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Abstract

This paper provides a plausible explanation for why the optimum num-
ber of stocks in a portfolio is elusive, and suggests a way to determine this
optimal number. Diversification is dependent on the number of stocks
in a portfolio and the correlation structure. Adding stocks to a portfo-
lio increases the level of diversification, and consequently leads to risk
reduction. However the risk reduction effect dissipates after a certain
number of stocks, beyond which additional stocks do not contribute to
risk reduction. To explain this phenomenon, this paper investigates the
relationship between portfolio diversification and concentration using a
genetic algorithm. To quantify diversification, we use the Portfolio Di-
versification Index (PDI). In the case of concentration, we introduce a
new quantification method. Concentration is quantified as complexity
of the correlation matrix1 . The proposed method quantifies the level of
dependency (or redundancy) between stocks in a portfolio. By contrast-
ing the two methods it is shown that the optimal number of stocks that
optimizes diversification depends on both number of stocks and average
correlation. Our result shows that, for a given universe, there is a set
of Pareto optimal portfolios each containing a different number of stocks
that simultaneously maximizes diversification and minimizes concentra-
tion. The preferred portfolio among the Pareto set will depend on the
preference of the investor. Our result also suggests that an ideal condi-
tion for the optimal number of stocks is when the variance reduction as
a result of adding a stock is off-set by the the variance contribution of
complexity.

Keywords: Information Theory; Diversification; Genetic Algorithm;
Portfolio optimization; Principal Component Analysis; Simulation meth-
ods; Maximum Diversification Index.
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1 Introduction

Achieving the full benefit of diversification (namely, variance reduction) in a
portfolio of securities is desirable in portfolio management. The literature sug-
gests that increasing the number of stocks in stock portfolios is beneficial, in
terms of diversification. However, there is no consensus as to what the optimal
number of stocks should be. Evans & Archer (1968) put this number between
10 and 12 stocks. Meir (1987) challenges this belief, and finds that between 30
and 40 stocks are needed to achieve full diversification. In Tang (2004)’s review
of the literature, the recommendation is between 10 and 40 stocks. The author
suggests that a portfolio size of 20 is needed to eliminate 95% of the diversifi-
able risk. The common theme among all these studies is that a stock portfolio
is made up of diversifiable and non-diversifiable risks. Adding stocks to a port-
folio helps deal with diversifiable risks, but once all diversifiable risks have been
accounted for, additional stocks hold no benefit, in terms of diversification.

While this paper agrees that there is no magic number that achieves full
diversification in every situation (or under every market condition), our main
contribution is to provide an alternative explanation as to why this is the case.
To achieve this, we introduce a novel methodology to quantify diversification or
concentration. By contrasting the proposed measure with a known method of
quantifying diversification, an alternative explanation is provided as to why the
diversification benefit depends not only on the number of stocks, but also the
correlation structure.

Our approach involves comparing a measure of diversification with a measure
that captures lack of diversification (or variation redundancy). The trade-off be-
tween these two factors, as stocks are added to a portfolio, suggests the optimal
number of stocks that exhaust the benefits of diversification. Our main conjec-
ture is that, on the one hand, as stocks are added to a portfolio this increases
its level of diversification by introducing independent sources of variation to
the portfolio, which eliminates diversifiable risk. On the other hand, this also
increases the level of redundancy in the portfolio, by amplifying the variation
that is common to all stocks, or the non-diversifiable risk. This component is
captured by our proposed measure, which we call portfolio complexity. The
net effect is such that, beyond a certain number of stocks, the marginal diver-
sification benefit of the last stock is off-set by its complexity contribution (or
variation redundancy), so that adding more stocks beyond this point holds no
diversification benefit.

2 Quantifying diversification

Diversification is one of the most important tenets of portfolio theory. However,
finding a metric for measuring the degree of diversification of a given portfolio
has been elusive. Since the pioneering work of Markowitz (1952), different
methods have been proposed, in an attempt to measure diversification across
portfolios. Despite these proposals, there has not been consensus on a metric
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to measure diversification (Frahm & Wiechers 2011; Rudin & Morgan 2006).
The lack of consensus is not because of conflicting definitions of the concept,
rather it arises out of the problem of how to measure the quantity defined. A
portfolio is said to be diversified if its sources of variation are independent. It
is important to note here that sources of variation for stock portfolios can be
thought of in two ways. Some diversification measures assume that individual
stocks constitute sources of variation, while the more recent measures think of
sources of variation in terms of factors. These factors are orthogonal linear
combinations of stock variations.

The relationship between the degree of diversification, and variance, is what
makes diversification an important concept. According to Frahm & Wiechers
(2011), "It is the diversification effect among different assets that seems to
contribute to portfolio performance". One interpretation of this is that the
more independent sources of variation there are in a portfolio, the less likely it
will be heavily vulnerable to individual component shocks. This in turn keeps
the volatility as low as possible.

3 Diversification measures

A number of diversification measures have been introduced in the literature.
Broadly speaking, these measures can be classified into two categories. The
first category measures diversification relative to some market index, by the
use of factor analysis, while the second category measures it independent of an
index.

The second category is desirable because there are cases where the index
portfolio itself is not well diversified. An example is the case of developing
markets, where a particular sector of the market might be responsible for a
disproportionately large percentage of the total variation in the market (Van
Heerden, et. al. 2008). The category that measures diversification independent
of the market portfolio can be further divided into three sub-categories. The first
category assumes independence among the primary constituents of a portfolio
(stocks), and then defines a diversified portfolio as a portfolio with a weight
that is uniformly distributed over its sources of variation (e.g. Herfindal index
(Hovenkamp 1985)), and related measures based on portfolio weights. These
measures are also referred to as concentration measures (Divecha, et al. 1992).

The second sub-category ignores portfolio weights, instead, its quantifica-
tion is based on the covariance/correlation of stocks in the portfolio. This
sub-category uses some metric to define independence among unique variation
factors in a portfolio, e.g. Principal Component based methods like the Portfo-
lio Diversification Index (PDI) (Rudin & Morgan 2006). The third sub-category
combines both approaches, i.e. it first defines independent sources of variation
in the portfolio using factor analysis, and then distributes weights such that the
portfolio’s risk is not dependent on a single source of variation. An example is
the method introduced by Meucci (2010) which uses the principal component
analysis approach with information theory in quantifying diversification. The
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merits and demerits of these approaches are discussed in Frahm & Wiechers
(2011). In this paper we make use of the PDI measure to capture the level of
diversification in a portfolio. The choice of PDI is based on the fact that, like
our proposed complexity measure, also falls into the category of diversification
quantifiers that ignore portfolio weights2 . The subsequent analysis is therefore
based on equally weighted portfolios.

3.1 Portfolio Diversification Index (PDI)

PDI is constructed using principal component analysis. It is designed to evaluate
the effective number of independent variation components in a portfolio. Under
this method, the principal components of a portfolio’s return is calculated and
a weight is attached to each principal component in the following way;

PDI = 2
n�

k=1

kWi − 1 . . . . . . . . . (1)

Wi =
λi�
λi

where n is the number of principal components in a portfolio and λi are the
ordered and normalized covariance or correlation eigenvalues. This approach
expresses a portfolio as a linear combination of variation factors or principal
portfolios that are by definition orthogonal (Meussi 2009). The eigenvalues
are the variances of these principal portfolios. Therefore, Wi is the fraction of
the original portfolio’s total variance that is attributable to the ith principal
portfolio.

PDI therefore measures diversification as the centre of mass of principal
components or relative strength vector. It measures how front loaded the vector
{λi}i = 1 . . . . . . n is. It is also bounded in the interval 1 ≤ PDI ≤ n so that
PDI can be interpreted as the number of independent sources of variation in
the portfolio. When all the eigenvalues (λi) in a portfolio are equal (e.g. if
the covariance matrix is an identity matrix) then the PDI = n. This means
that there are as many orthogonal factors of variation as there are stocks in the
portfolio. Essentially the bigger the PDI value the more independent sources of
variation there are in the portfolio, and consequently the more diversified the
portfolio is. For details of implementation of this index see Rudin & Morgan
(2006).

3.2 Complexity measure

We define an alternative measure for quantifying diversification. Unlike con-
centration measures that are based on weights (Herfindal index ), our proposed
measure expresses concentration as a function of the dependency structure of

2 It is worth mentioning that Kirchner and Zunckel (2011) claim portfolio weight can be
accommodated under PDI by considering weighted returns.
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returns in the portfolio. This measure simply quantifies lack of diversification
as the complexity of the variance-covariance or correlation matrix of returns.

The complexity of a random vector is a measure of the interaction or depen-
dency between its components. For a multivariate normal distribution of dimen-
sion nwith joint probability density function (pdf) f(x) = f(x1, x2, x3, . . . . . . xn)
and marginal pdfs fj(xj), j = 1, 2, 3, . . . . . . , n. Information measure of depen-
dence between the random variables x1, x2, x3, . . . . . . xn is given by;

I(x) = I(x1, x2, x3, . . . . . . xn) = (2)

Ef [log
f(x1, x2, x3, . . . . . . xn)

f(x1), f(x2, ), f(x3, ) . . . . . . , f(xn)
]

where I(x) is the Kullback-Leibler (KL) (1951) information divergence against
independence. I(x) is a measure of expected dependency among the component
variables, and has the following properties;

• I(x) ≥ 0 .i.e the expected dependency is non-negative

• f(x1, x2, x3, . . . . . . xn) = f(x1), f(x2, ), f(x3, ) . . . . . . , f(xn), if and only if
the variables are statistically independent, in which case the quotient in
equation (2) will be 1 and the log of it will be zero.

Assuming the n-variate random variables are equity returns (or any other
security), it means that I(x) is the measure of expected dependency between
stocks in the portfolio. Hence, I(x) for a portfolio of stocks is zero if all the
stocks are statistically independent. However, for stock portfolios we expect
I(x) to always be greater than zero because of the theory of factor models. For
a given portfolio or market, higher values of I(x) correspond to higher levels of
dependency.

KL divergence in equation 1 is related to Shanon (1948) entropy by the
identity;

I(x) =
n�

j=1

H(xj)−H(x1, x2, x3, . . . . . . xn) (3)

where H(xj) is the marginal entropy and H(x1, x2, x3, . . . . . . xn) represents
the joint entropy. Van Edem (1971) provides the definition for information
complexity of a covariance matrix Σ of normally distributed random variables.

I(x) =
n�

j=1

�
1

2
log(2π) +

1

2
log(σ2j) +

1

2

�
−

�
1

2
log(2π) +

1

2
log |Σ|+

1

2

�
(4)

This reduces to;

C0(Σ) =
1

2

n�

j=1

log(σ2j)−
1

2
log
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See Bozdogan (2004) for details of the proof. σ2j is the j-th diagonal element
of Σ and n is the dimension of Σ.C0(Σ) is zero when Σ is a diagonal matrix
and C0(Σ) is infinity if any one of the variables may be expressed as a linear
combination of the others. Van Edem (1971) points out that C0(Σ) is not an
effective measure of the amount of complexity in Σ since it is not invariant to
orthogonal transformations.

The maximal covariance complexity corrects this shortfall. The maximal
covariance complexity is the maximum of C0(Σ) under orthonormal transfor-
mations of the co-ordinate system (Bozdogan 2004).

C1(Σ) = max
T
C0(Σ) = max

T
{
n�

j=1

H(xj)−H(x1, x2, x3, . . . . . . xn)} (5)

=
n

2
log

�
tr(Σ)

n

�
−
1

2
log |Σ| (6)

where the maximum is taken over the orthonormal transformation T of the
overall co-ordinate systems x1, x2, x3, . . . . . . xn. C1(Σ) is the upper bound of
C0(Σ), it measures both inequality among the variances and the contribution
of the covariances of Σ (Van Edem, 1971). C1(Σ) is invariant with respect to
scalar multiplication and orthonormal transformation. It is also a monotonically
increasing function of n, the dimension of Σ (Magnus and Neudecker 1999).
According to Bozdogan (2000) C1(Σ) can be written as;

C1(Σ) =
n

2
log(

λa

λg
) (7)

where λa and λg are the arithmetic and geometric average of the eigenvalues
of Σ. The minimum of C1(Σ) corresponds to the least complex portfolio i.e.
C1(Σ) approaches 0 as Σ approaches the identity matrix3 . On the other hand,
high values of C1(Σ) indicate high dependency between the securities in the
porfolio. As the level of dependency increases C1(Σ) approaches infinity. In this
paper C1(Σ) is referred to as the Information Complexity measure (ICOMP or
complexity) which captures the level of redundancy, variation replication, or the
concentration of a stock portfolio.

A correlation matrix can also be used to describe complexity (Bozdogan
2004). In this case equation 6 reduces to;

C1(R) ≡ C0(R) =
n

2
log

�
tr(R)

n

�
−
1

2
log |R| (8)

= −
1

2
log |R|

where R is the correlation matrix of x1, x2, x3, . . . . . . xn.

3 If the covariance matrix of a stock portfolio is an identity matrix then all covariances are
zero, meaning that the stock returns are statistically independent and all the variances have
the same magnitude. Another possibility is when portfolio contain only one stock.
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4 Complexity (ICOMP) as a portfolio concen-
tration measure

Originally, concentration of a portfolio referred to the extent to which distri-
bution of portfolio weights depart from uniform distribution. Concentration
indices are known to have a direct relationship with variance of stock portfolios
(Oyenubi, 2010). There are a number of concentration measures, but the most
widely used is the Herfindahi-Hirschman Index (HHI). Portfolio concentration
is related to its complexity, in that the concentration index, as defined by HHI,
takes the correlation structure between stocks as a given, and quantifies the de-
parture of the distribution of weights (attached to each stock) from the uniform
distribution. In this approach only the weights matter. The HHI index is given
by;

HHI =
�n

i=1
W 2

i (9)

where Wi represents the weight attached to stock i. Note that HHI is min-
imized when all stocks have the same weight irrespective of their correlation.
In terms of quantifying diversification, the concentration index as measured by
HHI could be misleading as it implicitly assumes stocks by themselves consti-
tute independent sources of variation. While this assumption makes sense for
its application in the industrial organization literature (from where this measure
was adopted see Woerheide & Persson (1993)4), it makes less sense in the case
of stock market analysis where the constituents are more likely to be correlated.

Complexity on the other hand first uses principal component analysis to fish
out the truly independent sources of variation and then measures the departure
of these variation factors from uniform distribution (equation 7)5 . This approach
is more applicable to security analysis. Complexity can therefore be thought
of as a concentration measure that does not ignore the correlation structure
of its constituents. The main difference is that while HHI measures disper-
sion of weights from the uniform distribution complexity measures dispersion of
orthogonal factors from uniform distribution6

Van Heerden, et. al. (2008) notes that portfolio risk is a function of concen-
tration (weighting structure) and covariance between the assets in a portfolio.
The authors note that both concentration, as measured by HHI, and covariance,
as measured by the correlation matrix, have a positive relationship with variance
(the FTSE/JSE All Share Index was examined). While they assess covariance
or the dependency structure by a correlation matrix, complexity provides a way
of assessing the dependency structure with a single value that summarizes the
dependency structure. HHI and variance are expected to be positively related.

4Woerheide & Persson (1993) use a variant of the HHI as a diversification measure i.e. 1-
HHI

5 i.e. ratio of arithmetic and geometric mean equals 1 if and only if all values are equal
6The suggestion of Kirchner and Zunckel (2011) to incorporate weights into PDI can be

accommodated by ICOMP so that we have a concentration measure that accounts for both
correlation structure and weights.
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In subsequent sections we first investigate the relationship between complexity
as a concentration measure and variance. We then examine the relationship
between complexity, PDI, concentration, number of stocks, and variance of a
portfolio of stocks.

5 Logical Implications of the Relationship be-
tween ICOMP, Variance and PDI

The efficacy of any diversification measure is based on its ability to produce
portfolios that have lower volatility. In this section we investigate the rela-
tionship between complexity, PDI, HHI, and variance. We start by analysing
relationships between these quantities that have been established in the liter-
ature. For simplicity, we restrict our argument to cases where portfolios are
equally weighted.

Rudin & Morgan (2006) show that there is an inverse relationship between
PDI and variance. The authors also show that PDI increases with number
of stocks, but the marginal effect decreases as more stocks are added to the
portfolio (see also Diyarbakirlioglu & Satman (2013)). Variance increases with
concentration (measured by HHI) (Van Heerden, et. al. 2008; Oyenubi 2010)
and concentration decreases with number of stocks.

Going by the definition of complexity (being a measure of concentration),
one would expect a negative relationship between PDI and complexity. This
is because while PDI counts the number of independent factors in a portfolio,
complexity assigns a number to the degree of dependency among portfolio con-
stituents. Intuitively the expectation is that a portfolio with a high PDI will
have a low complexity value and vice versa. That is, as the number of indepen-
dent factors driving variation in a portfolio increases, the degree of dependency
among its primary constituents (stocks in this case) decreases. Another way to
express this is to note that, as complexity increases, the number of truly inde-
pendent sources of variation in the portfolio falls, resulting in lower PDI values.
Therefore complexity should be inversely proportional to PDI.

There is also a key similarity between complexity and PDI theoretically.
Both measures quantify diversification by using the variance (eigenvalues) of
the principal components of a portfolio. When the eigenvalues corresponding
to all principal components are equal, the proportion of variation attributable
to each orthogonal source is the same i.e. the distribution of eigenvalues is uni-
form. This represents a well-diversified portfolio. Departure from this uniform
distribution of orthogonal variation sources represents lack of diversification (i.e.
it signals disproportionate exposure to one or some orthogonal factor relative
to the others).

PDI measures how uniform eigenvalues are, by determining how front loaded
the eigenvalues are. Specifically Wi in equation 1 describes the pdf of eigenval-
ues. If these are uniformly distributed thenW1 =W2 =W3 = · · · =Wn and the
portfolio attains the highest rank possible (i.e. PDI = n the number of stocks
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in the portfolio). Departure from uniformly distributed eigenvalues results in
lower ranking.

Complexity on the other hand measures how uniform eigenvalues are by
comparing the arithmetic and geometric mean of eigenvalues in equation 7.
The inequality between arithmetic and geometric mean is such that for any list
of n non-negative real numbers say λ1, λ2, λ3 . . . λn

λ1 + λ2 + λ3 + · · ·λn
n

≥ n
�
λ1 ∗ λ2 ∗ λ3 ∗ . . . ∗ λn

This means that the arithmetic mean is always greater than or equal to the
geometric mean and equality holds if and only if λ1 = λ2 = λ3 = · · · = λn.
Consequently, the term λa

λg
in equation 7 has a lower bound of 1. This is the

case where eigenvalues are uniformly distributed, and this is analogous to the
case where normalized eigenvalues are equal (i.e. W1 =W2 =W3 = · · · =Wn).
However unlike PDI uniformly distributed eigenvalues obtain the value zero
under complexity (the least complex portfolio) and departure from uniformity
is given higher rank. This further explains the expected inverse relationship
between ICOMP and PDI

Even though HHI and complexity are both concentration measures, the rela-
tionship between complexity and variance may not be similar to the relationship
between HHI and variance, since the complexity is based on correlation struc-
ture and HHI is based on weights. The logic that suggests a positive relation-
ship between complexity and variance ignores the factor that drives complexity.
Complexity could be driven by number of stocks, or average correlation.

If the number of stocks is held constant, an increase in pairwise correlation
between stocks should increase complexity and, as a result, the variance. How-
ever, when comparing complexity for portfolios with different numbers of stocks,
the relationship is slightly different. Complexity is a monotonic function of the
number of stocks (Magnus and Neudecker 1999). Therefore, complexity will
always increase when stocks are added to a portfolio. This increased complex-
ity may not necessarily result in higher variance, as one may expect, because
adding stocks to a portfolio reduces variance on average. This is in contrast to
concentration as measured by HHI, which decreases with the addition of stocks.

To illustrate the idea that complexity has different effects on variance, de-
pending on whether it is driven by number of stocks or higher correlation, con-
sider the following example: Assume an equally weighted portfolio of 2 stocks
with correlation structure given by

�
1 ρ21
ρ
12

1

�
(10)

Where ρ12 = ρ21Adding a third stock that has the same correlation with the
other stocks in the portfolio (i.e. ρ12 = ρ21 = ρ13 = ρ23), will result in in-
creased complexity2 , because complexity is a monotonic function of the number

1This measure was originally introduced in the author’s Master’s thesis under the super-
vision of A.E Clark and C.G Troskie (see Oyenubi (2010) for details)

2The magnitude of the increase will depend on the correlation value, as we will show later.
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of stocks. The implication of this is that variance (which on average reduces
with addition of stocks over some range of values) may reduce, while complexity
increases. Therefore, in the simplified case of equally weighted portfolios, the
relationship between variance and complexity may depend on the number of
stocks in the portfolio. Alternatively, instead of adding another stock to the
portfolio, assume that the correlation between the 2 stocks can be increased.
This increase will result in higher complexity and consequently higher variance.
Therefore complexity, when driven by correlation, will have the expected pos-
itive relationship with variance. If, however, it is driven by number of stocks,
the relationship may be positive or negative.

The fact that complexity penalizes portfolios with a higher number of stocks
is logical. The third stock added in the last example will not increase the po-
tential diversification benefit of the portfolio. In fact the addition of that stock
is equivalent to doubling the weight attached to a stock already in the portfo-
lio. This addition amplifies the variation already represented in the portfolio,
therefore it holds no diversification benefit relative to the initial portfolio. The
next section uses simulation to pin down how these quantities vary with each
other.

5.1 Artificial Simulation Example

To get a better idea of the relationship between variance and the diversification
measures (i.e. PDI and complexity) a simulation study is conducted. First,
correlation matrices of dimensions n = 4 to 16 are constructed. Then for each
n, the pairwise correlation coefficient ρ, which is set to the same value for all
pairwise correlation in each matrix is varied so that ρ = 0.1, 0.2 . . . . . . . . . , 0.9,
creating 9 different correlation structures for each n. For example, the first
set of correlation matrices with n = 4 are nine 4 by 4 matrices, each matrix
having correlation coefficients 0.1 to 0.9 for all pairwise correlations. This is
then replicated for n = 5 to 16.

Using these correlation matrices, returns are simulated. Each return is dis-
tributed N(0, 1).In this set up the correlation matrix of the simulated returns is
given by the simulated correlation matrices described. Such set up enables us to
investigate the relationship between the variance and the different diversification
measures, since both the number of stocks and the correlation matrix vary in
this artificial setting. Figures 1, 2, 3 and 4 show the results. These figures show
variation in variance, ICOMP, PDI, and HHI as pairwise correlation varies from
0.1 to 0.9 and the number of simulated returns vary from 4 to 16. For example
each slice of Figure 1 along the correlation axis represents variation in variance
and correlation for a given number of stocks. Each slice along the number of
stocks axis has an analogous interpretation with the correlation held constant.

Figure 1 shows how that variance varies when both the correlation and the
number of constituents increase. Holding the number of stocks constant at any
value, there is a positive relationship between the variance and the (average)
correlation. On the other hand variation in variance seems to depend on the
particular average correlation value. When (average) correlation is low, adding
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stocks reduces the variance sharply, up to a certain number of stocks beyond
which additional stocks do not help in reducing the variance in any significant
way. While this is a standard result, the important point to note is that at
higher correlation values, additional stocks do not necessarily result in lower
variance. This result agrees with the notion that diversification benefit is lost
during market crises, when correlation are typically higher.

In figure 2 variance is replaced with complexity. When correlation increases,
complexity increases, however complexity increases more with high correlation
and high number of stocks, in comparison to when stocks are fewer and average
correlation is lower. The figure suggests that complexity is more responsive to
changes in correlation when there are many stocks in the portfolio. The least
complex portfolio is the one with low correlation between its constituents or low
number of stocks. Complexity therefore increases with both number of stocks
and correlation.

Comparing Figure 2 with Figure 1 shows that higher correlation leads to
higher complexity, which means higher variance (along the column in Figures 1
and 2, both complexity and variance increase), especially when there are many
stocks. However when complexity increases as a result of additional stocks the
relationship between complexity and variance depends on the average corre-
lation. When correlation between stocks is low variance initially decreases as
complexity increases3 , after which variance remains unchanged as complexity
increases (along the row in Figure 1 and 2). When correlation is high the re-
lationship between variance and complexity does not show a regular pattern in
this simulation example. Variance seems to vary randomly with increases in
complexity.

Figure 3 shows the variation in PDI when both number of stocks and cor-
relation increase. The PDI result looks like a mirror image of the complexity
result in Figure 2. PDI reduces as correlation increases, the drop is faster when
there are many stocks, compared with when there are few stocks. The number
of stocks increases PDI, although this increase is more pronounced when average
correlation is low.

Comparing Figures 1, 2 and 3, a lower variance is more likely when corre-
lation is low and the number of stocks is high enough to take variance to its
lower limit. At any other point, lower variance is possible by either increasing
the number of stocks, or lowering the correlation. However, portfolio managers
can only control the number of stocks (in terms of whether or not a stock gets
a positive weight). So to drive diversification, the only tool available is number
of stocks. Our results suggest that increasing the number of stocks in order to
increase diversification is more effective when correlation is low, and may in fact
be meaningless when correlation is high. Figure 4 is included to confirm that
HHI is insensitive to the correlation structure and only captures complexity that
is driven by weights.

3This is difficult to see on the graphs because of the magnitude of complexity compared
with the other axis, as noted earlier, complexity is a monotonic function of number of stocks.
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6 Empirical Implications: Establishing the re-
lationship between PDI, Variance and Com-
plexity Measures via Simulation Study

The previous section established the expected relationship between ICOMP, PDI
and variance, both logically, and using a simulated example. In this section we
put the theoretical predictions to a test with real stock data. To achieve this,
equally weighted portfolios containing a varying number of stocks (1 to 83) were
drawn randomly from a universe of 83 stocks. The data used are weekly returns
data from S&P 500, from January 2005 to November 2013 (Details of the stocks
in the universe are presented in the appendix). The draws were replicated thirty
times.

Figures 5, 6 and 7 show variation in average variance, PDI, and ICOMP
when the number of stocks in the portfolio is increased from 1 to 83 over the
thirty replications. Note that this is analogous to variation along the rows in
Figures 1 to 4. The first two graphs (5 and 6) agree with the results in the
literature and findings in the previous section (i.e. variance decreases as the
number of stocks increase, and PDI increases as the number of stocks increase).
It should be noted that at about the 35 stocks mark, reduction in variance as
a result of adding another stock completely disappears on average, as indicated
by the green line in Figure 1.

The ICOMP-number of stocks relationship in Figure 7 shows the expected
result, since ICOMP is a monotonic function of number of stocks. It should,
however, be noted that the increase in ICOMP from 2 to 20 stocks results in
lower variance (Figure 5), and subsequent increases do not have much effect on
variance. Comparing this result with the results of previous analysis suggests
that the pairwise correlation coefficient in this universe of stock should be low.
Indeed, the correlation coefficient ranges from 0.25 to 0.49, with an average of
0.46 (correlation will be even lower if the period 2008/2009 is excluded because
of the market crises in this period). This analysis, and those in the previous
section, show that using the number of stocks as a tool to achieve diversification
will be effective (over a given range) when pairwise correlation between stocks
are generally low. Our previous analysis also suggests that the same strategy
will be counterproductive when correlation is high.

The next set of figures show the relationship between diversification measures
and variance as the number of stocks increase. Figures 8, 9 and 10 show variation
in average ICOMP as a function of average variance, as the number of stocks
increase (8), average PDI as a function of average variance as the number of
stocks increase (9), and finally, average PDI as a function of average ICOMP as
the number of stocks increase (10).

Figure 8 shows an inverse relationship between ICOMP and variance. This
relationship is only possible when low pairwise correlation prevails (see Figure
1 and 2).

In Figure 9, PDI has an inverse relationship with variance. Our previous
analysis suggests that this is true irrespective of what drives PDI. PDI reduces
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when pairwise correlation increases, and this increases with the number of stocks
(Figures 1 and 3).The PDI is therefore negatively related to variance, irrespec-
tive of what drives it.

The relationship between ICOMP and PDI is positive, as shown in Figure 10.
While this may be counterintuitive, given the definition of the two measures,
our previous analysis confirms that this is possible only when both PDI and
complexity are driven by increased number of stocks (Figure 2 and 3 rows).

We adjust for the effect of the number of stocks, using two methods to
recover the expected negative relationship between PDI and ICOMP. The first
method involves looking at changes in PDI and ICOMP, as the number of stocks
increase. The other approach holds the number of stocks constant at 30 (ran-
domly selected each time) and compares complexity with PDI by repeating the
same simulation done above. The result confirms that when the number of
stocks is adjusted for, there is a clear inverse relationship between ICOMP and
PDI, as shown in Figure 11 and 12. This is in agreement with the definition of
complexity and PDI.

Figure 13 shows the relationship between ICOMP and variance when the
number of stocks is held constant at 30. The results show an initial decrease
in average variance, which later increases with increases in ICOMP. This re-
lationship is, however, weaker than the previous ones. Nonetheless, the local
polynomial regression line shows that a positive relationship exists. The weak
relationship is because the differences in the average ICOMP are not substantial,
since the number of stocks is held constant at 30.

This result supports the notion that when number of stocks is accounted for,
ICOMP increases with variance.

To reiterate, the hypothesis is that when stocks are added to a portfolio it has
positive diversification benefits, but at the same time it has negative complexity
(ICOMP) or concentration effect.

When a portfolio contains few stocks, the effect of a new stock will be such
that MARGINAL PDI > MARGINAL ICOMP 4 since this new stock is
likely to be less correlated with the portfolio than the stocks already in it.
However when more stocks are added, it is more likely that the effect of a new
stock will be such thatMARGINAL PDI < MARGINAL ICOMP since the
portfolio itself is more correlated with the market when there are many stocks
in it.

Our conjecture is that there is a benefit to adding stocks if the increased
diversification as a result of adding a new stock (Marginal PDI) outweighs the
increased complexity of adding the same stock (marginal ICOMP). At the point
where these two effects cancel each other out, adding more stocks is counter-
productive, in terms of diversification. Reaching this point of course depends
on the dependency structure or average correlation in the portfolio. We ex-
plore what this means for the optimal number of stocks required to exhaust the
diversification potential of a stock portfolio.

4Note that this marginal is calculated as PDI[i+1]−PDI[i]
1

where i = 1, 2 . . . . . . 83. There-
fore they represent change in PDI or ICOMP for a change in the number of stocks on average.
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7 Trade-off between Complexity (ICOMP) and
Diversification (PDI)

As stated earlier both PDI and ICOMP quantify departure of the distribution of
eigenvalues from the uniform distribution. However the rankings given to port-
folios under these measures are inversely related. PDI captures diversification
while ICOMP captures concentration in terms of variation replication as against
concentration in weights. Complexity can be used as a criterion for portfolio
optimization just like PDI has been used in the literature (see Crezee & Swinkels
(2010); Diyarbakirlioglu & Satman (2014)). Our main interest however is in the
optimal number of stocks that exhausts the benefits of diversification.

Our conjecture is that the optimum number of stocks for any universe of
stocks is achieved at the point where the marginal complexity effect of adding a
stock cancels out the marginal diversification effect of the same stock. Adding
stocks beyond this optimum number will only increase complexity (ICOMP)
and as a consequence variance of a stock portfolio. Since these measures are not
quantified on the same scale direct comparison or comparing marginal effects
may not be the best way of narrowing down the optimal number of stocks. Our
approach is to try to maximize PDI while minimizing ICOMP. i.e.

max
1≤i≤N

(PDI − ICOMP ) (11)

When equation 10 is maximized for a portfolio, such a portfolio will simul-
taneously maximize PDI while keeping ICOMP at its minimum possible value

We first illustrate this idea with our simulation example in section 5.1. As
noted earlier ICOMP surface in Figure 2 looks like a mirror image of PDI surface
in Figure 3. Figure 14 shows the difference between the values of PDI and
complexity at every correlation value and number of stock in the simulation
example.

The surface in Figure 14 describes variation in the number of stocks that
exhaust the diversification potential of our universe of 16 artificial stocks. The
points on this surface represent the difference between PDI and complexity as
shown in Figures 2 and 3. When correlation is low, this difference is maximized
when all stocks are included in the portfolio. At higher average correlation, the
optimal number decreases. At very high correlation, the portfolio should contain
the minimum number of stocks possible, as all stocks represent approximately
the same variation.

The problem of maximizing PDI while minimizing ICOMP is clearly a multi-
objective optimization problem. Since this problem involves competing objec-
tives one should be interested in a set of Pareto optimal solutions (or portfolios).
These portfolios are Pareto optimal in the sense that with respect to the objec-
tives of diversification (PDI) and complexity (ICOMP) they are not dominated
by other portfolios in the Pareto set and they dominate any other portfolio that
can be formed using our universe of stocks. In the Pareto set these optimal
portfolios are such that one cannot increase the PDI of any of them without
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simultaneously increasing the ICOMP or complexity and vice versa by adding
or removing stocks.

The approach suggested by equation 10 is consistent with the idea of scalar-
izing a multiobjective optimization problem. This approach involves convert-
ing a multi-objective optimization problem into a single objective optimization
problem so that the solutions of the single objective optimization problem are
Pareto optimal solutions to the multi-objective optimization problem (Hwang
& Masud, 2012). Furthermore, it is often required that different Pareto optimal
solutions can be reached when different parameters are used in scalarizing the
multi-objective problem (Hwang & Masud, 2012).

Equation 10 scalirizes the problem by attaching equal weight to both PDI
and ICOMP in finding a portfolio that optimizes diversification benefit. There
is however no reason why other weighting structures cannot be used with equa-
tion 10. For example putting greater weight on PDI relative to ICOMP might
be attractive when average correlation between stocks is low (this is consistent
with Figure 14) The converse might be appealing when there is high correla-
tion between stocks. One can therefore think of the single objective version as
a utility function where the weights attached to PDI and ICOMP reflect the
preferences of the investor in terms of the trade-off between PDI and ICOMP
In the analysis that follows we consider equation 10 as a scalarized solution to
the multi-objective problem and also perform a multi-objective optimization to
get the set of Pareto optimal portfolios for our universe of stocks.

7.1 Genetic Algorithm: Search for the optimum number
of stocks

Genetic Algorithm (GA) (Holland, 1975) is a search heuristic that mimics nat-
ural selection in order to optimize non-linear or non-differentiable objective
function(s) (Diyarbakirlioglu & Satman 2013). GA is a stochastic search algo-
rithm inspired by the basic principle of biological evolution and natural selection
(Scrucca, 2012).

In this paper we apply the GA method to the problem of finding the op-
timal number of stocks that optimizes diversification benefit given a universe
of stocks. Specifically we are interested in the number of stocks that maximize
diversification (PDI) and simultaneously minimize complexity (ICOMP)

We note that the trade-off in equation 10 can potentially be used to construct
a portfolio (i.e. equation 11 can be defined in terms of weights as against number
of stocks) similar to the way Diversification ratio is used to construct the Most
Diversified Portfolio (Choueifaty et. al. 2013), or PDI is used to construct
a Maximum Diversification Index (MDI) (Diyarbakirlioglu & Satman 2013).
However, in this paper we focus on using this trade-off to explain the optimum
number of stocks that exhaust the benefit of diversification.

GAs are implemented by first generating (randomly) a population of solu-
tions to an optimization problem. Each solution is referred to as a chromosome.

The desirability of each chromosome is evaluated by using the fitness function
(equation 10 in our case). Chromosomes that perform better, as measured by the
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fitness function are selected, mated and mutated to construct a new population
of solutions (offspring) that are better than the previous generation of solutions.
This is based on the fact that an effective method for creating new models is
to combine successful features of two or more existing models (Cooper, 2000;
403). This process is continued until the solution cannot be improved upon.
For more detail on GA see Czarnitzki & Doherr (2002), Scrucca (2012), and
Maschek (2015).

Our analysis makes use of binary encoding i.e. the population of chromo-
somes (solutions) are random vectors of zeros and ones of length 83 (total num-
ber of stocks in the universe). The ones indicate that the stock in that position
in the list of 83 stocks is present in the portfolio while zeros indicate that the
stock is not.

A combination of elitism (number of chromosomes that are kept to the next
generation) and single point crossover is used to generate a new population. For
crossover, two random parents are selected. In addition to this, random genes in
a chromosome are selected and mutated, and the number of genes that undergo
mutation is controlled by a preselected probability of mutation. To make sure
that the fitness function is meaningful, all chromosomes are constrained so that
they contain at least 2 stocks5 . The implementation in R (rbga.bin) has another
important parameter called “zeroToOneRatio” this parameter controls the ratio
of zeros to ones in the initial randomly generated population.

Diyarbakirlioglu & Satman (2013) extend Rudin and Morgan’s (2006) work
on PDI by using GA to solve for the Maximum Diversification Index (MDI).
Their strategy involves finding securities that maximize the PDI. In their set-
up, they consider an investment universe of N assets. An investor is interested
in forming a portfolio consisting of a maximum of ni assets, with ni < N .
Therefore the investor is interested in picking n assets, (n ≤ ni) that provide
the highest diversification or maximize PDI among the possible subsets of

�
ni
n

	

portfolios (Diyarbakirlioglu & Satman, 2013). Mathematically

max
1≤i≤83




2
n�

k=1

kWi − 1

�

subject to n− ni ≤ 0 (12)

According to Diyarbakirlioglu & Satman (2013) the objective is to determine
the security pool that maximizes the risk diversification benefit while minimiz-
ing the number of securities. One feature of this approach (which is also a
disadvantage) is that n has to be predetermined.

It is possible to perform a similar exercise for complexity by minimizing
ICOMP (MICOMP). The maximization problem then becomes a minimization
problem, so that we have:

5To estimate the covariance or correlation matrix, the portfolio must contain at least 2
stocks. The single objective Genetic Algorithm is implemented with the “genalg” package in
R (Willighagen et.al, 2015) while the multi-objective one is implemented with the “nsga2R”
package, also in R. Details of the parameters are supplied in subsequent sections.
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min
1≤i≤83
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−
1

2
log |R|



subject to n− ni ≥ 0 (13)

Figure 15 shows the graph of MICOMP (minimized complexity) and the
average complexity (i.e. the MICOMP graph is superimposed on Figure 6,
which shows average complexity for randomly selected portfolios of size n). The
GA algorithm is implemented using the rbga.bin command of the “genalg” R
package. For this exercise the population size is 1500 and 200 iterations were
performed. Elitism is set to 1 and the mutation chance is 20%. While Figure
16 shows an analogous graph for PDI and MPDI (maximized PDI).

The result in Figure 16 agrees with the result presented by (Diyarbakirli-
oglu & Satman 2013) i.e. the GA algorithm is able to select portfolios that
optimize diversification benefits, for a given (pre-selected) number of stocks rel-
ative to the average performance of randomly selected portfolios of the same
size. Furthermore, our result in Figure 15 shows that the same logic applies for
ICOMP.

The GA algorithm selects portfolios that minimize ICOMP for a given (pre-
selected) number of stocks, relative to the average performance of randomly
selected portfolios of the same size.

7.2 Combining ICOMP and PDI Scalarizing the multi-
objective function

The approach of Diyarbakirlioglu & Satman (2013) does not, however, provide
a way to select the optimal number of stocks. It merely tells us that portfolios
that maximize PDI or minimize ICOMP have better diversification potential,
compared to randomly selected portfolios of the same size. We explore a method
that combines these two objective functions by scalarizing them and weighting
them equally. In this method the GA algorithm is used to select a portfolio
that simultaneously maximizes diversification benefits by maximizing PDI and
minimizes complexity (or concentration) effects by minimizing ICOMP.

max
1≤i≤83

�
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n�

k=1

kWi − 1

�

− {−
1

2
log |R|}

�

(14)

The objective function in equation 14 will use the trade-off between PDI and
ICOMP over the entire range of plausible values for n and pick the combination
of stocks that yields the highest PDI and lowest ICOMP or the portfolio that
maximizes the difference between the value of PDI and ICOMP. The larger this
difference the more diversified our portfolio is in terms of the two objectives.
While there is no reason to directly subtract these two indices since they measure
different things, the weighting can be thought of as a way to reflect the prefer-
ences of the investor over the two objectives. As noted earlier this approach will
result in only one of the many Pareto optimal solutions to this problem and this
solution only reflects the preference of an investor that weights PDI and ICOMP
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equally. This as mentioned earlier may depend on market conditions6 Indeed
a different weighting structure will lead to different results which will also be
Pareto optimal given the preferences expressed by the weighting function.

The parameters of the GA model for the scalarized function are the same
as those used for the single objective optimization in the last section. The
only exception is that the number of iterations is 800 in this case. The result
of optimizing equation 14 shows that a portfolio containing 38 stocks achieves
the highest trade-off between ICOMP and PDI for our universe of 83 stocks.
The PDI value for this portfolio is approximately 18.2 while the ICOMP value
is approximately 8.9. We note that this number is not far from the number of
stocks beyond which variance does not reduce in Figure 5 (± 35 stocks). We also
note that Figures 15 and 16 signal this result. The space between the blue and
the red dots in these figures represents the diversification gain of minimizing
complexity and maximizing PDI respectively at any given number of stocks.
It is clear that maximum benefit is achieved simultaneously around 40 stocks.
Specifically, Figure 17 shows the result when MICOMP values (in figure 15) are
subtracted from MPDI values (in figure 16).

Even though these are different methods, the logic of the results, and the
results themselves, are similar. When there are a few stocks (less than 20
for example), the diversification effect is more than the complexity effect, for
portfolios that maximize PDI and minimize ICOMP for any given number of
stocks. Thus, the difference between PDI and complexity increases as stocks are
added. At the other extreme, when there are many stocks (greater than 40, for
example) MICOMP is greater than MPDI. This graphs shows that the optimal
point for this universe of stocks is a range that extends from about 33 to 40
stocks.

The result is sensitive to the number of iterations (for example for 200,
400, or 600) the results tend to differ slightly. However, in all cases, the best
portfolios are those where the PDI measure is greater than the ICOMP measure
by around 9 units, and the portfolio can contain between 30 to 40 stocks7 .

The shape of the graph indicates that for a set of portfolios that optimize
both PDI and ICOMP for a decision maker who attaches the same weight to the
two objectives, the optimal number of stocks can be roughly estimated using
our approach.

It is important to note that the result obtained using this approach, on this
or a different universe of stocks, or for a different time period is not a “magic
number”. The result from this analysis is just one of the many possible plausible
Pareto optimal portfolios. By changing the weights attached to each objective
one can recover a set of Pareto optimal portfolios, each expressing different
trade-offs between the two objectives.

Therefore the preceding result is not a magic number for two main reasons.

6As noted earlier, one may want to put more weight on ICOMP when the market is volatile
(or when there is high correlation between stocks).

7This result is because more than one combination of stocks can achieve a difference of 9
between PDI and ICOMP. Stocks or combination of stocks that are more correlated can be
used interchangeable to form portfolios with similar diversification potential
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First the optimal number of stocks depends on the correlation structure of the
market. Second it depends on the investor’s preferred trade-off between PDI
and ICOMP. This is conveyed by the weights attached to each objective

One can therefore generalize to obtain a complete set of Pareto optimal
portfolios. However instead of trying every conceivable combination of weight
a multi-objective approach is a neater way of getting similar results.

7.3 Combining ICOMP and PDI: A multi-objective ap-
proach

In this section we use a multi-objective genetic algorithm to get the set of Pareto
optimal portfolios that maximize PDI and minimize ICOMP. This approach
simultaneously optimizes both objectives and gives a set of solutions that are
Pareto optimal with respect to the objectives. That is, moving from one of the
solutions to the other is a trade-off that suggests different weighting of the two
objectives.

We use the Non-dominated Sorting Genetic Algorithm NSGA II (Deb et.al.
2002) implemented in R package “nsga2R” The main programme uses fast non-
dominated sorting, and a crowding distance approach is used to maintain di-
versity of solutions. The programme also uses tournament selection and binary
crossover.

The population size used for this optimization is 1500, tournament size is 2,
number of iterations (or generations in the nsga2R package) is 400, and crossover
probability and mutation probability are 0.2.

The result (in Figure 18) shows the Pareto optimal solutions in our universe
of 83 stocks. As noted earlier one can think of the result as showing the trade-off
between PDI and ICOMP that reflects different weighting of the two objectives.
Any point on the Pareto front shown in Figure 18 is technically viable, but
there may be reasons why a decision maker will prefer a particular point on the
Pareto front to others. We can therefore narrow the search space by presenting
a subjective but reasonable minimum requirement in terms of trade-off between
the two objectives.

One such subjective preference is to insist that the trade-off between ICOMP
and PDI should be around one to one. The logic for this is that a trade-
off that reflect one unit of PDI for more than one unit of ICOMP is clearly
counterproductive in terms of diversification and consequently risk reduction.
A trade-off that reflects more than one unit of PDI for one unit of ICOMP can
also be argued to be suboptimal in that there is room for improvement. To
narrow the search we use this subjective condition because we cannot tell from
our analysis how many unit changes in PDI represent a unit change in ICOMP
and what the implication of such change is for variance.

To make the analysis clearer we run the programme that produced Figure
18 using a different parameter set and overlay the number of stocks in each
portfolio on the Pareto front. The result is presented in Figure 19. The first
thing to note about Figure 19 is that as expected the number of stocks increases
on average as both PDI and ICOMP increase.
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This, coupled with the shape of the graph, confirms that the relationship be-
tween average PDI and ICOMP shown in Figure 10 also holds for the portfolios
on the Pareto front. Using our subjective condition, a decision maker that has
that preference should therefore prefer a subset of the portfolios on the Pareto
front where the slope of the tangent to Figure 18 or 19 is 1, for reasons stated
earlier. Figure 19 shows that portfolios on the Pareto front that contain roughly
33 to 40 stocks will satisfy this condition.

Just like our previous analysis the multi-objective approach with a reason-
able assumption leads to a conclusion that the optimal number of stocks for this
universe should be somewhere between 30 and 40.

8 Conclusion

This paper introduces a concentration measure that quantifies complexity of a
stock portfolio. Complexity, measured by ICOMP, quantifies lack of diversifica-
tion of a portfolio. It quantifies the level of dependency among the constituent
stocks in a portfolio by comparing the distribution of variation sources to the
uniform distribution.

This measure is compared with PDI, which is a diversification measure that
quantifies the number of independent sources of variation in a portfolio. It is es-
tablished that these two measures should be inversely related, if both are driven
by correlation. The two quantities can, however, have a positive relationship if
they are driven by the number of stocks.

By exploiting this relationship, we show that adding a stock to a portfolio
has two effects. First, it can improve the level of diversification of the portfolio.
Second, it can also increase its complexity. An optimal number of stocks is
reached when a portfolio maximizes diversification while simultaneously mini-
mizing complexity. Our result agrees with the notion that there is no unique
number when it comes to the optimal number of stocks needed to achieve full
diversification. This number depends on the correlation structure in the uni-
verse of stocks under consideration, and the trade-off between diversification
and complexity. It is for this reason than one expects the optimum number of
stocks needed to achieve full diversification to be different for different markets,
such as developing versus developed markets. This is a direct consequence of
the different correlation structures in these markets.

References

[1] Bozdogan, Hamparsum. "Akaike’s information criterion and recent devel-
opments in information complexity." Journal of mathematical psychology

(Elsevier) 44, no. 1 (2000): 62-91.

[2] –. Statistical data mining and knowledge discovery. CRC Press, 2004.

20



[3] Choueifaty, Yves, Tristan Froidure, and Julien Reynier. "Properties of the
most diversified portfolio." Journal of Investment Strategies 2, no. 2 (2013):
49-70.

[4] Cooper, Ben. "Modelling research and development: how do firms solve
design problems?" Journal of Evolutionary Economics (Springer) 10, no. 4
(2000): 395-413.

[5] Cremers, KJ Martijn, and Antti Petajisto. "How active is your fund man-
ager? A new measure that predicts performance." Review of Financial

Studies (Soc Financial Studies) 22, no. 9 (2009): 3329-3365.

[6] Crezee, Dominiek P, and Laurens AP Swinkels. "High-conviction equity
portfolio optimization." Journal of Risk 13, no. 2 (2011): 57.

[7] Czarnitzki, Dirk, and Thorsten Doherr. "Genetic algorithms: A tool for
optimization in econometrics-basic concept and an example for empirical
applications." (ZEW discussion Paper) 2002.

[8] Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
"A fast and elitist multiobjective genetic algorithm: NSGA-II." Evolution-

ary Computation, IEEE Transactions on (IEEE) 6, no. 2 (2002): 182-197.

[9] Divecha, Arjun B, Jaime Drach, and Dan Stefek. "Emerging markets: A
quantitative perspective." The journal of portfolio management (Institu-
tional Investor Journals) 19, no. 1 (1992): 41-50.

[10] Diyarbakriliouglu, Erkin, and Mehmet H Satman. "The Maximum Diversi-
fication Index." Journal of Asset Management (Nature Publishing Group)
14, no. 6 (2013): 400-409.

[11] Evans, John L, and Stephen H Archer. "Diversification and reduction of
dispersion: An empirical analysis." The Journal of Finance (Wiley Online
Library) 23, no. 5 (1968): 761-767.

[12] Frahm, Gabriel, and Christof Wiechers. "On the diversification of portfolios
of risky assets." Tech. rep., Discussion papers in statistics and econometrics,
2011.

[13] Holland, John H. "Adaptation in natural and artificial systems: An intro-
duction with application to biology, control and artificial intelligence." Ann

Arbor, University of Michigan Press, 1975.

[14] Hovenkamp, Herbert J. "Economics and Federal Antitrust Law." 1985.

[15] Hwang, C-L, and Abu Syed Md Masud. Multiple objective decision

making–methods and applications: A state-of-the-art survey. Vol. 164.
Springer Science \& Business Media, 2012.

[16] Kirchner, Ulrich, and Caroline Zunckel. "Measuring Portfolio Diversifica-
tion." arXiv preprint arXiv:1102.4722, 2011.

21



[17] Kullback, Solomon, and Richard A Leibler. "On information and suffi-
ciency." The annals of mathematical statistics (JSTOR), 1951: 79-86.

[18] Lin, Dan, Xiaoming Li, and Minqiang Li. "A genetic algorithm for solv-
ing portfolio optimization problems with transaction costs and minimum
transaction lots." In Advances in Natural Computation, 808-811. Springer,
2005.

[19] Magnus, Jan R, and Heinz Neudecker. "Matrix differential calculus with
applications in statistics and econometrics." (John Wiley \& Sons) 1995.

[20] Markowitz, Harry. "Portfolio selection*." The journal of finance (Wiley
Online Library) 7, no. 1 (1952): 77-91.

[21] Maschek, Michael K. "Economic Modeling Using Evolutionary Algorithms:
The Influence of Mutation on the Premature Convergence Effect." Compu-

tational Economics (Springer), 2015: 1-23.

[22] Meucci, Attilio. "Managing diversification." 2010.

[23] Oyenubi, Adeola. "Information theoretic measures of complexity and
stock market analysis: Using the JSE as a case study" available at "
http://open.uct.ac.za/handle/11427/10967 " (University of Cape Town)
2010.

[24] Rudin, Alexander M, and Jonathan S Morgan. "A portfolio diversifica-
tion index." The Journal of Portfolio Management (Institutional Investor
Journals) 32, no. 2 (2006): 81-89.

[25] Scrucca, Luca. "GA: a package for genetic algorithms in R." Journal of

Statistical Software 53, no. 4 (2012): 1-37.

[26] Shannon, Claude E. "Bell System Tech. J. 27 (1948) 379; CE Shannon."
Bell System Tech. J 27 (1948): 623.

[27] Statman, Meir. "How many stocks make a diversified portfolio?" Journal

of Financial and Quantitative Analysis (Cambridge Univ Press) 22, no. 03
(1987): 353-363.

[28] Tang, Gordon YN. "How efficient is naive portfolio diversification? an
educational note." Omega (Elsevier) 32, no. 2 (2004): 155-160.

[29] Van Emden, Maarten Herman. "An analysis of complexity." MC Tracts

(Centrum Voor Wiskunde en Informatica) 35 (1971): 1-86.

[30] Van Heerden, JD, and Sonja Saunderson. "The Effect of the South African
Market Concentration on Portfolio Performance." Corporate Ownership \&
Control, 2008: 99.

[31] Willighagen, Egon, Michel Ballings, and Maintainer Michel Ballings.
"Package ‘genalg’." Retrieved from, 2015.

22



[32] Woerheide, Walt, and Don Persson. "An index of portfolio diversification."
Financial Services Review (Elsevier) 2, no. 2 (1993): 73-85.

23



24 
 

Figures 1, 2, 3 and 4: Simulation Result: Variation in Variance, ICOMP, PDI and HHI as 
number of stocks increases 
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Figures 5,6 and 7: VARIANCE PDI ICOMP vs No of Stocks 
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Figures 8,9 and 10: Variation in PDI, ICOMP and Variance as number of stocks increase 
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Figures 11,12 and 13: Change in Average PDI vs Change in ICOMP, Average PDI vs 
Average ICOMP and Average variance vs Average ICOMP  
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Figure 14: Difference between PDI and ICOMP 
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Figure 15: ICOMP vs MICOMP and MDI vs PDI 
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Figure 17: Trade-off between Diversification (PDI) and Complexity (ICOMP) 
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Figure 18 & 19: Multi-objective Pareto optimal portfolios 
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Appendix 
 

SYMBOL COMPANY 
 

SYMBOL COMPANY 

1 AAPL Apple Inc. 43 KLAC KLA-Tencor Corp. 

2 ADBE Adobe Systems 44 LBTYA Liberty Global plc 

3 ADI Analog Devices 45 LLTC Linear Technology Corp. 

4 ADP Automatic Data Processing Inc. 46 MAT Mattel Inc. 

5 ADSK Autodesk Inc. 47 MCHP Microchip Technology 

6 AKAM Akamai Technologies Inc 48 MDLZ Mondelez International, Inc. 

7 ALTR Altera Corp. 49 MNST Monster Beverage Corporation 

8 ALXN Alexion Pharmaceuticals, Inc 50 MSFT Microsoft Corp. 

9 AMAT Applied Materials 51 MU Micron Technology 

10 AMGN Amgen 52 MXIM Maxim Integrated Products, Inc 

11 AMZN Amazon Corp. 53 MYL Mylan Inc. 

12 ATVI Activision Blizzard, Inc. 54 NFLX Netflix, Inc. 

13 BRCM Broadcom Corporation 55 NTAP NetApp 

14 CA CA, Inc. 56 NUAN Nuance Communications, Inc 

15 CELG Celgene Corp. 57 NVDA Nvidia Corporation 

16 CERN Cerner Corporation 58 ORLY O’Reilly Auto Parts 

17 CHKP Check Point Software Technologies Ltd 59 PAYX Paychex Inc. 

18 CHRW C. H. Robinson Worldwide 60 PCAR PACCAR Inc. 

19 CMCSA Comcast Corp. 61 PCLN The Priceline Group Inc 

20 COST Costco Co. 62 QCOM QUALCOMM Inc. 

21 CSCO Cisco Systems 63 REGN Regeneron Pharmaceuticals, Inc. 

22 CTSH Cognizant Technology Solutions 64 ROST Ross Stores Inc 

23 CTXS Citrix Systems 65 SBAC SBA Communications Corp. 

24 DLTR Dollar Tree, Inc. 66 SBUX Starbucks Corp. 

25 DTV DIRECTV Group Inc. 67 SHLD Sears Holdings Corporation 

26 EBAY eBay Inc. 68 SIAL Sigma-Aldrich 

27 EQIX Equinix, Inc 69 SIRI Sirius XM Holdings Inc. 

28 ESRX Express Scripts 70 SNDK SanDisk Corporation 

29 EXPD Expeditors Int’l 71 SPLS Staples Inc. 

30 FAST Fastenal Co 72 SRCL Stericycle Inc 

31 FFIV F5 Networks, Inc. 73 STX Seagate Technology Public 
Limited Company 

32 FISV FIserv Inc. 74 SYMC Symantec Corp. 

33 FOSL Fossil Group, Inc. 75 TXN Texas Instruments 

34 FOXA Twenty-First Century Fox, Inc. 76 VOD Vodafone Group Plc 

35 GILD Gilead Sciences 77 VRTX Vertex Pharmaceuticals 
Incorporated 

36 GMCR Keurig Green Mountain, Inc. 78 WDC Western Digital 

37 GOLD Randgold Resources Limited 79 WFM Whole Foods Market, Inc 

38 GOOG Google Inc. 80 WYNN Wynn Resorts Ltd 
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39 GRMN Garmin Ltd. 81 XLNX Xilinx Inc 

40 HSIC Henry Schein, Inc. 82 XRAY Dentsply Intl 

41 INTU Intuit Inc. 83 YHOO Yahoo Inc. 

42 ISRG Intuitive Surgical Inc. 
   

 Data downloaded using “get.hist.quote” command in R, spans Oct 10 2005 to Nov 25, 2013 
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