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Abstract

This papers adopts the recently proposed realized Beta GARCH model of Hansen et al. (J.
Appl. Econ. (2014)) to examine the changes in price and return dynamics that affected the com-
modity market during the 2007-2008 boom and bust. We provide evidence that, starting from
2006, realized correlations between agricultural commodities within the same group significantly
increased. Moreover, the observed increase in correlations between agriculturals and oil was
greater still. The dynamics of the volatility spillover across commodities are also investigated. It is
found that spillover effects became more evident prior to the commodity price crash. However, this
increase in volatility transmission tended to anticipate the increase in correlations. To conclude,
it is shown that the size of a short position in oil required to hedge a long agricultural commodity
position , given by the realized beta, therefore increased significantly.

Keywords: Commodities; Correlation; Beta; Volatility Spillover; Realized Measures

1 Introduction

In the recent years, the availability of different type of commodity futures indices has made investing in
the commodity market widely accessible to new players seeking a capital allocation which offered di-
versification with respect to the equity, currency and fixed income markets and which is also positively
correlated with changes inflation (Schofield, 2007).

As a consequence, commodity futures have emerged, starting from early 2000, as popular asset
class as investors turned to commodities as a means to diversify their portfolios (Cheng and Xiong,
2014). The large fluctuations in commodity prices observed amid the latest financial crisis and the
crash which occurred in late 2008 have contributed to attract a considerable level of academic atten-
tion. A set of stylized empirical facts characterizing the commodity prices has emerged, see Cheng
and Xiong (2014) for a comprehensive review.

First, a proper commodity ‘super-cycle’ has been experienced in the last 10 years with the result-
ing boom and bust of futures prices. This had as a consequence an extreme increase in commodity
returns volatility, which is more pronounced for index commodities than for off-index commodities.

Secondly, an increase in cross-commodity correlations has also been observed. As evidences
suggest before the early 2000s, commodity market were partially segmented from outside financial
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markets and from each others. Erb and Harvey (2006) showed that commodities had only low pos-
itive return correlations with each other. Gorton and Rouwenhorst (2006) did not find evidences of
correlations between commodity returns and the S&P 500 returns, especially at short horizons (daily
and monthly). This segmentation does no longer hold. The correlations of different sectors of the
Goldman Sach Commody Index (GSCI) with the GSCI Energy index rose from a pre-2004 range
between ± 20% to reach 70% in 2008. This phenomenon is observed also within the same sector.
Furthermore, the correlation of commodity returns with returns on other asset classes has also in-
creased, e.g. increasing correlations between GSCI Total Return Index and MSCI Emerging Market
Index, DXY US Dollar Index 1, 10-year US Treasury yield and CRSP Value-weighted Index.

Last, along with increasing volatility and correlation, volatility spillover effects have been found
between commodities and between commodities and other assets.

In this paper we present a novel set of analyses whose goal is to provide further evidences of the
changes in price and return dynamics in the commodity market around the 2007-2008 boom&bust.
We focus our attention on three main statistics which describe the linkage between commodities:
correlations, volatility spillovers and optimal hedging ratios (or betas).

Asset correlation dynamics are crucial in portfolio management and risk hedging as investors
seek to diversify their allocations by targeting lowly correlated assets. Our results show that starting
from 2005, correlations between commodities started to significantly increase, therefore wiping out
the diversification benefit for which commodities were chosen in first place. This feature, first noted in
Tang and Xiong (2012), is also confirmed in a recent paper by Dorman and Karali (2014). Examining
commodity data from 1990 through 2011 they find that simple correlation coefficients between futures
prices and the probability of nonstationarity of the series have increased over time, therefore signaling
that the commodity market is shown to become more efficient after 2004.

Along with correlations, spillovers effect are also an important aspect to be considered when deal-
ing with a portfolio of assets. Indeed, a surge in assets volatility, together with an increase in volatility
transmission, affects optimal portfolio allocations and can result in greater costs for managing risks
(e.g. higher hedging costs). It is therefore crucial to understand and possibly anticipate changes in
volatility relationships in order to develop appropriate risk management strategies. Volatility spillovers
have been studied abundantly in the financial literature. See for example Baele (2005), Bekaert
and Harvey (1997), Bekaert et al. (2002), Christiansen (2007), Ng (2000). For applications on high-
frequency data see Bonato et al. (2013) and Fengler and Gisler (2014). While these works all focus
on the equity, currencies or bond markets, only recently has the academic literature started to inves-
tigate this topic in the commodity market, and especially between oil and agricultural commodities or
oil and the stock market; see the seminal paper of Wu et al. (2010) and Chang et al. (2013), Arouri
et al. (2011), Mensi et al. (2013) also amongst others.

We conclude the empirical analyses by showing how hedging strategies have also been affected
by the latest development of the commodity market dynamics. Particular attention will be given to the
interaction between oil and agricultural commodities.

Within our analyses we focus in particular on the interaction between oil and agricultural com-
modities. In the academic literature, particular attention has been given the the interaction between
energy commodities (specifically oil) and agricultural commodities. The rise of energy prices along
with the boom in agricultural commodity prices - which led to the so called ‘food crisis’ - raised the
question of whether energy markets have any explanatory power on the observed upward movement
in agricultural food prices. The political implications of such nexus would indeed very important.

Different hypothesis to link oil and agricultural prices have been suggested. First, the relation
between oil and agricultural prices is motivated by oil being a production cost. Baffes (2007) analyzed
how crude oil prices spill on the price of 35 internationally traded primary commodities and found that

1Multiplied by -1
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the pass-through of crude oil shocks to the overall non-energy commodity index, the fertilizer index,
agriculture and metals are 0.16, 0.33, 0.17, respectively.

The positive comovement between oil and agricultural commodities can be also motivated using
the substitutive effect between biofuels and fossil fuel. An increase in oil prices inspire people to
develop alternative sources of energy: the bioethanol and biodiesl extracted from corn and soybean,
respectively, are considered the appropriate substitute of crude oil. Thus, increase in oil prices can
result in the increase of corn and soybean prices and finally lead to the surge in prices of the other
agricultural commodities as the planting acreage is limited in a certain period of time (Chang and Su,
2010). In terms of volatility spillover, Wu et al. (2010) show that spillover intensities from crude oil
prices onto corn prices (spot and futures) have increased significantly since the Energy Policy Act of
2005. This act established the Renewable Fuel standard requiring that transportation fuels sold in the
United States contain a minimum amount of renewable flues. Subsequent tax incentives, federal and
state mandates and the progressive elimination of Methyl Tertiary Butyl Ether as an additive in many
states have quickly increased the demand for biofuels, particularly corn-based ethanol.

A third hypothesis argues that global economic activity, rather than increases in oil prices, is the
main driver of higher agricultural commodity prices, see Krugman (2008), Hamilton (2009), Kilian
(2009). The development of emerging economies (China and India in particular) in the past decade
has stimulated unprecedented demands for a broad range of commodities in sectors like energy and
metal. This may have led to a joint price boom for commodities.

A last explanation presented by Tang and Xiong (2012), which is alternative to both the biofuel
and global economic activity hypothesis, links the increase correlation between oil and non-energy
commodity prices to the financialization of the commodity market. The authors argue that, as a result
of the financialization process, the price of an individual commodity is no longer determined solely
by its demand and supply. Instead, prices are also determined by the aggregate risk appetite for
financial assets and the investment behavior of diversified commodity index investors.

From the methodological side we rely in the realized beta GARCH model of Hansen et al. (2014).
The realized beta GARCH is a multivariate volatility model which incorporates both generalized au-
toregressive conditional heteroskedasticity (GARCH) and realized measures of variances and co-
variances. Realized measures are important as they extract information about the current levels of
volatilities and correlations from high-frequency data. This is particularly useful for modeling financial
returns during periods of rapid changes in the underlying covariance structure. The model has a hi-
erarchical structure: the ‘market’ return is modeled with a univariate realized GARCH model (Hansen
and Huang, 2012; Hansen et al., 2012)). In principle, other approaches based on multivariate GARCH
(DCC, BEKK) could be employed in order to estimate dynamic correlations and assess the spillover
effects. We decided instead to adapt the realized beta GARCH to the commodity case. On the one
hand, this enables us to consider the price and return information available at intra-day frequency.
On the other hand the mode lends itself well to represent fit the commodity market composition. In
the realized beta GARCH model the multivariate structure is constructed by modeling ‘individual’ re-
turns conditional on the past and contemporary market variables (return and volatility). This makes
it feasible to extract the ’betas’ but also account for contemporaneous volatility spillover between the
market and the single asset. In our setup, for each agricultural commodity class (Grains and Softs),
we impose the most material single-name commodity to be the market variable. This enables us to
measure the changes in correlations within a same class. Then, following the approach of Tang and
Xiong (2012), we make use of oil as the market variable thus allowing to assess how correlations
between Agriculturals and oil developed.

Our work contributes to the literature studying the interaction between oil and agricultural com-
modities by presenting an innovative approach based on a recently introduced multivariate model for
realized measures. This model combines the information contained in the high frequency intra-day
price observations with a conditional heteroskedasticity model. It also possess a hierarchical structure
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in which each single commodity return is modeled as function of the ‘market’ return, in a CAPM-like
fashion. This setup adapts itself very well to our purposes as we use one commodity (the most
represented in the commodity indices) as proxy for the market and extrapolate the model realized
correlation between this commodity and each single commodities along with the (contemporaneous)
spillover effect.

Our results confirm that agricultural commodities belonging to the same sector (Softs or Grains)
experience an increase in correlations staring from 2006. Correlations between oil and those com-
modities has also significantly increased. Additionally, we find that, along with increased correlations,
spillover effects of oil on agricultural commodities became more prominent, especially around the
raise and fall of the commodity market. To conclude, we show how these changes affected the op-
timal hedging ratios, defined in term of realized betas. The optimal hedging ratio is the amount of
dollars to be invested in a short position in an asset in order to hedge a 1$ long position in an other
asset. In our setting, the representative investor is assumed to hedge a long position in an agricul-
tural future with a short position in oil. Our results show a marked increase in optimal hedging ratios.
A consequence of this is that hedging costs have also increased. This is coherent with our previ-
ous findings since an increase in correlations results in lower diversification benefits and increase in
spillover effect induces higher volatility risk. This obviously drives the cost of protecting against risk
higher.

The paper is structured as follows: Section 2 introduces the econometric approach adopted,
i.e. the realized Beta modes of Hansen et al. (2014) and its adaptation the the case of commodities;
Section 3 presents the dataset used; empirical results are reported in Section 4: realized correlations,
spillover effects and optimal hedging ratios; Section 5 concludes.

2 Econometric methodology

2.1 Realized Beta GARCH

The realized beta GARCH proposed by Hansen et al. (2014) is a multivariate volatility model which
incorporates both generalized autoregressive conditional heteroskedasticity (GARCH) and realized
measures of variances and covariances. Realized measures are important as they extract information
about the current levels of volatilities and correlations from high-frequency data. This is particularly
useful for modeling financial returns during periods of rapid changes in the underlying covariance
structure. The model has a hierarchical structure: the ‘market’ return is modeled with a univariate
realized GARCH model (Hansen and Huang, 2012; Hansen et al., 2012)). A multivariate structure
is constructed by modeling ‘individual’ returns conditional on the past and contemporary market vari-
ables (return and volatility). The resulting model has the structure of a dynamic capital asset pricing
model (CAPM) that makes it feasible to extract the ’betas’ but also account for contemporaneous
volatility spillover between the market and the single asset.

Let r0,t and x0,t denote the market return and a corresponding realized measure of volatility,
respectively. Similarly, the notation r1,t and x1,t denote the same variable associated with an individ-
ual asset returns. Realized measures of volatility are constructing using the information available at
intra-day frequency. This approach was pioneered by Andersen and Bollerslev (1998). The classical
estimator of the realized volatility reads

x0,t =

I∑
i=1

r20,t−1+ih,h (1)

where r0,t−1+ih,h ≡ p0,t−1+ih−p0,t−1+(i−1)/h denotes the vector of returns for the i-th intraday period
on day t, for i = 1, . . . , I. I refers to the number of intraday intervals, each of length h ≡ 1/I. Under
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the assumption that the process is continuous and no market microstructure noise is present, this
estimator provides an accurate measures of the process integrated variance.

Define the conditional variance h0,t = var(r0,t|Ft−1) and h1,t = var(r1,t|Ft−1). Define also the
conditional correlation ρ1,t = corr(r0,t, r1,t|Ft−1); it follows directly that the realized version of the
‘beta’

β1,t = cov(r1,t, r0,z|Ft−1)/var(r0,t|Ft−1) (2)

is given by

β1,t = ρ1,t

√
h1,t
h0,t

. (3)

The model for the market return and realized measures of volatility takes the form of an exponen-
tial GARCH. It is described by the following three equations

ro,t = µ0 +
√
h0,tz0,t (4)

log h0,t = a0 + b0 log h0,t−1 + c0 log x0,t−1 + τ0(z0,t−1) (5)

log x0,t = ξ0 + φ0 log h0,t + δ0(z0,t) + u0,t, (6)

where zo,t
i.i.d.∼ N(0, 1) and uo,t

i.i.d.∼ N(0, σ2u,0). The functions τ(z) and δ(z) are called leverage
functions because they model aspects related to the leverage effects, which refers to the dependence
between returns and volatility. They are defined as τ(z) = t1z+t2(z

2−1) and δ(z) = δ1z+δ2(z
2−1).

Equations (5) and (6) are referred to as the return equation and the GARCH equation, respectively.
The third equation, ((6)), is called the measurement equation and completes the specification of the
density f(r0,t, x0,t|Ft−1).

To conclude, a model for the time series associated with the individual asset needs to be formu-
lated, conditional on the contemporaneous ‘market’ variables. This reads

r1,t = µ1 +
√
h1,tz1,t (7)

where the dependence on (r0,t, x0,t) operates through ρ1,t = cov(z0,1, z1,t|Ft−1), the conditional
correlation. The factor structure is then revealed:

z1,t = ρ1,tz0,t +
√

1− ρ21,tω1,t (8)

where ω1,t = (z1,t − ρ1,tz0,t)/
√

1− ρ31,t has mean zero, unit variance and it is uncorrelated with
z0,t. This implies that the studentized returns for the individual asset is a linear combination of the
studentized market return and the idiosyncratic component ω1,t, where the relative weight, defined by
ρ1,t is time varying. The model concludes by specifying the dynamics for h1,t and ρ1,t. For h1,t the
GARCH equation is used

log h1,t = a1 + b1 log h1,t−1 + c1 log x1,t−1 + d1 log h0,t + τ1(z1,t−1). (9)

The parameter d1 can be interpreted as contemporaneous spillover effect, measuring the extent to
which the market’s volatility affects the volatility of the individual asset while accounting for the asset-
specific volatility dynamics. The model is formulated in a way that h0,t is Ft−1-measurable, so the
presence of h0,t on the right-hand side of the equation does not contradict the definition of h1,t.

For the dynamics of ρ1,t a Fisher transformation is adopted, ρ → F (ρ) = 1
2 log 1+ρ

1−ρ which is a
one-to-one mapping from (-1, 1) into R. The GARCH equation for the transformed correlation is given
by

F (ρ1,t) = a10 + b10F (ρ1,t−1) + c10F (y1,t−1).
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Finally, the following measurement equations specify the conditional densities for the two realized
measures

log x1,t = ξ1 + ψ1 log h1,t + δ1(z1,t) + u1,t (10)

F (y1,t) = ξ10 + ψ10F (ρ1,t) + ν1,t. (11)

The model is estimated via maximum likelihood. The marginal model for the market variables
closely follow that of Hansen et al. (2012) and can be further decomposed into the conditional den-
sities of r0,t and of x0,t|r0,t. The likelihood contribution for the conditional model for individual assets
also permits a further decomposition into the conditional densities of r1|r0,x0 and (x1, y2|r1, r0, x0).

2.2 Market model for commodities

The realized beta GARCH model described above lends itself well not only to situations in which one
is interesting in a dynamic CAPM framework, but it provides a very flexible tool to asses the dynamics
of the correlations, spillovers effects and optimal hedge ratios between two individual assets belonging
to the same class.

In this paper we focus in particular on the commodity market. Our goal is to investigate the behav-
ior of correlations, changes in spillover effects and optimal hedge ratios within agricultural commodi-
ties and between oil and agricultural commodities as effect of the recent boom & bust (also referred
by some as ‘food crisis’, see Wang et al., 2014) the commodity market experienced in starting from
2005.

We use two major commodities, corn and sugar, as representative of the market commodity for
the Grains and Softs sector, respectively. We chose corn and sugar as they are the commodities with
the largest weight per sector in the three major commodity indices in Table 1. In a next step, we use
oil as proxy for the commodity market index in order to describe the commodity market as a whole.
The choice of oil as commodity market index proxy follows Tang and Xiong (2012) and is motivated
by the fact that oil is the commodity receiving the largest weights in two important commodity indices:
S&P Goldman Sachs and the Dow Jones UBS.

As a consequence of the financialization of the commodity market, Tang and Xiong (2012) show
how prices of non-energy commodity futures in the United States have become increasingly corre-
lated with oil prices. Following the lines of Barberis et al. (2005), Bonato and Taschini (2015) confirm
that this increase in comovement across commodities and with oil cannot be explained as only driven
by fundamentals and provide new evidences supporting the friction or sentiment based view expla-
nations.

3 Data

A total of 28 commodity futures are traded in the US market. Table 1 considers, out of these 28, 4
Grain commodities (corn, soy beans, chicago wheat and soybean oil), 4 Soft commodities (coffee,
cotton, cugar and cocoa) and oil. For each of this commodity we also report the weight associated
with three major commodity indices: S&P GSCI, UBS-DJ CI and Thomson-Reuters CI.

Data are provided by disktrading.com and are at 1-minute frequency covering the trading hour
of the CME and ICE. Globex trading information (i.e. outside the markets trading hours) is at our
disposal for major commodities only and is therefore not used. Futures data are in continuous format
containing price data of the most actively traded contracts. Close to expiration of a contract, the
position is rolled over to the next available contract, provided that activity has increased. In order
to guarantee that our results are based on overlapping time periods, we only considered trades that
occurred between 10.30 and 14.00. Our data set spans the period going from Jan 2, 2002 to March
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24, 2011, for a total of 2,281 trading days. Daily prices of the commodities under analyses are plotted
in Figure 1

Commodity Ticker Exchange S&P GSCI DJ-UBSCI Thomson Reuters
WTI crude oil CL NYMEX 40.6 15 5.88
Corn C CME Group 3.6 6.9 5.88
Soya beans S CME Group 0.9 7.4 5.88
Chicago wheat W CME Group 3.7 3.4 5.88
Soybean oil BO CME Group - 2.9 5.88
Coffee KC ICE 0.5 2.7 5.88
Cotton CT ICE 0.7 2.2 5.88
Sugar SB ICE 2.1 2.8 5.88
Cocoa CC ICE 0.2 - 5.88

Table 1: List of commodities used in the analysis along with future ticker, market in which they are traded and weight given
by the three major commodity indices as of 2008.

In the next step we compute the series of realized covariance matrices using the classical estima-
tor presented in Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) de Pooter et al.
(2008):

Σt =

I∑
i=1

rt−1+ih,hr
′
t−1+ih,h (12)

with an intra-day frequency of 15-minute prices. rt−1+ih,h ≡ pt−1+ih − pt−1+(i−1)/h denotes the
(n × 1) vector of returns for the i-th intraday period on day t, for i = 1, . . . , I, and with n = 4 as the
number of assets. I refers to the number of intraday intervals, each of length h ≡ 1/I.

One shortcoming of the covariance matrix estimator we adopted is that it is not efficient in the pres-
ence of market microstructure noise and asynchronous trading (see for example Sheppard, 2006,
Lunde and Voev, 2007, Barndorff-Nielsen et al., 2011a, Mancino and Sanfelici, 2008, Barndorff-
Nielsen et al., 2011b among others). We think this does not represent an issue since we consider
the most active trading part of the day, use assets that are traded in the same markets (NYMEX for
oil and CME Groups for the Grains and ICE for Softs) and compute correlation within sector or with
respect to oil, the most traded and liquid commodity future. This should reduce the distortion induced
by stale prices, non-homogenous trading times, irregularly spaced data points, asynchronism, differ-
ent institutional features using different trading platforms or exchange systems. A comparison with
the more sophisticated multivariate realized kernels of Barndorff-Nielsen et al. (2011a) did not show
significant difference in terms of realized correlations.

4 Empirical results

4.1 Estimation results

Estimation results of the realized beta GARCH for Grain and Soft commodities are displayed in Table
2. Recall that corn and sugar are used as market return for Grains and Softs, respectively. The
parameter c1, which captures the effect of the lagged realized measure on the conditional variance,
is positive and significant, although not as large as observed in Hansen et al. (2014) in the case of
stocks. The GARCH parameter b1 is smaller than is usually the case for conventional GARCH models.
This is partially explained by the fact that some persistency in volatility is captured by the realized
measure. More importantly, the parameter d1 is large and significant. This parameter measures the
spillover effect from market (i.e. corn and sugar) volatility to individual (Grains and Softs) commodity
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oil Corn Soy Beans

Wheat Soybean oil Coffee

Cotton Sugar Cocoa

Figure 1: Commodity futures daily prices.

volatilities. The observed value of d1 is much larger than what was observed for stocks. This highlights
the importance of the spillover components in the commodities under investigation. Note also that
this result shows that market volatility tends to have a positive contemporaneous effect on individual
commodity volatility. Volatility is generally a very persistent process and unreported results indicate
that replacing the contemporaneous term log h0,t with its lagged counterpart logh0,t−1

in Eq. (9) does
not materially change the result. The estimate for τ1 is generally not significant, whereas the estimate
of τ2 is positive and significant. Hence there is no clear evidence of leverage effect. ξ, the parameter
of the measurement equation, is always negative. This is to be expected since the realized measures
are computed over the open-to-close period, which only captures a fraction of the daily (close-to-
close) volatility.

Very similar conclusions hold when oil is employed as market commodity. Results are reported
in Table 3. Note, however, how the coefficient c is now higher whereas the spillover parameter d
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Commodity µ0 a1 b1 c1 d1 τ1 τ2 ξ δ1 δ2
Soy beans -0.062 0.040 0.393 0.063 0.530 0.005 0.011 -0.292 0.002 0.872

(0.008) (0.012) (0.036) (0.009) (0.043) (0.005) (0.002) (0.018) (0.000) (0.014)
Chicago Wheat -0.032 0.127 0.773 0.112 0.104 -0.002 0.014 -0.702 0.016 0.046

(0.010) (0.006) (0.013) (0.005) (0.016) (0.004) (0.001) (0.016) (0.004) (0.002)
Soybean oil -0.060 0.070 0.377 0.057 0.540 0.001 0.002 -0.348 -0.007 0.027

(0.011) (0.012) (0.035) (0.009) (0.041) (0.002) (0.002) (0.018) (0.004) (0.002)
Coffee -0.070 0.109 0.598 0.061 0.293 0.001 0.008 -0.600 -0.013 0.004

(0.017) (0.022) (0.106) (0.009) (0.100) (0.004) (0.002) (0.021) (0.006) (0.002)
Cotton -0.033 0.080 0.641 0.068 0.245 0.014 0.003 -0.530 -0.004 0.001

(0.017) (0.012) (0.103) (0.008) (0.097) (0.004) (0.002) (0.019) (0.006) (0.003)
Cocoa -0.032 -0.066 0.678 0.065 0.229 0.004 0.008 -0.119 -0.019 0.001

(0.014) (0.038) (0.112) (0.009) (0.112) (0.004) (0.002) (0.020) (0.006) (0.002)

Table 2: Realized Beta GARCH estimation results for Grains and Softs when corn and sugar are used as market commodity,
respectively. Numbers in bold denote coefficient not significant at 5% level.

is lower than what is observed in Table 2. Therefore the spillover effect is much more pronounced
within commodity sector than it is between agricultural commodities and oil. Again, there is no clear
evidence of leverage effect and, as before, the parameter ξ of the measurement equation is negative
and significant.

Commodity µ0 a b c d τ1 τ2 ξ δ1 δ2
Corn -0.019 -0.003 0.648 0.156 0.166 0.005 0.005 0.016 -0.011 0.006

(0.011) (0.004) (0.072) (0.019) (0.088) (0.003) (0.001) (0.013) (0.003) (0.002)
Soya beans -0.012 -0.041 0.561 0.144 0.258 -0.012 -0.001 0.088 -0.013 0.005

(0.009) (0.010) (0.070) (0.018) (0.084) (0.003) (0.001) 0.028) (0.003) (0.002)
Chicago wheat 0.008 0.099 0.646 0.153 0.173 0.005 0.005 -0.277 -0.003 0.002

(0.007) (0.010) (0.043) (0.013) (0.054) (0.002) (0.001) (0.018) (0.002) (0.002)
Soybean oil -0.040 -0.019 0.474 0.114 0.379 -0.001 0.004 0.015 -0.010 0.008

(0.018) (0.012) (0.118) (0.031) (0.145) (0.002) (0.002) (0.009) (0.004) (0.002)
Coffee -0.104 0.057 0.642 0.160 0.170 0.009 0.000 -0.154 -0.013 0.002

(0.016) (0.008) (0.043) (0.012) (0.054) (0.002) (0.000) (0.018) (0.003) (0.001)
Cotton -0.073 0.067 0.476 0.113 0.380 0.000 0.001 -0.153 -0.010 0.002

(0.017) (0.015) (0.114) (0.031) (0.143) (0.000) (0.001) (0.020) (0.003) (0.001)
Sugar 0.028 0.133 0.695 0.153 0.122 0.000 0.004 -0.416 -0.001 -0.001

(0.027) (0.011) (0.030) (0.009) (0.038) (0.000) (0.001) (0.018) (0.001) (0.001)
Cocoa -0.012 -0.108 0.318 0.071 0.578 0.019 0.004 0.119 -0.001 0.001

(0.014) (0.054) (0.484) (0.123) (0.597) (0.006) (0.002) (0.069) (0.001) (0.001)

Table 3: Realized Beta GARCH estimation results with oil used as market commodity, respectively. Numbers in bold denote
coefficient not significant at 5% level.

4.2 Realized correlations

We present now the realized beta GARCH model correlations. As done above, we consider two
cases. First, in order to compute correlation within commodity sector, we employ corn and sugar as
market commodity for Grains and Softs, respectively. Secondly, we analyze the interaction between
oil and the agricultural commodities by using oil as market commodity.

Within-sector correlations are displayed in Figure 2. For Grains, correlations with corn are gen-
erally high and show a inverse ‘U’ shape. Correlations increase from 2002 and reach the maximum
in 2007. They then decrease to values lower than in 2002 but again pick up after 2010. For Softs,
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correlation with sugar is generally very low and starts spiking starting from late 2007/early 2008. For
Coffee and Cotton this correlation reaches its maximum in late 2008 and then decrease. For Cocoa
this pattern is somehow delayed as it is seen starting only from 2009.

Our results show that the so-called ‘food-crisis’ affected in a greater way Softs commodities, which
were not significantly correlated before 2008. For Grains, which display large positive correlation
across the sample, the super-cycle of commodities is less visible but still present.

Soy Bean Chicago Wheat Soybean oil

C
or

n

Coffee Cotton Cocoa

S
ug

ar

Figure 2: Model realized futures returns correlations for each agricultural sector. ‘Market’ commodities are corn and sugar
for Grains, Soft, respectively

.

This sections concludes with the analysis of correlations between oil and agricultural commodities.
Results are shown in Figure 3. Clearly, the correlation between oil and agricultural commodities was
negligible in the beginning of our sample. It then started to increase and jumped in early 2008 to
finally decrease after the bursting of the commodity bubble. Note, however, that differently from the
correlation within Grains and Softs, correlations with oil remain at levels which are much higher than
2002. There are therefore evidences of a regime shift in the levels of correlation between agricultural
commodities and oil. These results corroborate the findings of Tang and Xiong (2012). They noted
increased correlations between oil and agricultural commodities amid the 2007-2008 boom and bust
and motivated this finding as a result of the massive increase in index investing experienced in the
commodity markets starting from 2004.

4.3 Spillover effects

Along with correlations, a very important aspect requiring attention when holding a portfolio of com-
modities is related to the risk embedded in the volatility transmission across its components. That is,
the volatility risk spillover. Understanding and modeling spillover effects is crucial to provide accurate
predictions of assets volatilities. This has an impact in the construction of optimal portfolios but also
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Figure 3: Model realized futures returns correlations between oil and Grains and Softs commodities.
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in the development of appropriate risk management strategies. In this model, risk spillover is defined
as the dependence of a given asset variance on the contemporaneous variance of the market (or
on the commodity that acts as market). An increase in asset volatility, together with an increase in
volatility transmission can result in greater costs for managing risks (e.g. higher hedging costs). It
is therefore crucial for risk management purposes to understand and possibly anticipate changes in
volatility relationships. Volatility spillovers have been studied abundantly in the financial literature. See
for example Baele (2005), Bekaert and Harvey (1997), Bekaert et al. (2002), Christiansen (2007), Ng
(2000). For applications on high-frequency data see Bonato et al. (2013) and Fengler and Gisler
(2014). While these works all focus on the equity, currencies or bond markets, only recently has the
academic literature started to investigate this topic in the commodity market, and especially between
oil and agricultural commodities or oil and the stock market, see the seminal paper of Wu et al. (2010)
and Chang et al. (2013), Arouri et al. (2011), Mensi et al. (2013) also amongst others.

As shown in Equation (9), the realized beta GARCH models lends itself well to the measurement
of the volatility spillover between the market commodity and each single commodity. Differently from
the literature on volatility spillover (see for example Chang et al., 2013; Arouri et al., 2011; Wu et al.,
2010; Nazlioglu et al., 2013; Fengler and Gisler, 2014 or Bonato et al., 2013) which assumes a lagged
volatility transmission effect, the model we use assumes a contemporaneous effect. As already men-
tioned in this paper, given the persistency typical of the volatility, using a lagged or contemporaneous
variable should not affect particularly the result.

In order to account for time variation in the volatility spillover effect, we followed Fengler and
Gisler (2014) and Diebold and Yilmaz (2009, 2012, 2014), and use a rolling window approach. Using
500-day rolling windows, we recursively estimate the parameters of the realized beta GARCH model
and store the values of d1, the coefficient associated to the log h0,t term. Results are presented in
graphical form in Figure 4.

Although not as evident as for correlations, the spillover of oil volatility shocks onto the major
agricultural commodities is seen to get larger starting from around 2004. Spillovers then start to
decrease roughly between 2006 and 2008. This results show that the transmission of volatility shocks
from oil to agricultural commodities actually started before the increase in correlations. Also, the peak
in volatility transmission is experienced earlier than the peaks in correlation values. While reckoning
that such result are specific of the model adopted in this paper, it is worthwhile noting that they
shows that changes in the dynamic of the volatility transmission, although not extremely distinct, have
anticipated the changes in dependency structure between commodities. This finding is very important
if one considers the loss in diversification of a portfolio of commodities associated with an increase in
returns correlations.

4.4 Hedging ratios

Correlations and volatility spillovers are key elements to build appropriate portfolio hedging strategies.
We conclude this empirical section by showing how hedging strategies have also been affected by
the latest development of the commodity market dynamics. Again, the focus will be directed to the
interaction between oil and agricultural commodities.

Consider a two-asset portfolio composed of corn and oil futures. In order to minimize the risk of a
hedged portfolio, a long position in one-dollar on corn must be hedged by a short position of βCO, t
dollars in oil. This optimal hedge ratio is given in Kroner and Sultan (1993) and reads

βCO,t =
hCO,t
hO,t

. (13)

Now, note how βCO,t coincides with the realized beta specification in Eq. (3), where corn is the
individual asset and oil is interpreted as the ‘market’. Hence, by employing the realized GARCH
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Figure 4: Spillover effects between oil and Grains and Softs commodities.
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Figure 5: Model realized betas between oil and Grains and Softs commodities.
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model, we can easily obtain the optimal hedge ratio between oil (the market commodity) and all other
individual commodities.

The concept of realized betas is not new. It was first introduced by Bollerslev and Zhang (2003).
They carried out a large-scale estimation of the Fama-French three-factor model using 5-minute data
on 6,400 stocks over a period of 7 years. They show that using high-frequency data can improve the
pricing accuracy of asset pricing models. In a related paper Andersen et al. (2006) investigate the time
variation in realized variances, covariances and betas using daily returns to construct quarterly real-
ized measures. They found evidence of strong persistence in the variance and covariance process,
but less persistency in the beta process. This indicates that realized volatility and realized covariance
are fractionally cointegrated. Other related studies include Barndorff-Nielsen and Shephard (2004),
who derived asymptotic results for realized beta and Dovonon et al. (2013), who established a the-
ory for bootstrapping inference. MSE-optima estimation of realized betas was analyzed in Bandi and
Russel (2005). Patton and Verado (2012) studied the impact of news on betas. Corradi et al. (2011)
use realized betas in order to extract the conditional ‘alphas’. Morana (2009) employ realized betas
to explain variation in expected returns.

Model realized betas are plotted in Figure 5. For all agricultural commodities, the optimal hedge
ratios show in increasing pattern. In particular, starting from around 2005, the beta between each
individual commodity and oil has not only become larger but also much more volatile. This findings
have important implication in terms of portfolio hedging strategies: the low betas observed prior to
2005 suggest that agricultural investment risk could be hedged by taking a short position in oil futures.
After this date, more and more oil futures are needed in order to minimize the risk of holding a position
in agricultural commodities and thus resulting in higher hedging costs.

These results, together with the increased realized correlation between oil and other agricultural
commodities again signal that the joint dynamics of agricultural and energy futures have changed in
the last 10 years. In particular, an increase in comovement can be observed.

5 Concluding remarks

Over the last decade, commodity futures have become a popular asset class for portfolio investors,
as investors increasingly sought out commodities for portfolio diversification after the equity market
crash in 2000. This process is sometimes referred to as the financialization of commodity markets.
The increase in commodity investment (particularly in the form of investment in commodity indices)
coincided with increasing correlations between the returns of different commodity classes.

In this paper we employed a dataset of intra-day commodity futures prices and a recently intro-
duced econometric methodology with the goal of providing further evidences that the joint dynamics
of agricultural and energy commodities have profoundly changed.

From the methodological side, we rely on the recently introduced realized beta GARCH model of
Hansen et al. (2014). The realized beta GARCH is a multivariate volatility model which incorporates
both generalized autoregressive conditional heteroskedasticity (GARCH) and realized measures of
variances and covariances. Realized measures are important as they extract information about the
current levels of volatilities and correlations from high-frequency data. The model provides a very
flexible tool to asses the dynamics of the correlations, spillovers effects and optimal hedge ratios
between to individual assets belonging to the same class. We use two major commodities, corn and
sugar, as representative of the market commodity for the Grains and Softs sector, respectively, and
oil as commodity market index.

Using high-frequency price data for oil and 8 major US-traded agricultural commodities (corn,
soybeans, wheat and soybean oil for Grains; coffee, cotton, sugar and cocoa for Softs) and estimating
the realized beta GARCH model of Hansen et al. (2014), we have first shown that starting from
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2006 correlation within Grains and Softs commodities have increased. Correlations between oil and
agricultural commodities have also significantly increased. Similarly, spillover effects between oil and
agricultural commodities has risen in size. This same conclusion holds for the optimal hedging ratio
of a portfolio consisting of a position in an agricultural commodities hedged with a short position on
oil.

Our results are important for investor exposed to the commodity market as they show that while
diversification benefits in investing in this market have decreased, volatility transmission risk has
increased. As a consequence, higher hedging costs need to be born.
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