this empirical research. A great advantage of
the A-GARCH type models approach over the ICSS procedure is that struc-
tural shifts can be incorporated in the variance equation without identifying
the breaks, potentially a more efficient approach. An obvious drawback of A-
GARCH type models is that one cannot identify structural breakpoints, inhibit-
ing an investigation of their likely causes, an advantage of the ICSS procedure.
Here, we estimate both types of models. This is a valuable exercise — the regres-
sion results allow one to compare and contrast the effectiveness of each model
in capturing time-varying unconditional variance.

4 Data

4.1 Data issues

The sample period covers 13 March 1995 to 31 August 2010.15 This empirical
study analyses the key daily nominal bilateral exchange rate levels of the rand
— US dollar/rand (USD/ZAR), euro/rand (EUR/ZAR), British pound (ster-
ling)/rand (GBP/ZAR), and Japanese yen/rand (JPY/ZAR). To receive aggre-
gated information, the returns of the 15-currency nominal effective exchange
rate (NEER) of the rand are also examined.16 Daily exchange rate data were
kindly provided by the South African Reserve Bank (SARB).

The continuously compounded return is defined as rt = ln
(
et/et−1

)
∗ 100

where et is the spot rate on day t for the daily series. After filtering the data
for calendar effects — weekends and local public holidays — the full daily sample
of returns consists of 3864 observations for each exchange rate.17

4.2 Preliminary test results

As we can see from Table A1, Panel A (Appendix), all the returns show evi-
dence of non-normality with negative skewness, which means that the left tail
is particularly extreme, and the kurtosis statistics suggest that probability dis-
tribution functions are peaked or leptokurtic. Because shocks to the US dol-

15Our analysis is a revised extract from the PhD in Economics dissertation (May, 2015b).
The start point of this sample horizon is motivated by the South African authorities’ reversion
to a single exchange rate mechanism on March 13, 1995.

16The currencies in the trade basket and their weights, expressed as percentages in de-
scending order of importance, are: Euro (34.82), US dollar (14.88), Chinese yuan (12.49),
British pound (10.71), Japanese yen (10.12), Swiss franc (2.83), Australian dollar (2.04), In-
dian rupee (2.01), Swedish krona (1.99), South Korean won (1.96), Hong Kong dollar (1.48),
Singapore dollar (1.40), Brazilian real (1.37), Israeli shekel (1.11), and Zambian kwacha
(0.80). The indirect foreign exchange rates of the rand (foreign currency per unit of rands)
are used to ensure that the bilateral rate quotations are consistent with the NEER quotation
— the SARB compiles the indirect NEER of the rand.

17Although the cuts do not capture all the holiday market slowdowns such as holidays of
the US, UK, Germany and Japan (G4 economies), they do succeed in eliminating the most
important such daily calendar effects.
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lar are typically transmitted to other bilateral (floating) exchange rates, the
rand crosses show relatively weaker non-normality; modest asymmetry in the
yen/rand exchange rates, in particular, may be due to greater foreign exchange
market interventions by the Bank of Japan (Bank of Japan, 2000). Pronounced
non-normality in the NEER is perhaps not surprising as its level is determined
by continuous random changes in all its 15 components, including high-risk
emerging market currencies.

The presence of unit roots in the returns series is formally tested by applying
a battery of tests.18 All the returns series variables appear stationary at the 1%
level of significance; in stark contrast to the inability to reject the unit root null
in exchange rate levels, even in the presence of structural shift (May, 2015a).

All the graphs in Figure A1 (Appendix) indicate that the foreign currency
returns exhibit volatility clustering — periods of low volatility tend to follow
periods of high volatility, with high volatility periods concentrated in the vicinity
of global crises and domestic financial markets upheavals.

The Ljung Box or modified Q-statistics reported in Panel B of Table 1 (Ap-
pendix) give no strong evidence of serial correlation in any of the exchange rate
returns. With respect to the squared returns, in Panel C (Table 1, Appendix),
the Ljung Box Q-statistics give clear indication of serial correlation, and the En-
gle (1982) Lagrange multiplier statistics in Panel D (Table 1, Appendix) offer
significant evidence of ARCH effects, an indication that the data are candidates
for GARCH-type modelling.

5 Empirical results of GARCH (1,1) models

A particularly appropriate non-Gaussian (or non-normal) error distribution for
financial time series is the asymmetric Student’s t-distribution to capture both
skewness and excess kurtosis in the standardised residuals (Fernandez and Steel,
1998).

5.1 Basic symmetric and asymmetric GARCH models es-
timation results

Detailed estimation results are presented in the Appendix. The mean equation
results for the basic symmetric and asymmetric GARCH models are in Panel A
of Tables B1-B5 (Appendix). To remove serial correlation in the standardised
residuals, the EUR/ZAR and JPY/ZAR are modelled with the augmented mean
equation — the explanatory variables are the mean returns, AR(1) and MA(1).
Overall, the results for the augmented mean equation, an improved specifica-
tion, are still inadequate to remove autocorrelation for up to 20 lags in the

18The augmented Dickey-Fuller (ADF) test (1979), the Phillips-Perron (PP) test (1988),
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test (1992) and the Dickey-Fuller Gener-
alised Least Squares (DF-GLS) test proposed by Elliott, Rothenberg and Stock (ERS) (1996).
The comprehensive set of unit root test results for both the exchange rate levels and returns
are available from the authors upon request.
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raw standardised residuals for the USD/ZAR, GBP/ZAR and NEER returns —
persistence of autocorrelation in these series implies that currency returns are
(additionally) being driven by exogenous factors. The specifications of the mean
equation for the latter three returns were improved by adding two exogenous
explanatory variables — percentage change in the USD gold price (with para-
meter κ) and percentage change in EUR/USD exchange rate (with parameter
ν) — and omitting the AR and MA explanatory variables. For the EUR/ZAR
and JPY/ZAR series, the AR(1) and MA(1) coefficients, χ and φ respectively,
are statistically significant at the 1% level. A positive mean reversion parame-
ter, χ, suggests that there is a tendency for a high (low) currency return in
one period to be followed by a higher (lower) return in the next period; that
is, the presence of volatility clustering, highly persistent returns and a short
memory process in the level of the returns with a tendency to revert to their
long-run average or time-varying mean after an extended period. Ubiquitous
negatively signed MA(1) parameters, φ, imply that the effect of the shock in
period t − 1 on the return in period t dissipates weakening the combined ef-
fect of the current and immediate past shocks on the current return. For the
USD/ZAR, GBP/ZAR and NEER returns, both the κ and ν parameter esti-
mates are statistically different from zero and correctly signed. For example,
an increase in the US dollar gold price causes rand appreciation against the US
dollar,19 and euro appreciation against the US dollar translates into a higher
dollar price of rands (the rand generally tracks the euro due to strong economic
ties, trade and finance, in particular, between the euro zone and South Africa).
The ARCH-M model is often used in financial applications where the expected
return on an asset, rand holdings by foreigners in this instance, is related to
the expected asset risk — the estimated coefficient on the expected risk, τ , is
a measure of the risk-return trade-off. Although all positively signed, suggest-
ing that the increased risk of converting foreign currency denominated assets
into rand holdings is associated with an excess return, none of these coefficients
are statistically significant at the 1% level; a weak risk-return relationship is
nevertheless evident in the pound/rand exchange rate.

The conditional variance results from the standard GARCH-type models
show that all the estimated ARCH(α1) and GARCH(β1) coefficients are signifi-
cant at the 99% level of confidence (Panel B in Tables B1-B5, Appendix). This
provides evidence of volatility clustering.

The signs and magnitudes of the symmetric GARCH and IGARCH point
estimates ( α1 = +0.12 and β1 = +0.88 ) are generally consistent with their
respective values reported in the empirical finance and financial economics liter-
ature reviewed. The positive signed α∗1 for all currency returns series when the
GJR-GARCH model is implemented makes sense because the impact of negative
shocks on volatility is measured by the size of α1+α

∗

1, and α1 captures the effect
of positive shocks; α1 > 0 and α∗1 > 0, evident in all GJR model estimation
results ensures that α1+α

∗

1 > α1 so that negative shocks have a greater impact

19However, the relative importance of gold in SA exports declined to around 10% in 2010
from 22% some-odd in 1995.
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on volatility than positive ones. The less robust asymmetry in the USD/ZAR
— measured by the difference between positive and negative shocks — suggests
that its news impact curve (NICs) is much closer to a symmetric news impact
curve than that of its counterparts.20 A negative signed and statistically sig-
nificant θ1, across all data sets using EGARCH, is evidence of a leverage effect;
in line with expectations since positive shocks tend to have smaller impacts.
The absolute value of the parameters θ1 + θ2 in the EGARCH model reflects
the magnitude of the positive shocks

(
ε2t−1 > 0

)
and the absolute value of the

parameters θ1 − θ2 reflects the magnitude of the negative shocks
(
ε2t−1 < 0

)
.

Indeed, |θ1 − θ2| > |θ1 + θ2| for all estimated coefficients.
If α1 + β1 < 1, the process ε2t is second order stationary, and a shock to

the conditional variance, h2t (or its variants) has a decaying impact on h2t+k and
is asymptotically negligible. A closer look at the variance equation parameters
in Panel B (Tables B1-B5, Appendix) reveals that α1 + β1 ≈ 1 and α1 + α∗1 +
β1 ≈ 1 for the GARCH(1,1) and GJR-GARCH(1,1) model results for almost all
currency return volatilities; that is the conditional variance of currency returns
are approximately nonstationary indicating that volatility shocks are highly
persistent. This result is often observed in high frequency data when structural
breaks are not accounted for. However, ε+ : α1 + β1 = 0.9282 for positive
shocks to JPY/ZAR returns in the GJR model suggests its variance is mean
reverting but the rate of decay of shocks is very slow. When structural shifts
are ignored, overall, the results are consistent with some of the empirical work;
that is, currency return volatility is also highly persistent when the symmetric
GARCH(1,1) model and the (simpler) asymmetric GJR-GARCH(1,1) models
are applied to financial asset and currency returns data. Also, the much higher
EGARCH values for α1 + β1, significantly above unity, corroborates Engle and
Ng (1993) findings that the EGARCH model is found to lead to a conditional
variance that is too high and more volatile than the GJR-GARCH, although it
captures most of the asymmetry. The APARCH model estimates lie between the
latter two sets of estimates — the statistically significant power transformation
parameter, δ, in APARCH suggests that the power transformation identified
by APARCH is suitable for the data; but not necessarily the best. ‘Best fit’
model ranking is explored in a subsequent study only after taking into account
structural shift.

Fat tails and asymmetry are evident in the error distributions regardless of
the model applied or time series estimated (Panel C in Tables B1-B5, Appendix).

5.2 Long memory and structural change: GARCH model
estimation results

Beine and Laurent (2000) integrate the long memory and structural breaks
approaches and empirically show that there is evidence of a strong interaction
between volatility persistence and structural change but find that these two

20NICs, introduced by Pagan and Schwert (1990) and popularised by Engle and Ng (1993),
measure how new information is incorporated into volatility estimates.
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salient features in time series exchange rate data are imperfect substitutes in
the sense that both characteristics are necessitated to capture all of the observed
persistence in volatility.

One purpose of estimating the mean, ω, in the variance equation is to calcu-
late the constant unconditional variance or volatility, uσ

2. In Tables B1 to B5
(Appendix), the null hypothesis that the unconditional variance is constant at
the 1% level significance for some exchange rate returns, and at the 5% level of
significance for other currency returns, is rejected in all instances; this provides a
justification for modelling volatility with structural shift parameters. The joint
Nyblom-Hansen (NH) test can be used to verify the constancy of the mean
and variance equation parameters, and the error distributions (Nyblom, 1989;
Hansen, 1990). The test is approximately the Lagrange multiplier test (or lo-
cally most powerful test) of the null of constant parameters — that is, there is no
structural change — against the alternative that the parameters follow a martin-
gale. The alternative incorporates simple structural breaks of unknown timing
as well as random walk parameters.21 We do not reject the null of parameter
stability if the Nyblom statistic for a parameter is less than the critical value;
the asymptotic 1% and 5% critical values are reported in Panel F of Tables B1
to B5 (Appendix). All the joint NH statistics test statistics obtained from the
basic symmetric and asymmetric GARCH models unambiguously indicate joint
instability in all the model parameters and justify extending the basic models
to incorporate structural shifts.

The strong and widespread evidence of both long memory and instability in
the variance equation parameters motivates the combined fitting of fractional
integration and structural change to the GARCH models. Tables B6 to B10
(Appendix) report the estimation results for the A-FIGARCH-type models —
accounting for both long memory and smooth transitional structural change.
The mean equation estimation results are uniform to those produced by the
simple GARCH models in Tables B1 to B5 (Appendix) — the signs of the pa-
rameters remain the same whilst the sizes of the coefficients, standard errors
and p-values are only marginally different. The long memory parameter (d-
FIGARCH ) is statistically significant at the 99% level of confidence across the
board — confirming long-run dependence behaviour evident in financial assets
nominal prices. The most appropriate flexible functional form (trigonometric
function) used to capture smooth structural changes varies across both cur-
rency returns and models. Here, only the results for the significant ones are
reported. Perhaps the most crucial findings are that the unconditional variance
(or long-run variance), uσ̂

2 (reflected in p−values for ω in the variance equation
results), is no longer nonstationary when long memory and smooth structural
change are accounted for in the simple GARCH framework.

The stationarity or nonstationarity of the conditional variance is captured
by the volatility persistence statistics, (α1 + β1) in the symmetric models, and
α1 + α∗1 + β1, |θ1 + θ2| + β1 and |θ1 − θ2| + β1 in the asymmetric models (in

21See Hansen (1990) for a description of the test statistics and discussion of their interpre-
tation.

.
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Tables B1-B10, Appendix). The conditional variance of shocks in the sym-
metric GARCH (1,1) model and positive shocks when less extreme assymetric
APARCH is applied now appear stationary, but conditional variance remains
nonstationary for negative shocks in the APARCH model and in the extreme
EGARCH model, regardless of the shock sign (except for yen/rand series); albeit
lower.

Although the Nyblom test can be informative about the type of structural
change (detect whether the structural change is in the mean and/or variance
equations parameters), and the A-GARCH-type models flexible functional form
captures smooth structural change, neither one identify the actual break points
as required by the SSC-GARCHmodels. Estimation of the SSC-GARCHmodels
is a four-step procedure. First, the breakpoints of the different volatility regimes
are identified in the residuals of the mean equations using the standard ICSS,
ICSS (κ1), and ICSS (κ2) tests. The variance equations are then extended
with dummy variables regressors to capture the latter breakpoints. The SSC-
GARCH model is then estimated with all the breaks identified in the latter set
of tests, and then re-estimated with only the statistically significant breaks that
influence conditional variance.

Table A2 (Appendix) reports the number of change points identified by the
ICSS procedure. The κ1 and κ2 structural break point tests detect a substan-
tially lower number of breaks (not reported here), but to begin from a more
general situation, we employed the significant ICSS shifts in the conditional
variance equation. The largest number of breaks, in absolute terms, are identi-
fied in the US dollar/rand series with the yen/rand returns detecting the least
— less than 50% of those in the US dollar/rand data. Relatively speaking, for
each data series, statistically significant variance equation breakpoints range
between 73% to 83% of the total change points identified - the euro/rand and
US dollar/rand are the extrema — suggesting that the ICSS tests are still quite
robust in the presence of non-normality in the disturbances.

The SSC-GARCH models results are presented in Tables B11 and B12 (Ap-
pendix). When attempting to estimate the SSC-GARCH models incorporating
fractional integration, no convergence is achieved using numerical derivatives.
Algorithms often encounter problems in locating the maximum likelihood esti-
mates which is unsurprising in this instance given the large number of structural
shifts — 16 to 44 breaks. The problem of no convergence also arises in the more
complex and demanding asymmetric EGARCH and APARCH models. An ex-
treme difficulty in convergence may be an indication that the model chosen is too
complex and does not describe the data well and hence the most effective way
of avoiding convergence problems is to select a simpler model that adequately
describes the data. Silva and Tenreyro (2011) argue that although in some cases
it is not possible to bypass this problem using some sort of data transformation,
using different optimisation methods or specifications can address the problem.
Even when estimating the SSC-GARCH and SSC-GJR-GACH models without
fractional integration, in some cases, the inclusion of endogenous and exogenous
variables in the mean equation also lead to nonconvergence. Using both com-
parative frameworks, (α1+β1) for positive shocks and α1+α

∗

1+β1 in the case
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of negative shocks (in Tables B11 and B12, Appendix) are much lower for the
SSC-GARCH models than those produced by the adaptive-GARCH models (in
Tables B6 to B10, Appendix) suggesting that models with the shifts observed
in the data are better approximated by abrupt structural change as opposed to
smooth structural change.

The findings in this study can be compared with those of other studies.
For example, this study’s US dollar/rand results applying the SSC-GARCH
model can be compared with those of Duncan and Liu (2009) for the same
model and frequency, and a fairly similar sample period 3 January 1994 to 31
March 2009 (3794 observations) — the sample period in this study covers the
period 14 March 1995 to 31 August 2010 (3864 observations). Duncan and
Liu (2009) detect 19 significant shifts in the volatility of the rand/US dollar
exchange rate with 16 of these having a statistically significant effect on the
variance in contrast to 44 breaks and 36 significant ones identified in this study.
Consequently, and in line with expectations, the volatility persistence value
(α1+β1) = 0.4835 in this paper is substantially lower than the comparative value
of 0.6903 estimated by Duncan and Liu (2009). The differences in the volatility
persistence outcomes can be linked to a number of factors. The main suspect
is the divergence in the level of statistical significance and consequently the
critical t-statistic values yardsticks used in the ICSS tests of the two comparative
studies — we apply an asymptotic critical value of D∗

0.05 = 1.358 (a confidence
level of 95%) compared with D∗

0.01 = 1.628 (99% confidence level) in Duncan
and Liu (2009). Other possible minor influences are the slightly different sample
periods, different specifications of the mean equations resulting in different sized
regressor shocks (ε2t ) in the variance equation and an application of the skewed
Student-t distribution in our analysis which may differ from the one employed
by Duncan and Liu (2009). Additionally, their data was sourced from the I-
net Bridge databank — here, the data was obtained from the SARB database.
Also, this paper analyses the US dollars per rand returns whilst Duncan and
Liu (2009) investigate the rands per US dollar returns. A number of other
differences cannot be ruled out.

In a recent study, Thupayagale and Jefferis’ (2011) surprisingly uncover only
four to six volatility regime shifts in the nominal exchange rates of the rand
against the G4 currencies for a much larger sample period (January 1990 to
November 2010) that encompasses both Duncan and Liu’s (2009) and our sam-
ple. Both the latter studies employ the methodology of Bai and Perron (1998,
2003a,b). Very briefly, Bai and Perron (2003a) use an efficient algorithm to ob-
tain global minimisers of the sum of squared residuals based on the principle of
dynamic programming which requires at most least-squares operations of order
O(T 2) for any number of breaks. However, they caution that care must be taken
when using particular specifications; for example, the tests can miss the true
break values too often which perhaps helps to explain the detection gap in their
study and Duncan and Liu (2009) and our empirical analysis.

In the remaining section of the empirical results (section 6), the timing and
potential causes of structural shift are explored and compared with those in the
unit root AR processes of the raw returns in May (2015a).
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6 Descriptive analysis of structural breakpoints

From Table A2 (Appendix) in the preceding section, volatility regime switching
is less frequent in the yen/rand but more frequent in the US dollar/rand. Table
B13 (Appendix) presents the timing of each change point identified by the ICSS
test that has a significant bearing on variance at the 95% level of confidence. To
explore the number of breaks that coincide across series, a maximum interval
lag of 5 business days is allowed for. Initially focusing on the four bilateral rates
only, there is not a single common breakpoint across the four bilateral exchange
rates, 10 common change points in three bilateral rates, and 14 in two bilateral
rates. Twenty shifts in the weighted exchange rate coincide with one or more
breaks in the bilateral rates. Overlapping breakpoints are more prominent in
the US dollar and the two European currencies’ bilateral exchange rates of the
rand.

The duration of the volatility regimes ranges between 3 and 777 business
days, and not surprisingly, the US dollar/rand records the shortest regime and
the yen/rand the longest — the latter may be explained by the Bank of Japan’s
interventions aimed, in part, at dampening the effects of shocks on yen volatil-
ity. Trailing the yen/rand, there is also relatively greater tranquillity in the
euro/rand — the currency of South Africa’s major trading partner in both goods
and financial assets.

Reverting to the 10 change points which are pervasive — occur across three
bilateral exchange rates — Table A3 (Appendix) ties up these break points with
important economic and non-economic events. The timing of these particular
changes in volatility regimes is more or less consistent with the structural shifts
detected in the changes in the levels of the exchange rates in May (2015a).22 The
coincidence of structural shifts in both the levels and volatility of returns implies
that a sharp movement in the exchange rate is usually or often accompanied
by volatility as well — that is, large movements in exchange rates when their
exact timing is unanticipated causes uncertainty and thus nervousness in the
market. Bidirectional causality is not only plausible but likely as investors and
speculators offload foreign assets whose prices suddenly become erratic leading
to a plunge in the foreign currency’s international price.

7 Concluding remarks and discussion

Exchange rate volatility — a manifestation of uncertainty — and its causes and
effects is arguably the most topical issue in international finance in the post-
Bretton Woods era. The analysis undertaken in this study motivates the use
of GARCH-type volatility models for the rand exchange rates, estimates the
standard models for these rates and replicates common findings in the liter-

22The number of change points discovered in the levels is significantly less due to the limi-
tations of the estimation models applied in May (2015a) as opposed to the ICSS tests applied
in this study — individual structural break adapted unit root tests in May are modelled to
detect a maximum of only two break points in each series.
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ature that volatility is ‘persistent’. It investigates whether this ‘persistence’
is due to structural breaks or long memory. The data sample spans a more
flexible exchange rate regime in South Africa. The descriptive statistics in the
preliminary analysis confirm some of the stylized facts about nominal finan-
cial time series such as leptokurtic distributions, ARCH effects and volatility
clustering of risky assets returns, indicating that the data are candidates for
GARCH-type modelling. Furthermore: i) the extent of asymmetric responses
of the rand to ‘good news’ and bad news’ are considerable — negative shocks
have a greater effect on volatility than their positive counterparts; ii) the results
indicate strong and widespread instability in unconditional volatility — between
20 and 44 breakpoints are detected, iii) volatility persistence falls markedly
when fractional integration and a larger set of structural shifts are accounted
for; iv) the approximating models across the board reflect the importance of
long memory, asymmetry and structural change, both abrupt and smooth, in
exchange rate volatility modelling; v) a consequence of accounting for the latter
phenomena is that the unconditional variance is stationary in contrast to the
most of the simpler models estimated which suggest nonstationarity, supporting
the view that results that find that the volatility process is not mean reverting
may not have adequately accounted for such breaks; vi) the timing of changes in
volatility regimes, and thus their likely causes, are more or less consistent with
the exchange rate level shifts detected in other studies; and, vii) the pricing
of risk varies across exchange rates — only the GBP/ZAR ARCH-M parameter
is statistically significant and at the same time correctly signed (+) at the 5%
level, suggesting that the increased risk of converting pound denominated assets
into rand holdings is weakly associated with an excess return.

Therefore, accounting for long memory, asymmetric responses to shocks, and
in particular, structural change, in the variance of the currency returns of the
rand has produced some novel and striking evidence that advances work under-
taken over the past decade or so on the nominal exchange rates of the rand. The
question of whether rand volatility is excessive remains a perennial issue that
also requires rigorous investigation. The rand’s asymmetric response to news
— negative shocks raise volatility more than positive ones of equal magnitude —
also prompts an inspection of the effect of macroeconomic announcements on
the foreign exchange rates of the rand around the time of the announcement.
The response of the rand to monetary policy pronouncements, under an infla-
tion targeting monetary policy framework and floating exchange rate regime, is
explored using high-frequency minute-by-minute exchange rate data in May et
al (2016).
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Appendix 

 

Table A1: Summary statistics 

 USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

A. Exchange rate returns, 𝒓𝒕 
Minimum -10.552 -9.584 -9.349 -11.409 -9.665 
Maximum 7.403 5.890 5.731 8.691 5.516 
Mean -0.018 -0.018 -0.018 -0.020 -0.018 
Standard deviation 1.077 1.037 1.039 1.307 0.999 
Skewness -0.657 (0.000) -0.621 (0.000) -0.582 (0.000) -0.519 (0.000) -0.693 (0.000) 
Kurtosis 6.676 (0.000) 5.705 (0.000) 5.605 (0.000) 5.657 (0.000) 6.878 (0.000) 
JB (prob) 7454 (0.000) 5489 (0.000) 5276 (0.000) 5326 (0.000) 7927 (0.000) 

B. Exchange rate returns residuals, 𝜺𝒕 

Ljung-Box Q statistics (𝑝 = 2) 
(𝑝 = 20) 

4.720 (0.94) 
33.32 (0.031) 

1.779 (0.411) 
23.53 (0.263) 

2.599 (0.273) 
34.40 (0.024) 

5.184 (0.075) 
30.77(0.058) 

4.362 (0.113) 
28.86 (0.091) 

C. Exchange rate returns squared residuals, 𝜺𝒕
𝟐 

Ljung-Box Q statistics (𝑝 = 2) 
(𝑝 = 20) 

398.8 (0.000) 
2227 (0.000) 

222.2 (0.000) 
1111 (0.000) 

245.9 (0.000) 
1442 (0.000) 

737.8 (0.000) 
3773 (0.000) 

306.1 (0.000) 
1603 (0.000) 

D. Exchange rate squared returns, 𝒓𝒕
𝟐 

ARCH LM statistics (𝑝 = 2) 
(𝑝 = 20) 

175.1 (0.000) 
39.80 (0.000) 

98.7 (0.000) 
22.39 (0.000) 

109.5 (0.000) 
29.98 (0.000) 

324.7 (0.000) 
60.50 (0.000) 

134.9 (0.000) 
30.05 (0.000) 

 

Table A2: ICSS test breakpoints  

Structural breaks  USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

Identified  44 37 38 20 37 

Statistically significant*  36 27 29 16 28 

 

* At 95% or more levels of confidence (in GARCH variance equations). 
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Table A3: Common structural shifts in rand volatility – timing and potential triggers 

Dates Shocks 

12-14 Feb 1996 

 

# Rand suffered a speculative currency attack – followed by a shift in SARB’s  intervention 

policy in foreign exchange market 

13-14 May 1996 

 

# Moderation in volatility as relative market stability returns following currency crisis in   

February 1996 

23 Oct 1996 

 

# Rumours of an imminent relaxation of exchange controls triggers another speculative 

attack on the rand following a brief interlude of relative stability 

22-27 Oct 1997 

 

# Adverse effects of Southeast-Asian financial markets contagion which erupted in July 

1997 in Thailand 

10-11 Jun 1998 

 

# Nervousness about prospects for emerging markets – Southeast-Asian financial markets 

contagion continued to spread to other emerging markets in April and May 1998 

21-22 Jul 1998 

 

# Rand instability elevated further as concerns about financial troubles in Russia surface – 

exacerbated  by a build-up in SA’s net open forward position (NOFP) 

04-09 Feb 1999 # Markets settle somewhat after Brazilian real crisis in January 1999 

24-28 Jan 2002 

 

 

 

# Tranquillity in foreign exchange market following a string of events that unnerved the 

currency in 2001 – concerns about domestic fundamentals, anticipated policy shifts, 

rumours, declining commodity prices, and global financial market turmoil due to 

terrorist attacks on the U.S. in September 

12-13 Jul 2005 

 

# Positive international credit rating agencies’ upgrades and outlooks for South Africa 

reduce rand volatility 

02-03 Oct 2008 # 2007-2008 US financial market crisis spillover effects on rand 
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Figure A1: Daily bilateral exchange rate returns, tr  (expressed as percent) 
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Table B1: Comparative USD/ZAR basic GARCH models estimation results 
Parameter GARCH IGARCH GJR-GARCH EGARCH APARCH 

 

A.  Mean equation results  

  -0.015 (0.021) -0.013 (0.045) -0.017 (0.011) -0.022 (0.000) -0.019 (0.005) 

  0.103 (0.000) 0.105 (0.000) 0.104 (0.000) 0.101 (0.000) 0.102 (0.000) 

  -0.225 (0.000) -0.229 (0.000) -0.226 (0.000) -0.226 (0.000) -0.224 (0.000) 
 

B.  Variance equation results  

  0.001 (0.038) 0.001 (0.011) 0.001 (0.032) -7.156 (0.002) 0.002 (0.049) 

  - - - - 1.436 (0.000) 

1  0.149 (0.000) 0.112 (0.000) 0.127 (0.000) -0.298 (0.002) 0.141 (0.000) 
*

1  - -  0.037 (0.059) - 0.116 (0.012) 
*

11    - - 0.1638 - 0.2573 

1  - - - -0.056 (0.002) - 

2  - - - 0.333 (0.000) - 

21    - - - 0.2775 - 

21    - - - 0.3885  - 

1  0.875 (0.000) 0.888 0.877 (0.000) 0.993 (0.000) 0.892 (0.000) 

11    1.023 1.000 - - - 

 :
11    - - 1.003 - 1.033 

 :
1

*

11    - - 1.040 - 1.149 

 :
121    - - - 1.271 - 

 :
121    - - - 1.382 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.135 (0.000) -0.131 (0.000) -0.135 (0.000) -0.145 (0.000) -0.138 (0.000) 

Tail  5.4680 (0.00) 6.486 (0.000) 5.488 (0.000) 5.5801 (0.000) 5.478 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10   9.394 (0.495)     9.457 (0.489)     9.393 (0.495)     9.579 (0.478)   9.588 (0.477) 

Lag =20 23.127 (0.283) 23.585 (0.261)  22.795 (0.299)  24.761 (0.211) 23.599 (0.260) 

Lag =50 50.418 (0.457) 50.589 (0.450)   49.145 (0.508)   49.816 (0.481)   49.292 (0.502)   
 

E.  Mean equation squared standardised residuals serial correlation statistics, 
)( 2

tzLB
Q  

Lag =10 18.205 (0.021) 21.775 (0.005) 15.955 (0.043) 13.793 (0.087) 41.541 (0.000) 

Lag =20 25.408 (0.114) 29.220 (0.046) 24.066 (0.153) 26.286 (0.093) 50.458 (0.000) 

Lag =50 54.307 (0.247) 58.605 (0.140) 51.166 (0.351) 52.121 (0.317) 78.893 (0.003) 
 

F.  Joint Nyblom stability test statistics 

  19.633 19.922 19.950 20.919 20.026 
 

Joint statistic of the Nyblom test of stability - H0: Parameter is constant and H1: Parameter is unstable. The 
asymptotic 1% and 5% critical values for joint Nyblom statistics are 0.75 and 0.47, respectively. 
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Table B2: Comparative EUR/ZAR basic GARCH models estimation results 
Parameter GARCH IGARCH GJR-GARCH EGARCH APARCH 

 

A.   Mean equation results  

  -0.005 (0.643) -0.007 (0.529) -0.009 (0.423) -0.025 (0.214) -0.051 (0.197) 

  0.619 (0.000) 0.618 (0.000) 0.581 (0.000) 0.522 (0.000) 0.520 (0.001) 

  -0.665 (0.000) -0.664 (0.000) -0.621 (0.000) -0.566 (0.000) -0.564 (0.000) 
 

B.  Variance equation results  

  0.187 (0.004) 0.014 (0.004) 0.021 (0.008) -1.760 (0.000) 0.022 (0.004) 

  - - - - 1.221 (0.000) 

1  0.102 (0.000) 0.112 (0.000) 0.073 (0.000) -0.390 (0.002) 0.107 (0.000) 
*

1  - - 0.049 (0.023) - 0.116 (0.012) 
*

11    - - 0.1219 - 0.2573 

1  - - - -0.073 (0.001) - 

2  - - - 0.273 (0.000) - 

21    - - - 0.2006 - 

21    - - - 0.3456  - 

1  0.886 (0.000) 0.888 0.886 (0.000) 0.980 (0.000) 0.896 (0.000) 

11    0.988 1.000 - - - 

 :
11    - - 0.959 - 1.002 

 :
1

*

11    - - 1.008 - 1.118 

 :
121    - - - 1.181 - 

 :
121    - - - 1.326 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.136 (0.000) -0.138 (0.000) -0.134 (0.000) -0.144 (0.000) -0.140 (0.000) 

Tail  5.541 (0.000) 5.183 (0.000) 5.541 (0.000) 5.664 (0.000) 5.603 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 14.430 (0.071) 14.946 (0.060)   10.629 (0.224)   12.137 (0.145) 11.439 (0.178) 

Lag =20 20.018 (0.332) 20.721 (0.294)  16.221 (0.577)  18.632 (0.415) 17.539 (0.487) 

Lag =50 45.573 (0.614) 44.912 (0.600)   40.255 (0.779)   42.513 (0.696)   41.575 (0.732) 
 

E.  Mean equation squared standardised residuals serial correlation statistics, 
)( 2

tzLB
Q  

Lag =10 3.133 (0.926) 3.359 (0.910) 2.825 (0.945) 8.341 (0.410) 5.873 (0.661) 

Lag =20 8.934 (0.961) 10.139 (0.927) 8.868 (0.963) 14.500 (0.696) 11.971 (0.849) 

Lag =50 26.772 (0.994) 28.020 (0.991) 28.359 (0.989) 38.264 (0.842) 33.938 (0.938) 
 

F.  Joint Nyblom stability test statistics 

  4.594 3.563 5.123 4.6112 4.949 
 

Joint statistic of the Nyblom test of stability - H0: Parameter is constant and H1: Parameter is unstable. The asymptotic 1% 
and 5% critical values for joint Nyblom statistics are 0.75 and 0.47, respectively. 
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Table B3: Comparative GBP/ZAR GARCH basic models estimation results 
Parameter GARCH IGARCH GJR-GARCH EGARCH APARCH 

 

A.  Mean equation results  

  -0.075 (0.007) -0.075 (0.006) -0.071(0.009) -0.089 (0.002) -0.079 (0.006) 

  0.1067 (0.000) 0.107 (0.000) 0.109 (0.000) 0.110 (0.000) 0.109 (0.000) 

  0.186 (0.000) 0.185 (0.000) 0.186 (0.000) 0.186 (0.000) 0.186 (0.000) 

  0.074 (0.047) 0.074 (0.041) 0.058 (0.037) 0.071 (0.070) 0.062 (0.103) 
 

B.  Variance equation results  

  0.009 (0.009) 0.009 (0.003) 0.009 (0.010) -1.923 (0.001) 0.011 (0.007) 

  - - - - 1.494 (0.000) 

1  0.113 (0.000) 0.112 (0.018) 0.081 (0.018) -0.422 (0.00) 0.110  (0.000) 
*

1  - - 0.052 (0.005) - 0.173 (0.001) 
*

11    - - 0.1326 - 0.2836 

1  - - - -0.078 (0.000) - 

2  - - - 0.305 (0.000) - 

21    - - - 0.2274 - 

21    - - - 0.3834  - 

1  0.888 (0.000) 0.8878 0.892 (0.000) 0.986 (0.000) 0.899 (0.000) 

11    1.000 1.000 - - - 

 :
11    

 
- 

 
- 

 
0.973 

- 
 

1.010 
 :

1

*

11    - - 1.024 - 1.183 

 :
121    - - - 1.213 - 

 :
121    - - - 1.369 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.081 (0.000) -0.081 (0.000) -0.085 (0.000) -0.100 (0.000) -0.089 (0.000) 

Tail  6.087  (0.000) 6.102 (0.000) 6.142 (0.000) 6.243 (0.000) 6.159 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 10.060 (0.435)   10.057 (0.436)   10.621 (0.388)   10.662 (0.308) 11.123 (0.348) 

Lag =20 23.948 (0.245) 23.940 (0.245)  24.124 (0.237)  25.674 (0.177) 24.961 (0.203) 

Lag =50 53.196 (0.352) 53.172 (0.353)   43.741 (0.333)   54.468 (0.309)   54.124   (0.319)   
 

E.  Mean equation squared standardised residuals serial correlation statistics, 
)( 2

tzLB
Q  

Lag =10 11.916 (0.155) 11.888 (0.156) 11.375 (0.181) 19.458 (0.013) 14.773 (0.063) 

Lag =20 19.946 (0.336) 19.881 (0.340) 20.327 (0.315) 25.784 (0.105) 22.954 (0.192) 

Lag =50 57.421 (0.497) 47.361 (0.499) 47.621 (0.488) 47.087 (0.510) 48.181 (0.466) 
 

F.  Joint Nyblom stability test statistics 

  11.796 11.594 12.400 11.837 12.458 
 

Joint statistic of the Nyblom test of stability - H0: Parameter is constant and H1: Parameter is unstable. The asymptotic 
1% and 5% critical values for joint Nyblom statistics are 0.75 and 0.47, respectively. 
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Table B4: Comparative JPY/ZAR GARCH basic models estimation results 
Parameter GARCH IGARCH GJR-GARCH EGARCH APARCH 

 

A.  Mean equation results  

  0.003 (0.827) 0.001 (0.968) -0.009 (0.574) -0.007 (0.637) -0.010 (0.542) 

  0.555 (0.000) 0.545 (0.000) 0.443 (0.008) 0.462 (0.001) 0.420 (0.011) 

  -0.602 (0.000) -0.592 (0.000) -0.480 (0.004) -0.503 (0.000) -0.458 (0.006) 
 

B.  Variance equation results  

  0.037 (0.001) 0.024 (0.001) 0.045 (0.001) -1.072 (0.002) 0.042 (0.000) 

  - - - - 1.406 (0.000) 

1  0.106 (0.000) 0.118 (0.000) 0.059 (0.000) -0.334 (0.006) 0.108 (0.000) 
*

1  - - 0.085 (0.001) - 0.290 (0.000) 
*

11    - - 0.1435 - 0.3974 

1  - - - -0.081 (0.000) - 

2  - - - 0.260 (0.000) - 

21    - - - 0.1789 - 

21    - - - 0.3415  - 

1  0.874 (0.000) 0.882 0.869 (0.000) 0.975 (0.000) 0.878 (0.000) 

11    0.979 1.000 - - - 

 :
11    

 
- 

 
- 

 
0.928 

- 
 

0.986 
 :

1

*

11    - - 1.012 - 1.275 

 :
121    - - - 1.154 - 

 :
121    - - - 1.316 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.139 (0.000) -0.137 (0.000) -0.139 (0.000) -0.140 (0.000) -0.140 (0.000) 

Tail  6.594 (0.000) 5.809 (0.000) 6.723 (0.000) 6.619 (0.000) 6.717  (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 10.040 (0.262)   11.232 (0.189)   5.929 (0.655)   8.345 (0.401) 6.301 (0.614) 

Lag =20 19.892 (0.339) 21.586 (0.251)  15.955 (0.596)  17.739 (0.473) 16.140 (0.583) 

Lag =50 41.621 (0.730) 43.376 (0.663)   37.914 (0.851)   38.961 (0.821)   37.642 (0.859)   
 

E.  Mean equation squared standardised residuals serial correlation statistics, 
)( 2

tzLB
Q  

Lag =10 4.543 (0.805) 3.848 (0.871) 2.812 (0.946) 9.209 (0.325) 4.523 (0.807) 

Lag =20 15.041 (0.659) 18.861 (0.401) 11.947 (0.850) 17.147 (0.513) 13.772 (0.744) 

Lag =50 38.215 (0.843) 42.118 (0.712) 43.156 (0.671) 44.369 (0.622) 45.852 (0.561) 
 

F.  Joint Nyblom stability test statistics 

  5.194 4.142  5.649 5.121 5.337 
 

Joint statistic of the Nyblom test of stability - H0: Parameter is constant and H1: Parameter is unstable. The asymptotic 
1% and 5% critical values for joint Nyblom statistics are 0.75 and 0.47, respectively. 
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Table B5: Comparative NEER basic GARCH models estimation results 
Parameter GARCH IGARCH GJR-GARCH EGARCH APARCH 

 

A.  Mean equation results  

  -0.017 (0.024) -0.016 (0.044) -0.021 (0.006) -0.026 (0.003) -0.024 (0.003) 

  0.340 (0.000) 0.333 (0.000) 0.339 (0.000) 0.340 (0.000) 0.343 (0.000) 

  0.098 (0.000) 0.100 (0.000) 0.099 (0.000) 0.094 (0.000) 0.097 (0.000) 
 

B.  Variance equation results  

  0.002 (0.047) 0.002 (0.012) 0.002 (0.042) -6.585 (0.009) 0.003 (0.031) 

  - - - - 1.247 (0.000) 

1  0.160 (0.000) 0.121 (0.000) 0.120 (0.000) -0.443 (0.000) 0.137 (0.000) 
*

1  - - 0.066 (0.002) - 0.192 (0.000) 
*

11    - - 0.1858 - 0.3288 

1  - - - -0.083 (0.000) - 

2  - - - 0.368 (0.000) - 

21    - - - 0.2858 - 

21    - - - 0.4508  - 

1  0.867 (0.000) 0.8788 0.872 (0.000) 0.994 (0.000) 0.897 (0.000) 

11    1.027 1.000 - - - 

 :
11    

 
- 

 
- 

 
0.991 

- 
 

1.034 
 :

1

*

11    - - 1.058 - 1.226 

 :
121    - - - 1.280 - 

 :
121    - - - 1.445 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.122 (0.000) -0.119 (0.000) -0.124 (0.000) -0.143 (0.000) -0.130 (0.000) 

Tail  4.930 (0.000) 5.867 (0.000) 4.951 (0.000) 5.101 (0.000) 4.941 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 6.177 (0.800)   6.637 (0.759)   6.269 (0.792)   6.555 (0.767) 7.949 (0.634) 

Lag =20 15.744 (0.732) 16.768 (0.668)  15.313 (0.758)  17.711 (0.607) 17.294 (0.634) 

Lag =50 40.792 (0.820) 41.121 (0.810)   40.143 (0.839)   41.434 (0.801)   42.023 (0.781)   
 

E.  Mean equation squared standardised residuals serial correlation statistics, 
)( 2

tzLB
Q  

Lag =10 15.246 (0.055) 14.103 (0.079) 13.339 (0.101) 23.893 (0.002) 31.764 (0.000) 

Lag =20 22.746 (0.201) 21.382 (0.261) 21.314 (0.264) 30.302 (0.035) 38.515 (0.003) 

Lag =50 43.494 (0.658) 41.880 (0.721) 42.609 (0.693) 54.557 (0.239) 61.117 (0.097) 
 

F.  Joint Nyblom stability test statistics 

  27.304 27.548 27.568 27.393 27.635 
 

Joint statistic of the Nyblom test of stability - H0: Parameter is constant and H1: Parameter is unstable. The 
asymptotic 1% and 5% critical values for joint Nyblom statistics are 0.75 and 0.47, respectively. 
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Table B6: Comparative USD/ZAR adaptive-FIGARCH models estimation results 
Parameter A-FIGARCH A-FIEGARCH A-FIAPARCH 

 

A.  Mean equation results  

  -0.014 (0.032) -0.024 (0.000) -0.022 (0.001) 

  0.101 (0.000) 0.101 (0.000) 0.101 ( 0.000) 

  -0.225 (0.000) -0.221 (0.000) -0.227 (0.000) 
 

B.  Variance equation results  

  0.481 (0.002) -4.372 (0.000) 0.302 (0.007) 

1  -0.617 (0.000) -0.487 (0.041) -0.483 (0.000) 

2  0.262 (0.000) * 0.211 (0.001) 

1  -0.432 (0.005) -0.328 (0.100) -0.248 (0.022) 

2  * 0.313 (0.060) * 

FIGARCHd   0.401 (0.000) 0.345 (0.000) 0.289 (0.000) 

  - - 1.901 (0.000) 

1  0.226 (0.004) -0.543 (0.000) 0.336 (0.001) 
*

1  - - 0.369 (0.001) 
*

11    - - 0.7056 

1  - -0.094 (0.000) - 

2  - 0.307 (0.000) - 

21    - 0.2124 - 

21    - 0.4010 - 

1  0.492 (0.000) 0.895 (0.000) 0.489 (0.000) 

11    0.719 - - 

 :
11    

 
- 

 
- 

0.825 

 :
1

*

11    - - 1.042 

 :
121    - 1.108 - 

 :
121    - 1.296 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.145 (0.000) -0.140 (0.000) -0.156 (0.000) 

Tail  6.436 (0.000) 5.783 (0.000) 6.158 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 10.106 (0.431) 10.703 (0.381)   10.618 (0.388)   

Lag =20 26.412 (0.153) 26.815 (0.141)  28.005 (0.109)  

Lag =50 55.596 (0.272) 56.300 (0.251)   55.791   (0.266)   
 

* Parameters are statistically insignificant at 1%, 5% and 10% levels – model is estimated 
without these trigonometric structural change variables. 
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Table B7: Comparative EUR/ZAR adaptive-FIGARCH models estimation results 
Parameter A-FIGARCH A-FIEGARCH A-FIAPARCH 

 

A.  Mean equation results  

  -0.004 (0.752) -0.032 (0.114) -0.015 (0.210) 

  0.621 (0.000) 0.545 (0.001) 0.566 (0.001) 

  -0.670 (0.000) -0.586 (0.000) -0.599 (0.000) 
 

B.  Variance equation results  

  0.615 (0.000) -4.644 (0.000) 0.454 (0.000) 

1  * * * 

2  -0.284 (0.008) * * 

1  * * -0.1928 (0.043) 

2  * 
 

0.334 (0.002) 0.166 (0.043) 

FIGARCHd   0.305 (0.000) 0.173 (0.000) 0.197 (0.000) 

  - - 1.826 (0.000) 

1  0.270 (0.005) -0.480 (0.000) 0.305 (0.023) 
*

1  - - 0.488 (0.003) 
*

11    - - 0.7928 

1  - -0.097 (0.000) - 

2  - 0.257 (0.000) - 

21    - 0.1599 - 

21    - 0.3531 - 

1  0.456 (0.000) 0.923 (0.000) 0.401 (0.004) 

11    0.726 - - 

 :
11    

 
- 

 
- 

0.706 

 :
1

*

11    - - 1.194 

 :
121    - 1.083 - 

 :
121    - 1.277 - 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.143 (0.000) -0.147 (0.000) -0.147 (0.000) 

Tail  6.174 (0.000) 5.812 (0.000) 6.088 (0.000) 
 

D. Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 10.106 (0.017) 11.023 (0.200)   9.3863 (0.311)   

Lag =20 24.536 (0.138) 18.742 (0.408)  16.854 (0.533)  

Lag =50 48.151 (0.467) 44.498 (0.617)   39.482 (0.805)   
 
 

* Parameters are statistically insignificant at 1%, 5% and 10% levels – model is estimated 
without these trigonometric structural change variables. 
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Table B8: Comparative GBP/ZAR adaptive-FIGARCH models estimation results 
Parameter A-FIGARCH A-FIEGARCH A-FIAPARCH 
 

A.  Mean equation results  

  -0.053 (0.002) -0.067 (0.000) -0.062 (0.000) 

  0.103 (0.000) 0.103 (0.000) 0.104 (0.000) 

  0.181 (0.000) 0.184 (0.000) 0.178 (0.000) 

  0.060* (0.013)  -0.053 (0.019)* -0.052 (0.017)* 
 

B.  Variance equation results  

  0.636 (0.000) -5.671 (0.000) 0.193 (0.001) 

1  -0.360 (0.027) -0.381 0.004) ** 

2  ** ** ** 

1  -0.304 (0.037) ** ** 

2  ** ** ** 

FIGARCHd   0.357 (0.000) 0.381 (0.004) 0.244 (0.000) 

  - - 1.9827 (0.000) 

1  0.338 (0.000) -0.502 (0.000) 0.438 (0.000) 
*

1  - - 0.337 (0.002) 
*

11    - - 0.776 

1  - -0.091 (0.000) 
- 
 

2  - 0.293 (0.000) - 

21    - 0.202 - 

21    - 0.384 - 

1  0.545 (0.000) 0.946 (0.000) 0.540 (0.000) 

11       0.883 - - 

 :
11    

 
- 

 
- 

0.978 

 :
1

*

11    - - 1.315 

 :
121    - 1.148 - 

 :
121    - 1.330 

- 
 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.087 (0.000) -0.092 (0.000) -0.098 (0.000) 

Tail  6.885 (0.000) 6.453 (0.000) 6.805 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 11.920 (0.291) 12.294 (0.266)   13.596 (0.192)   

Lag =20 27.167 (0.131) 26.902 (0.138)  28.031 (0.109)  

Lag =50 55.909 (0.263) 56.203 (0.254)   55.313 (0.281)   
 

*   Conditional variance 
 

** Parameters are statistically insignificant at 1%, 5% and 10% levels – model is estimated 
without trigonometric structural change variables. 
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Table B9: Comparative JPY/ZAR adaptive-FIGARCH models estimation results 
Parameter A-FIGARCH A-FIEGARCH A-FIAPARCH 

 

A.  Mean equation results  

  0.008 (0.579) -0.007 (0.590) -0.009 (0.560) 

  0.559 (0.000) 0.468 (0.001) 0.446 (0.005) 

  -0.608 (0.000) -0.506 (0.000) -0.479 (0.003) 
 

B.  Variance equation results  

  1.099 (0.000) -1.379 (0.000) 0.754 (0.000) 

1  * -0.335 (0.033) * 

2  -0.317 (0.066) * * 

1  * * * 

2  * 0.246 (0.036) * 

FIGARCHd   0.327 (0.000) 0.353 (0.000) 0.226 (0.000) 

  - - 1.787 (0.000) 

1  0.288 (0.000) -0.341 (0.011) 0.325 (0.000) 
*

1  - - 0.461 (0.000) 
*

11    - - 0.7855 

1  - -0.101 (0.000) - 

2  - 0.230 (0.000) - 

21    - 0.1295 - 

21    - 0.3311 - 

1  0.494 (0.000) 0.794 (0.000) 0.440 (0.000) 

11    0.782 - - 

 :
11    

 
- 

 
- 

0.764 

 :
1

*

11    - - 1.225 

 :
121    - 0.924 - 

 :
121    - 

 
1.125 

- 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.139 (0.000) -0.133 (0.000) -0.141 (0.000) 

Tail  7.197 (0.000) 6.803 (0.000) 7.244 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 12.829 (0.118) 9.252 (0.322)   6.392 (0.603)   

Lag =20 22.895 (0.195) 18.419 (0.428)  16.974 (0.525)  

Lag =50 45.593 (0.572) 41.004 (0.753)   39.433 (0.806)   
 

* Parameters are statistically insignificant at 1%, 5% and 10% levels – model is estimated 
without these trigonometric structural change variables. 
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Table B10: Comparative NEER/ZAR adaptive-FIGARCH models estimation results 
Parameter A-FIGARCH A-FIEGARCH A-FIAPARCH 

 

A.  Mean equation results  

  -0.016 (0.034) -0.028 (0.000) -0.027 (0.001) 

  0.330 (0.000) 0.346 ( 0.000) 0.333 (0.000) 

  0.095 (0.000) 0.093 (0.000) 0.093 (0.000) 
 

B.  Variance equation results  

  0.397 (0.004) -5.073 (0.000) 0.278 (0.010) 

1  -0.399 (0.003) * -0.376 (0.001) 

2  * * 0.148 (0.008) 

1  -0.267 (0.014) * -0.222 (0.024) 

2  * 0.473 (0.059) * 

FIGARCHd   0.328 (0.000) 0.502 (0.000) 0.241 (0.000) 

  - - 1.847 (0.000) 

1  0.266 (0.000) -0.741 (0.000) 0.4325 (0.000) 
*

1  - - 0.520 (0.000) 
*

11    - - 0.952 

1  - -0.115 (0.000) - 

2  - 0.337 (0.000) - 

21    - 0.222 - 

21    - 0.451 - 

1  0.497 (0.000) 0.881 (0.000) 0.535 (0.000) 

11    0.763 - - 

 :
11    

 
- 

 
- 

0.967 

 :
1

*

11    - - 1.487 

 :
121    

 :
121    

- 
 

- 

1.103 
 

1.332 

- 
 

- 

 

C.  Skewed Student-t distribution statistic for residuals, 
t    

Asymmetry  -0.131 (0.000) -0.139 (0.000) -0.150 (0.000) 

Tail  5.865 (0.000) 5.386 (0.000) 5.610 (0.000) 
 

D.  Mean equation standardised residuals serial correlation statistics, 
)( tzLBQ  

Lag =10 6.857 (0.739) 6.421 (0.779)   7.860 (0.643)   

Lag =20 17.623 (0.612) 16.209 (0.704)  18.959 (0.525)  

Lag =50 42.825 (0.754) 40.878 (0.818)   46.017 (0.634)   
 

* Parameters are statistically insignificant at 1%, 5% and 10% levels – model is estimated without 
these trigonometric structural change variables. 
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Table B11: Comparative SSC-GARCH models estimation results 
Parameter USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

 

A.  Mean equation results  

  -0.018 (0.006) -0.011 (0.591) -0.019 (0.159) -0.015 (0.324) -0.003 (0.753) 

  - 0.519 (0.000) - - - 

  - -0.639 (0.000) - - - 
 

B.  Variance equation results  

  1.036 (0.000) 1.151 (0.000) 0.904 (0.000) 1.269 (0.000) 1.167 (0.000) 

Structural breaks*  

𝐷1 − 𝐷𝑋𝑋 
 

36 
-0.982 : 9.638 

 (0.000 : 0.062) 

27 
-0.977 : 1.903 

 (0.000 : 0.063) 

29 
-0.932 : 4.525 

 (0.000 : 0.042) 

16 
-1.226 : 8.961 

 (0.000 : 0.002) 

28 
-1.143 : 5.013 

 (0.000 : 0.095) 

1  0.059 (0.000) 0.045 (0.001) 0.077 (0.000) 0.075 (0.000) 0.060 (0.000) 

1  0.424 (0.000) 0.591 (0.000) 0.551 (0.000) 0.692 (0.000) 0.550 (0.000) 

11    0.4835 0.6362 0.6275 0.7672 0.6099 
 

C.  Skewed Student-t distribution statistic for residuals, t     

Asymmetry  -0.112 (0.000) -0.112 (0.000) -0.101 (0.000) -0.110 (0.000) -0.115 (0.000) 

Tail  13.272 (0.000) 10.871 (0.000) 14.472 (0.000) 8.914 (0.000) 10.510 (0.000) 
 

 

D.  Mean equation standardised residuals serial correlation statistics 

Lag =10 10.442 (0.403) 4.623 (0.797)   10.027 (0.438)   7.294 (0.697)   113.977 (0.174)   

Lag =20 24.331 (0.228) 9.491 (0.947)  26.855 (0.139)  11.957 (0.590)  21.326 (0.378)  

Lag =50 48.546 (0.532) 29.633 (0.983)   57.087 (0.229)   43.867 (0.717)   47.541 (0.573)   
 

* To conserve space, 𝐷𝑥𝑥 is the number of significant change points plus unity. The information in parenthesis is the range for 
the relevant statistics for each dummy variable. The individual break point results may be requested from the author.  
 

 

Table B12: Comparative SSC-GJR-GARCH models estimation results 
Parameter USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

 

A.  Mean equation results  

  -0.023 (0.001) -0.000 (0.992) -0.028 (0.012) -0.005 (0.753) -0.012 (0.200) 

  - 0.596 (0.000) - - - 

  - -0.636 (0.000) - - - 

  - - 0.096 (0.000) - - 

  - - 0.172 (0.000) - - 
 

B.  Variance equation results  

  0.954 (0.000) 0.719 (0.000) 0.954 (0.000) 1.185 (0.000) 0.914 (0.000) 
Structural breaks*  

𝐷1 − 𝐷𝑋𝑋 
 

36 
-0.943 : 9.748 

(0.000 : 0.040) 

24 
-0.663 : 2.438 

 (0.000 : 0.051) 

29 
-0.918 : 4.0329 
 (0.000 : 0.099) 

16 
-1.131 : 8.978 

 (0.000 : 0.001) 

29 
-0.900 : 5.395 

 (0.000 : 0.079) 

1  -0.021 (0.203) -0.019 (0.111) 0.007 (0.666) -0.021 (0.047) -0.035 (0.000) 
*

1  0.143 (0.000) 0.117 (0.000) 0.127 (0.000) 0.164 (0.000) 0.160 (0.000) 
*

11    0.1429** 0.1166** 0.1266** 0.1434 0.1249 

1  0.460 (0.000) 0.593 (0.000) 0.601 (0.000) 0.708 (0.000) 0.594 (0.000) 
 :

11    0.4601** 0.5929** 0.6009** 0.6868 0.5587 

 :
1

*

11    0.6030** 0.7095** 0.7275 0.8511 0.7185 
 

C. Skewed Student-t distribution statistic for residuals, t   

Asymmetry  -0.136 (0.000) -0.121 (0.000) -0.090 (0.000) -0.129 (0.000) -0.134 (0.000) 
Tail  13.422 (0.000) 10.672 (0.000) 14.867 (0.000) 9.271 (0.000) 11.157 (0.000) 

 

D.  Mean equation standardised residuals serial correlation statistics 

Lag =10 9.425 (0.492) 3.339 (0.911)   13.006 (0.223)   6.279 (0.791)   12.582 (0.248)   
Lag =20 23.550 (0.263) 8.398 (0.972)  27.580 (0.120)  16.826 (0.664)  20.171 (0.447)  
Lag =50 46.704 (0.606) 28.646 (0.988)   57.835 (0.209)   42.257 (0.774)   47.119 (0.590)   
 

* See Table B11. ** 𝛼1is statistically insignificant (or indifferent from zero) implying 𝛼1 + 𝛼1
∗ = 𝛼1

∗, and 𝛼1 + 𝛽1 = 𝛽1. 
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Table B13: Timing of structural shifts in exchange rate returns variance* 

Break points USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

06-Jan-1995 N N Y N N 

24-Mar-1995 Y N N N N 

09-May-1995 N Y N N Y 

31-May-1995 N Y N N Y 

20-Jul-1995 N N N N Y 

16-Aug-1995 Y N N N N 

03-Oct-1995 N N N N Y 

21-Nov-1995 N N N Y N 

12-Feb-1996 N N N Y N 

13-Feb-1996 N Y N N N 

14-Feb-1996 Y N N N N 

21-Feb-1996 N N Y N Y 

22-Feb-1996 Y N N N N 

22-Apr-1996 N Y N N N 

23-Apr-1996 Y N N N N 

13-May-1996 N N Y Y Y 

14-May-1996 Y N N N N 

14-Jun-1996 Y N N N N 

09-Jul-1996 N Y Y N N 

31-Jul-1996 N Y N N N 

07-Aug-1996 N N Y N N 

23-Oct-1996 N Y Y Y Y 

04-Feb-1997 Y N N N N 

21-Feb-1997 N Y N N N 

24-Feb-1997 N N N N Y 

14-Mar-1997 N N Y N N 

20-Mar-1997 Y N N N N 

21-Jul-1997 Y N Y N N 

19-Aug-1997 Y N N N N 

22-Aug-1997 Y N Y N N 

22-Oct-1997 N Y N N N 

24-Oct-1997 Y N N N N 

27-Oct-1997 N N Y N N 

30-Oct-1997 N N N N Y 

04-Nov-1997 Y N N N N 

02-Jan-1998 Y N N N N 

22-Jan-1998 Y N N N N 

23-Jan-1998 N N N N Y 

18-May-1998 N N N N Y 

10-Jun-1998 N Y Y N Y 

11-Jun-1998 Y N N N N 

21-Jul-1998 N Y N Y Y 

22-Jul-1998 Y N N N N 

31-Dec-1998 N Y N N N 

04-Feb-1999 N N N Y N 

08-Feb-1999 N N N N Y 

09-Feb-1999 Y N Y N N 

12-Jul-1999 Y N N N N 

26-Jan-2000 Y N N N N 

28-Mar-2000 N N N N Y 

11-Apr-2000 N N Y N N 

13-Jun-2000 N N Y N N 

* ‘Y’ denotes a statistically significant volatility break point; ‘N’ denotes no-break. 
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Break points USD/ZAR EUR/ZAR GBP/ZAR JPY/ZAR NEER 

14-Sep-2000 N N Y N N 

04-Jan-2001 Y N N N N 

26-Apr-2001 Y N N N N 

20-Sep-2001 N N N N Y 

21-Sep-2001 Y N N N N 

13-Nov-2001 N N Y N N 

27-Nov-2001 N Y N N Y 

24-Jan-2002 N Y Y N Y 

28-Jan-2002 Y N N N N 

28-Feb-2002 N Y N N N 

18-Mar-2002 N N Y Y Y 

20-Mar-2002 Y N N N N 

13-Dec-2002 Y N N N N 

26-Jun-2003 N N Y N N 

12-Dec-2003 N Y N N N 

15-Dec-2003 Y N N N N 

15-Jan-2004 N N Y N N 

19-Jan-2004 N N N Y Y 

28-Apr-2004 N N N Y N 

11-May-2004 N Y N N N 

13-May-2004 N N Y N Y 

12-Aug-2004 Y N N N N 

12-Jul-2005 N Y N N N 

13-Jul-2005 N N Y Y Y 

20-Sep-2005 N N Y N N 

23-Sep-2005 N Y N N N 

12-Dec-2005 N N N Y N 

18-Apr-2006 N N N Y N 

20-Apr-2006 N Y N N Y 

24-Apr-2006 Y N N N N 

23-Jun-2006 N N Y N N 

16-Aug-2006 N Y N N N 

02-Nov-2006 N Y N N Y 

07-Nov-2006 Y N N N N 

24-Nov-2006 N N Y N N 

13-Mar-2007 N N N Y N 

24-Jul-2007 N N N Y N 

09-Oct-2007 N N Y N N 

11-Jan-2008 N Y N N N 

14-Jan-2008 Y N N N N 

09-Apr-2008 N N N N Y 

03-Sep-2008 Y N N N N 

15-Sep-2008 N Y N N N 

02-Oct-2008 N N N Y Y 

03-Oct-2008 Y N Y N N 

30-Oct-2008 N Y N N Y 

03-Nov-2008 Y N N N N 

11-Dec-2008 N Y N N N 

19-Jan-2009 N N Y N N 

15-May-2009 N N N Y N 

02-Oct-2009 N Y N N N 

26-Oct-2009 N N Y N N 

05-Nov-2009 N N N N Y 
 

* ‘Y’ denotes a statistically significant volatility break point; ‘N’ denotes no-break. 
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