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Abstract

This paper examines the dependence structure between two developed
and four emerging African stock markets in a copula framework. Using
daily data from January 2000 to April 2014, our empirical results show
that dependence structure between African and international stocks varies
overtime, but generally weak. There is asymmetric and weak tail de-
pendence for all the countries, implying stock return co-movement varies
in bearish and bullish markets and that the dependence is generally not
strong in extreme market conditions. We also …nd that extreme downward
stock price movements in the advanced markets do not have signi…cant
spillover e¤ects on Africa’s emerging stock markets.

1 Introduction

The nature of dependence across stock returns plays a crucial role in asset pric-
ing, portfolio allocation and policy formulation. Investment practitioners pay
close attention to the co-movement between equity markets, as a proper grasp of
its nature and measurement a¤ects the risk-return trade-o¤ from international
diversi…cation; typically, international portfolio diversi…cation becomes less ef-
fective when markets are in turmoil. Policy makers, on the other hand, are more
interested in how strong linkage across stock markets in‡uences the transmission
of shocks, its consequences as well as implications for risk management.

There is vast literature on the dependence between international stock mar-
kets, mainly spurred by the seminal contribution of Grubel (1968) who alluded
to the fact that investors could obtain welfare gains by diversifying their portfo-
lio internationally, where the gains hinges primarily on the correlation between
stocks. Linear correlation has been used as the canonical measure of associa-
tion between stocks due to its convenient properties (see Embrechts, McNeil, &
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Straumann, 2002). Early works in this area were based on models that jointly
price stocks under the assumption of constant correlation (Agmon, 1972; Solnik,
1974). Subsequent contributions present evidence that stock return comovement
varies with time (Brooks and Del Negro, 2004; Forbes & Rigobon, 2002; Kizys
& Pierdzioch, 2009). Owing to the drawbacks of linear correlation, multivariate
GARCH models have become the typical approach of modelling time-varying
stock dependence and there is exponential growth of research in this area (see
Syllignakis & Kouretas, 2011; Gjika & Horvath, 2013; Baumöhl & Lyócsa, 2014;
Kundu & Sarkar, 2016). However, one major limitation of the multivariate
GARCH approach is the assumption that return innovations are characterized
by a symmetric multivariate normal or Student-t distribution (Patton, 2006b;
Garcia & Tsafack, 2011). Evidently, this assumption seems to be at odds with
the empirics; the distribution of …nancial returns possesses heavy tails than
those of the normal distribution and dependence between stocks returns are
usually nonlinear and asymmetric (Embrechts, McNeil, & Straumann, 2002).

Against this background, researchers have resorted to a relatively new ap-
proach, copula, to model the dependence between stock returns. Copulas are
functions that join multivariate distributions to their one-dimensional margins
(Sklar, 1959). There are several advantages in using copula models. First,
copula-based models provides much ‡exibility in modelling multivariate dis-
tributions by making it possible to …t models for the marginal distributions
separately from the dependence structure (copula) that connects them to form
a joint distribution (Patton, 2012). Second, copula functions allow us to model
dependence in extreme market conditions and they signify both the degree and
structure of the dependence. Third, unlike linear correlation, copula functions
are invariant to non-linear strictly increasing transformations of the data (Em-
brechts, McNeil, & Straumann, 2002). For example, the dependence between
X and Y will be the same as the dependence between ln(X) and ln(Y ).Thus,
copula functions provide a realistic description of the dependence in …nancial
assets.

There is abundant empirical literature on the dependence structure among
international stock returns using copulas. For example, Yang, Cai, Li and
Hamori (2015) investigates the dependence structure among international stock
markets using hierarchical Archimedean copulas and …nds strong dependence
between Emerging and European stock markets, weak dependence between
Frontier and other markets, and evidence of contagion during the global and the
EU debt crisis. Similarly, using static copulas, Basher, Nechi and Zhu (2014)
studies the dependence pattern across GCC stock returns and concludes that
dependence is asymmetric. Bhatti and Nguyen (2012) uses conditional extreme
value theory and time-varying copula to capture the tail dependence between
the Australian …nancial market and other selected international stock markets
and …nds evidence of tail dependence. Mensah and Premaratne (2014) also
examine the dependence structure among banking sector stocks from 12 Asian
markets using static and time-varying copulas and uncovers evidence of asym-
metric dependence. These studies are mainly focused on international markets,
other than those from Africa.
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Although studies abound, there is no empirical evidence on the dependence
structure of African stock markets with other international stock markets. Only
a smattering of papers has focused on the comovement of Africa’s emerging stock
markets with other international markets, despite the region’s growing impor-
tance in the global economy. It is also instructive to note that the few existing
empirical studies on Africa (Adjasi & Biekpe, 2006; Alagidede, 2009; Alagid-
ede & Panagiotidis, 2011) focus on comovement using cointegration techniques,
which has major weaknesses. For instance, it requires long span of data, which
many of the equity markets in Africa, with the exception of a few, do not have,
thus rendering a number of the previous studies questionable. Moreover, using
linear dependence measures is at odds with the widely acknowledged fact that
return distributions are non-normal. It is therefore essential to assess the de-
pendence between African stock markets and other international markets with
more accurate measures of dependence.

The contribution of this paper is twofold. Firstly, to the best of our knowl-
edge, this is the …rst study that applies copula models to investigate the time-
varying dependence pattern between international and African stock returns.
We characterize the bivariate dependence structure between African and other
international stock returns through copulas. To model the dynamic depen-
dence, we use the Generalized Autoregressve Score (GAS) model proposed by
Creal, Koopman and Lucas (2013), which uses the standardized score of the
copula log-likelihood function to update parameters over time. The GAS model
performs well in capturing di¤erent types of dynamics compared to the lagged
and autoregressive speci…cation in Patton (2006) and the DCC speci…cation
in Christo¤ersen, Errunza, Jacobs, and Langlois (2012) and Christo¤ersen and
Langlois (2013). Thus, our study provides new insight on the dependence struc-
ture of African stocks in African markets.

Secondly, this study is novel as it investigates African stock market quantiles
conditional on advanced stock price movements, with the aim of uncovering
shock spillovers. In this respect, a few studies have applied copula and quantile
models in order to capture shock spillovers. For example, Sim and Zhou (2015)
used a quantile-on-quantile regression to characterize the e¤ect of oil price shock
quantiles on US stock return quantiles. Subsequently, Reboredo and Ugolini
(2016) used a copula-based approach to investigate the impact of quantile and
interquantile oil price movements on di¤erent stock return quantiles for a broad
set of global indices. They compute unconditional and conditional quantile
stock return quantiles based on marginal models for stock returns and copula
function for oil-stock dependence and proof the e¤ectiveness of this approach.
In line with Reboredo and Ugolini (2016), we capture the dependence structure
between stock returns and compute conditional quantile through copulas.

The empirical results show that dependence structure between African and
international stocks varies overtime, but generally weak. Further, we …nd evi-
dence of asymmetric and weak tail dependence for all the countries. This implies
that the stock return comovement varies in bearish and bullish markets and that
the dependence is generally not strong in extreme market conditions. Further,
we …nd that that extreme downward stock price movements in the US and UK
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do not have signi…cant spillover e¤ects on Africa’s emerging stock markets.
The remainder of this paper proceeds as follows. Section 2 presents a brief

discussion of copula theory. Section 3 highlights the empirical application of
copula models, and Section 4 presents the data. Section 5 shows the empirical
results and Section 5 concludes.

2 Copula Theory

Sklar (1959) theorem allows us to decompose any multivariate into univariate
marginal distributions and a copula, which fully captures their dependence.
More formally, we de…ne a continuous n-variate cumulative distribution func-
tion as F (x1,...xn). Its univariate margins are Fi(xi), i = 1, . . . , n where
Fi(xi) = F (1, . . . , xi, . . . ,1).Given these conditions, Sklar (1959) showed that
there exists a function C, known as a copula, that maps [0,1]n into [0,1] such
that

Fn(x1,...xn), = C[F1(x1), . . . , Fn(xn)]. (1)

Di¤erentiating Equation (1) once with respect to all its arguments, we obtain
the joint density function. It is the product of the copula density and the n
marginal densities,

∂nF (x1, . . . , xn)

∂x1, . . . , ∂xn
= ¦n

i=1fi(xi)
∂nC[F1(x1), . . . , Fn(xn)]

∂F1(x1),...,∂Fn(xn)
. (2)

Further, if we de…ne ui = Fi(xi)~U [0, 1], i = 1, . . . , n as the probability
integral transformation (PIT) variables of the marginal models, then the un-
conditional copula is de…ned as the multivariate distribution with uniform [0,1]
margins,

C(ui, . . . , un) = [Fn(F ¡1
1 (ui), . . . , F

¡1
n (un)); pF ] (3)

Equation (3) states that, given the marginal distributions ui to un, there
exists a copula function that maps the univariate margins ui to un via F¡1;
and the joint of the (abscise values) F¡1(ui) to a single, n-variate function
Fn(F¡1

1 (ui), . . . , F¡1
n (un)) with the same correlation structure as pF (Meissner,

2014). Thus, given n random variables with marginal distributions that are
uniform on the interval from zero to one, copulas provide an easy mapping from
the univariate marginal distributions to their n¡variate distribution, supported
on [0,1]n. This method of transforming an n¡dimensional function on the in-
terval [0,1] into a unit-dimensional function applies irrespective of the degree of
dependence among the random variables (Heinen & Valdesogo, 2012).

There are several advantages of using copula functions in …nance. First, they
provide a ‡exible way of modelling nonlinear dependence. Unlike correlation,
we can specify di¤erent distributions for the margins and still be able to model
their joint dependence with any copula of choice. Secondly, copulas are able to
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capture the exact comovement between two or more random variables, irrespec-
tive of their scale of measure; the marginal determine the scaling and shape.
In other words, the tail dependence between the random variables is invariant
under strictly increasing transforms. An account of unconditional copulas can
be found in Cherubini Luciano and Vecchiato (2004), Nelsen (2007).

3 Empirical Methods

3.1 Marginal Models

Prior to …tting the bivariate copula models, we specify appropriate models for
the conditional (marginal) densities (conditional means, variances and distribu-
tions). Financial time series exhibit some well-documented characteristics such
as long-memory, fat-tails, and conditional heteroscedasticity. Thus, it su¢ces to
apply autoregressive-moving average (ARMA(p, q)) models to the conditional
means (where p is the order of the autoregressive part and q is the order to
the moving average part) as well as generalized autoregressive conditional het-
eroskedasticity (GARCH(p, q)) models to the conditional variances (where p and
q are the order of the GARCH and ARCH terms, respectively) as follows:

Yt = c + εt +

pX
i=1

ϕiYt¡i +

qX
i=1

θiεt¡i (4)

εt = σ2
t zt, zt » NIID(0, 1) (5)

σ2
t = ω +

qX
i=1

αiε
2
t¡i +

pX
i=1

βiσ
2
t¡i (6)

where Yt is the log-di¤erence of stock market price at time t; c is the constant
term in the mean equation; εt is the real-valued discrete time stochastic process
at time t; zt is an unobservable random variable belonging to an i.i.d. process;
σ2

t is the conditional variance of εt; ω, αi and βi are the constant, ARCH
parameter, and GARCH parameters respectively. In the case of GARCH (1,1)
model, the following inequality restrictions must be satis…ed to ensure that the
model is rightly speci…ed: (i) ω ¸ 0, (ii)α1 ¸ 0, (iii) β1 ¸ 0 and (iv) α1+β1 < 1.
When α1 +β1 = 1 then the conditional variance will not converge on a constant
unconditional variance in the long run (Bollerslev, 1986). We estimate the
GARCH models by maximum likelihood.

3.2 Copula Models

Equation (1) outlined the copula distribution for nnumber of assets. In the
case of a bivariate joint distribution, with marginal, FX(x) and FY (y), we can
express the distribution as

FX,Y (x, y) = C(FX(x), FY (y)) (7)
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An important observation from Equation (7) is that the joint distribution is
separated into marginal parts and dependence structure (copula) without los-
ing any information. Moreover, we can assume di¤erent distribution families for
each of the marginal, FX(x) and FY (y). One key feature of copula functions is
that the tail dependence between two random variables, X and Y, is invariant
under strictly increasing transformation of X and Y. For example, the depen-
dence between X and Y will be the same as the dependence between ln(X)and
ln(X). Following previous studies (Patton, 2012), we can de…ne the lower and
upper tail dependence between X and Y as

τL limu!0 PrfFY (Y ) · ujFX(X) · ug = limu!0
C(u, u)

u
(8)

τU limu!1 PrfFY (Y ) ¸ ujFX(X) ¸ ug = limu!1
1 ¡ 2u + C(u, u)

1 ¡ u
(9)

where τL and τU 2 (0, 1). If the above limits exist and if τL and τU > 0, X and
Y tend to be left (lower) or right (upper) tail dependent. The tail dependence
captures the behavior of the random variables during extreme events. Given
two stock market returns, X and Y , tail dependence measures the probabil-
ity that we will observe an extremely large fall (rise) of stock market X given
that the stock market Y has experienced an extreme fall (rise). Informally, the
tail dependence determines whether the two markets crash or boom together;
investors holding long portfolios are mainly concerned with the downward move-
ment, whereas the risk of large upward movement is the concern of investors
holding short positions.

We estimate Equation (7) for di¤erent copula speci…cations in order to cap-
ture di¤erent patterns of tail dependence. Table 1 shows the functional forms
for four copulas, namely: Gaussian (Normal), Student’s t, Gumbel, and rotated
Gumbel copulas. The Gaussian copula is the most widely used in …nance due
to its convenient properties. However, it is unable to capture tail dependence.
The Student’s t copula on the other hand assumes symmetric dependence for
both lower and upper tails of the joint distribution. The rotated Gumbel are
useful only when examining dependence during market crashes; conversely, the
Gumbel copula is able to capture only upper tail dependence, thus making it
useful during periods of market boom.

3.3 Generalized Autoregressive Score (GAS) model

The time-varying copulas are estimated based on the Generalized Autoregressive
Score (GAS) model of Creal, Koopman and Lucas (2013). We assume the copula
parameter evolves as a function of its own lagged value and a “forcing variable”
related to the scaled score of the copula log-likelihood. This approach uses
strictly increasing transformation (e.g. log) to copula parameters in order to
ensure that parameters are constrained to lie in a particular range (e.g ρ 2
(¡1, 1)). Following Patton (2012), the evolution of the transformed parameter
is denoted

ft = h(δt) , δt , h¡1(ft) (10)
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where
ft+1 = θ + βft + αI¡1/2

t st (11)

st ´ ∂

∂ρ
log c(ut, vt; δt) (12)

It ´ Et¡1 [sts
0
t] = I(δt) (13)

By these expressions, the future value of the copula parameter dependence on a
constant, the present value, and the score of the copula log-likelihood I

¡1/2
t st.

We apply the GAS model to the time-varying Gaussian, Gumbel and rotated
Gumbel copulas.1 We us δt = (1 ¡ exp f¡ftg) / (1 + exp fftg) to ensure that the
Gaussian copula parameter lie in (-1, 1). We use the function δt = 1+exp(ft)to
ensure that the Gumbel and rotated copula parameter is greater than one.

We can estimate the copula parameters using two alternative frameworks:
Maximum Likelihood Estimation (MLE) method and the Inference functions
for the Margins (IFM). We estimate the copulas in this study by the latter
method due to its advantages over the MLE. First, unlike the MLE, the IFM
requires few computations; second, it is highly e¢cient; thirdly, the goodness of
the margins can be assessed separately from that of the copula; lastly, the series
of random variables are not required to be of equal length (Bhatti and Nguyen,
2012).

3.4 Advanced stock return quantile e¤ects on African stock
return quantiles

Apart from the dependence structure, we also examine whether extreme price
movements in the advanced stock markets have any spillover on African stocks.
In this regard, we examine the impact of lower quantile advanced stock price
movements on African stock price quantile. In line with Reboredo and Ugolini
(2016), the α-quantile of stock return distribution at time t given by p(yt ·
qyt
α,t) = α can be computed as

qyt
α,t = F ¡1

yt
(α) (14)

where yt is the stock return, F¡1
yt

(α) is the inverse of the distribution function of
yt. The α-quantile for low values of alpha is typically referred to as value-at-risk
(VaR). Furthermore, we can obtain the conditional α¡ quantile of African stock
return distribution at time t for a given β-quantile of advanced market stock
return given by p(yt · qytjxt

α,β,t) = α as:

q
ytjxt

α,β,t = F ¡1
ytjxt·q

xt
β,t

(α) (15)

1For the student-t copulas, we considered the ARMA(1,q)-type process
Patton (2006) for the linear dependence parameter as follows ρt =

¤1
(
ψ0 + ψ1ρt¡1 + ψ2

1
q

∑q
j=1 t¡1v (ut¡j) .t¡1v (vt¡j )

)
Where ¤1 = (1 ¡ e¡x)(1 + e¡x)¡1 is

modi…ed logistic transformation that which forces the value of within the interval (-1,1).

7



where F ¡1
ytjxt·q

xt
β,t

(α) denotes the inverse distribution of yt conditional on .

Given the conditional mean and variance information (Eq. 4 to 6), we com-
pute the unconditional α¡quantile of the stock return as

qyt
α,t = µt + F¡1(α)σ t (16)

Moreover, since Sklar’s theorem allows us to express the joint distribution of
y and x as FX,Y (x, y) = C(FX(x), FY (y)), we can compute the conditional
quantiles using copula as

qytjxt

α,β,t = F ¡1
yt

³
F̂yt

³
qytjxt

α,β,t

´´
(17)

4 Data

We used the following stock indices: FTSE/JSE All Share (JSEOVER) for
South Africa, Hermes Financial (EGHFINC) for Egypt, Nigeria All Share (NI-
GALSH), Nairobi SE (NSE20) for Kenya, FTSE 100 for United Kingdom and
the S&P 500 COMPOSITE for the United Sates. These are tradeable indices
readily available to market participants; hence, the returns are a true re‡ection
of the gains an investor could make by holding them in a portfolio. The four
African markets are the largest, in terms of listed companies, in their respec-
tive sub regions, that is Southern Africa, North Africa, East Africa, and West
Africa. Another reason for this selection is that all the markets have daily data
for a relatively long sample period. The data is of daily frequency, gleaned from
Datastream and covers the period January 2000 to April 2014. The returns are
calculated as 100 times the di¤erence in the log of prices.

Table 2 shows the descriptive statistics. The mean percentage returns are
close to zero in all cases and small compared to the standard deviations indicat-
ing high volatility in all the markets. Comparing the means, we notice Nigeria
is the highest, followed by South Africa, whereas USA shows the lowest perfor-
mance over the sample period. Furthermore, with the exception of Kenya, all
the stock returns are negatively skewed and have excess kurtosis, suggesting a
relatively higher probability of extreme negative returns compared to extreme
positive returns. The Ljung-Box test con…rms the presence of strong autocorre-
lation. The Jarque-Bera statistic (Jarque and Bera, 1980; 1981) strongly rejects
the null hypothesis of normality in the return distributions. Finally, the ARCH-
LM test (Engle, 1982) strongly con…rms the presence of ARCH-e¤ects in the
individual series, thus, it su¢ces to model the return distributions with GARCH
models.

Table 3 shows linear correlation among the six markets. Of importance is
the correlation between the United States and African markets on one hand,
and the correlation between the United Kingdom and African markets on the
other hand. The ranking for the USA-related pairs from lowest to highest is
USA-Nigeria, USA-Kenya, USA-Egypt and USA-South Africa. Similarly, the
linear correlation from lowest to highest for the UK-related pairs is UK-Nigeria,
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UK-Kenya, UK-Egypt and UK-South Africa. With the exception of the USA-
South Africa (0.5881) and UK-South Africa (0.3448), correlation is generally low
among the remaining pairs. At the surface, the low correlation seems to be an
indication of the possible bene…ts from diversi…cation. It is instructive to note
that the correlation coe¢cient only tell us about the average dependence over the
entire distribution, thus, it would be misleading if one uses it to make inferences
about diversi…cation opportunities. Besides other shortcomings, correlation is
a linear measure and is unable to capture the nonlinear dependence among the
markets, hence the need for the copula technique, which is more robust.

5 Empirical Results

5.1 Estimates of Marginal Models

Prior to estimating the copula models, we apply an ARMA …ltration to the
stock return series to ensure the residuals have an expected return of zero and
free from autocorrelation. We then test the …tted series for ARCH-e¤ects using
the ARCH-LM test and the results indicated that each of the series shows evi-
dence of heteroscedasticity. We therefore determine the optimal lag length for
each univariate GARCH and …t various speci…cations to the second moments.
Table 4 shows the estimates of the ARMA-GARCH models for the stock re-
turns. The best …tting models based on the Akaike information criterion (AIC)
are AR(I)-GARCH(1,1) for South Africa, ARMA(1,1)-GJR-GARCH (1,1) for
Egypt, ARMA(1,1)-GARCH(1,1) for Kenya, AR(2)-GARCH(1,1) for USA and
AR(2)-GARCH(1,1) for Nigeria and U.K. Table 4 shows that the estimated con-
ditional variance is impacted by past squared shocks (between 0.7334 to 0.2624)
as well as past conditional variance (around 0.5886 to 0.9078).

Subsequent to the marginal speci…cations, we used the empirical distribu-
tion function to transform the standardized iid residuals into uniform margins,
thus making our model semiparametric. Semiparametric models have much
empirical appeal compared with the fully parametric models (Patton, 2012).
We then carry out the goodness-of-…t for the marginal models by applying the
Breusch-Godfrey serial correlation LM (BGLM) (Breusch, 1978; Godfrey, 1978)
test to the PITs of the underlying error terms from each of the ARMA(p,q)-
GARCH(p,q) processes. We carried out the BGLM test for the …rst four mo-
ments of the probability integral transforms (u and v) of the standardized resid-
uals from the marginal models; that is, we regress (u ¡ ¹u)k and (v ¡ ¹v)k on 10
lags of both variables lags for. The p-values shown in Table 5 gives no indication
of serial correlation, thus justifying the appropriateness of the marginal models.

5.2 Copula Estimates

Table 6 reports estimates of static and time-varying copula dependence between
the US and African stock markets. The results for the UK-related pairs are
shown in Table 7. Since the parameter estimates for the Gaussian and student-
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t copula captures the dependence between the markets, we can state that the
higher the value of ρ̂, the higher the dependence between the stock markets.

The ρ̂estimates in Table 6 are statistically signi…cant for all African markets,
with the exception of Kenya. The ρ̂estimates for South Africa shows a moderate
positive relationship with the US and it is clearly distinguishable from Egypt
and Nigeria, which show a weak positive linear relationship with the US stock
market. Moreover, the time-varying Gaussian and student-t copula parameters
both show the existence of time-varying dependence between the markets.

For the UK stock market, the Gaussian and student-t copula parameter esti-
mates in Table 7 show the existence of weak uphill linear relationship with South
Africa and Egypt only; ρ̂ is not statistically signi…cant for Kenya and Nigeria.
Both the time-varying Gaussian and student-t copula parameters corroborate
the existence of dynamic dependence for South Africa and Egypt.

Figure 1 depicts the temporal evolution based on the Gaussian copula GAS
speci…cation between the US and African stock markets (grey lines) on one hand,
as well as the UK and African stock markets (black lines), on the other hand.
Clearly, there is no similarity in the temporal evolution of dependence for the
bivariate relationships. An upward trend can be found for the US-Nigeria pair,
while Egypt shows signi…cant peaks, coinciding with the sub-prime and Euro
debt crises. The dynamic path for the Kenyan and UK-Nigeria pair is akin to
a white noise process, while the US-South African pair exhibits mild clustering.
These points to the fact that African markets do not respond uniformly to events
in the advanced markets.

5.3 Tail dependence between advanced and African stock
returns

The Gumbel (rotated Gumbel) captures upper (lower) tail dependence structure
between the markets. Given that the implied tail dependence is de…ned as2 ¡
21/κ, we can say that a higher value of κ̂ from the Gumbel (rotated Gumbel)
indicates higher upper (lower) tail dependence between the stock markets. The
static Gumbel (rotated Gumbel) parameter κ̂ in Table 6 and 7 is statistically
signi…cant for both the US and UK related pairs. Comparing the values reveals
moderate dependence for US-South Africa and weak dependence for all other
pairs, except UK-Nigeria whose Gumbel copula parameter (κ̂= 1.000) implies
no upper tail dependence. Thus, we can say that African markets are generally
less sensitive to the advanced markets.

Figure 2 illustrates the dynamic upper (lower) tail dependence based on the
TVP Gumbel (rotated Gumbel) copula GAS speci…cation. Dependence in the
tails closely evolve and lower tail seems to be mostly greater than upper tail,
suggesting the presence of asymmetry in some bivariate relationships. South
Africa shows a more volatile tail dependence with the US compared to other
African countries. Kenya’s tail dependence with UK and US seems to be the
least volatile among all the pairs. Although there is no clear similarity in tem-
poral evolution of tail dependence for the bivariate pairs, most of them seemed
to have responded to the Global Financial Crises and Euro Crisis with peaks
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of turbulence (e.g. US-Egypt, UK-Egypt, UK-South Africa, and US-Nigeria),
which is in line with studies that point to an increase in …nancial market depen-
dence during crisis (Kenourgios, Samitas & Paltalidis, 2011; Righi & Ceretta,
2013; Mensah & Premaratne, 2014). Yet, with the exception of South Africa,
there is weak tail dependence for the African markets, suggesting a low proba-
bility of contagion or shock spillovers. The lack of strong association at the tails
points to the mild segmentation of African markets from the advanced stock
markets and this could be due to barriers such as the quality of information on
African markets.

5.4 Conditional Quantile Spillover E¤ects

The weak dependence, particularly at the lower tails, is an indication that
African markets are reasonably immune to risk spillovers from the advanced
markets. In other words, the degree of comovement is too low to warrant the
easy spread of contagious shocks along with its broad systemic implications.
To shed more light on the spillover implications of the weak tail dependence
uncovered in the previous paragraphs, we examine the impact of US and UK
quantile stock return movements on African stock return quantiles We use infor-
mation from the marginal and copula models to compute the unconditional and
conditional stock return quantiles following Equation (12 -13) In the interest of
space, we consider only extreme downwards (0.05) stock price movements.

Figure 3 depicts the dynamics of both unconditional and conditional stock
return quantiles over the entire sample period. As can be visually perceptible by
plots in Figure 3, we found that unconditional stock return quantiles were below
the conditional quantiles for all African countries, suggesting the absence of any
signi…cant spill-over e¤ects from the US and UK markets. This corroborates the
weak lower tail dependence reported for the copula models. We can therefore
say that extreme downward stock price movements in the US and UK do not
have signi…cant spillover e¤ects on Africa’s emerging stock markets.

6 Conclusion

This paper examines the dependence structure among African and advanced
equity markets using daily stock prices from January 2000 to April 2014 and
copulas. The empirical results show that dependence structure between African
and international stocks varies overtime, but generally weak. Further, we …nd
evidence of asymmetric and weak tail dependence for all the countries. Further,
we …nd that that extreme downward stock price movements in the US and UK
do not have signi…cant spillover e¤ects on Africa’s emerging stock markets.

In general, the evidence presented has important implications for market
participants and policy makers in diverse ways. First, the presence of weak
dependence between African and advanced stock markets points to the potential
gains for international investors holding African stocks. Our …nding should
regenerate interest amongst practitioners to reassess how assets are allocated
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for e¤ective diversi…cation. Second, our results imply that African markets are
immune to risk spillovers from the more advanced markets and the tendency
to boom or crash together is minimal. In light of recent volatility in global
stock markets with the associated spread of contagious shocks from advanced
to emerging markets, as well as the broad macroeconomic implications, our
…ndings might be useful to policy makers and regulators, particularly in African
countries, in designing and implementing appropriate intervention policies.
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Table 1: Copula Specifications 

 
Copula Distribution Parameter 

Space 

Independence Lower tail 

dep 

Upper tail 

dep 

Normal 
))(),(();,( 11 vuvuCN

    
)1,1(  0  0  0  

Student-t 
))(),((),;,( 11

, vtutTdvuC dddT
   

)1,1(

),2( d  

0  ),( dT   ),( dT   

Gumbel }]))ln(())ln([(exp{);,( /1  vuvuCG   ),1(   1  0  /122   

Rotated 

Gumbel 
);1,1(1);,(  vuCvuvuC GRC   ),1(   1  

/122   0  

Note: The column titled “Independence” shows the parameter values that lead to independence copula. u and v

denotes the cumulative density functions of the standardized residuals from the marginal models and 1,0  vu . 

  is the bivariate cumulative distribution of the standard normal with correlation coefficient  and 
1 is the 

inverse function of the univariate normal distribution. ,dT  is the bivariate student’s t distribution with 

correlation coefficient   and degree of d , which captures the extent of symmetric extreme dependence; 1t  is 

the inverse function of the univariate Student’s t distribution.   denotes the parameters for the Gumbel and 

rotated Gumbel copulas. 

 

 

 

Table 2: Descriptive statistics 

 

 Mean Std. 

Dev. 

Skewness Kurtosis JB )2(Q  )2(2Q  ARCH(2) 

South Africa 0.00045 0.0124 -0.1893 6.79 2244.98
a
 7.9277

 b
 392.6

 a
 180.43

 a
 

Egypt 0.00046 0.0162 -0.5519 12.54 14275.55
 a
 62.003

 a
 296.78

 a
 144.19

 a
 

Kenya 0.00020 0.0094 0.3041 34.45 153138.70
 a
 387.33

 a
 1252.3

 a
 644.41

 a
 

Nigeria 0.00053 0.0133 -0.8079 399.68 24357436.00
 a
 47.995

 a
 932.58

 a
 917.64

 a
 

United States -3.48E-06 0.0124 -0.1474 9.36 6275.25
 a
 17.114

 a
 529.25

 a
 243.76

 a
 

United 

Kingdom 

5.99E-05 0.0128 -0.1752 11.2060 10442.3200
 a
 35.163

 a
 661.16

 a
 337.14

 a
 

Notes: The table displays the summary statistics for daily stock of the stock returns of the various markets from 

January 2000 to April 2012. Std. Dev. is the standard deviation. JB refers to the Jarque-Bera test for normality. 

)2(Q and )2(2Q  are the Ljung-Box-Q-statistics and Ljung-Box-Q2-statistics for serial correlation of order 2 

in returns and squared returns. ARCH(2) is the Lagrange multiplier test for autoregressive conditional 

heteroscedasticity of order 2. 
a
 and 

b
  denote statistical significance at 1% and 5% , respectively. 

 

 

 

Table 3: Linear Correlation 

 US UK South 

Africa 

Kenya Nigeri

a 

UK 0.5323     

South Africa 0.5881 0.3448    

Kenya 0.0303 0.0100 0.0227   

Nigeria 0.0046 0.0020 0.0201 0.0054  

Egypt 0.1292 0.0704 0.1497 0.0518 0.0254 
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Table 4: Estimates of the marginal models 

 

 South Africa Egypt Kenya Nigeria USA UK 

Panel A: Conditional mean 

c  0.0008
 a
 0.0007

 a
 0.0005

b
 0.0004

 b
 0.0004

 a
 0.0005

 a
 

 (0.0002) (0.0003) (4.2573) (0.0002) (0.0000) (0.0001) 

1  
0.0393

 b
 -0.1940

 b
 0.0864

 b
 0.3451

a
 0.8906

 a
 -0.0588 

a
 

 (0.0176) (0.0884) (4.9666) (0.0191) (0.0320) (0.0189) 

2  
   0.0529

 a
 0.0339

 c
 -0.0335

 b
 

    (0.0175) (0.0189) (0.0170) 

1  
 0.3686

 a
   -0.9513

 a
  

  (0.0831)   (0.0250)  

Panel B: Conditional variance 

  0.0000
 a
 0.0000

 a
 0.0000

 a
 0.0000

 a
 0.0000

 a
 0.0000

 a
 

 (0.0000) (0.000) (0.0000) (0.0000) (0.0000) (0.0000) 

1  
0.0867

 a
 0.0484

 a
 0.1256 

a
 0.2625 

a
 0.1004 

a
 0.0816 

a
 

 (0.0098) (5.0866) (0.0038) (0.0222) (0.0076) (0.0064) 

1  
0.8994

a
 0.8398 

a
 0.8605 

a
 0.5886 

a
 0.8908

 a
 0.9078

 a
 

 (0.0111) (0.0044) (0.0021) (0.0238) (0.0079) (0.0069) 

Asym  0.0818 
a
     

  (0.0105)     

11      
0.9864 0.9132 0.9861 0.8510 0.9913 0.9895 

Log Like 11564.61 10416.47 13074.77 12745.34 11842.44 11771.45 

Notes: Daily returns for the Asian banking sector indices over the period between January 2000 and December 

2012. Panel A contains the parameter estimates for the conditional mean, modelled using an ARMA(p,q) model; 

Panel B contains parameter estimates from GARCH(p,q) models of the conditional variance. c , 1 , 2 , 1 are 

the  constant, AR(1), AR(2) and MA(1) in Eq(4). , 1 , 1  are the constant, ARCH, and GARCH terms in 

Eq(6). Asym denotes the asymmetry term from the GJR-GARCH model. Values in parenthesis are the standard. 
a 
and

 b  
indicates statistical significance at 1% and 5%, respectively 

 

 

 

Table 5: Goodness of fit tests 

 

Breusch-Godfrey serial correlation LM test p-value 

 First moment Second moment Third moment Fourth moment 

South Africa 0.5808 0.9852 0.9969 0.9995 

Egypt 0.4158 0.4172 0.9961 0.999 

Kenya 0.7343 0.9474 0.6931 0.9899 

Nigeria 0.3840 0.1053 0.2508 0.1611 

USA 0.2497 0.1756 0.1560 0.1955 

UK 0.5522 0.9945 0.9990 0.9907 

Notes: The p-values for the test for serial correlations in the standardized residuals of the stock market indices, 

based on Breusch-Godfrey serial correlation LM at 10 lags. The test was carried out for four moments 
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Table 6: Estimates of static and time-varying copulas: US-related Pairs 

 

Panel A: Parameter estimates for time-invariant copulas 

 South Africa Egypt Kenya Nigeria 

Gaussian copula 

̂  0.5692
 a
 0.1260

 a
 0.0084 0.0459

 a
 

 (0.0108) (0.0163) (0.0178) (0.0169) 

AIC  1455.641 61.3942 2.2598 9.8206 

 

Student-t copula 

̂  
0.5740

 a
 0.1265

 a
 0.0076 0.0460

 a
 

 (0.0097) (0.0162) (0.0179) (0.0171) 
1ˆ d  0.1015

 a
 0.0287

 a
 0.0100 0.0100 

 (0.0165) (0.0137) (0.0098) (0.0100) 

AIC  1501.1034 66.1012 4.7556 12.2578 

 

Gumbel copula 

̂  1.5571
 a
 1.0700

 a
 1.0086

 a
 1.0207

 a
 

CI%95  [1.5203    1.5939] [1.0478    1.0921] [0.9950    1.0222] [1.0021    1.0392] 

AIC  1308.717 44.357 -85.1466 -43.082 

 

Rotated Gumbel copula 

̂  1.5860
 a
 1.0726

 a
 1.0096

 a
 1.0237

 a
 

CI%95  [1.5472    1.6248] [1.0502    1.0949] [0.9944    1.0248] [ 1.0050   1.0423] 

AIC  1435.2998 48.302 -96.283 -38.247 

 

Panel B: Parameter estimates for time-varying copulas 

 South Africa Egypt Kenya Nigeria 

TVP-Gaussian 

0  1.2956
 a
 0.2199

 a
 0.0063 -0.0500

 
 

 (0.0909) (0.0992) (0.0423) (0.4353) 

1  0.0336
 a
 0.0073 0.0293

 a
 0.0017

 a
 

 (0.0077) (0.0044) (0.0081) (0.0008) 

2  0.9848
 a
 0.9962

 a
 0.9000

 a
 0.9979

 a
 

 (0.0075) (0.0052) (0.0436) (0.0009) 

AIC  -1588.8831 -81.5262 -11.7411 -8.3358 

 

TVP-Student-t  

  15.0156
 a
 42.2699 168.7239

 a
 109.3105

 a
 

 (3.8400) (84.475) (3.9330) (21.8590) 

~  0.0285
 a
 0.0082) 0.0280

 a
 0.0017 

 (0.0090) (0.0090) (0.0080) (0.0010) 


~

 0.9618
 a
 0.9882

 a
 0.8746

 a
 0.9979

 a
 

 (0.0140) (0.0170) (0.0360) (0.0011) 

AIC  -1615.879 -85.6932 -10.9631 -7.5584 

 

TVP-Gumbel  
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  -0.0090
 a
 -0.0080

 a
 -0.1873 -0.0128 

 (0.0019) (0.0024) (0.3425) (0.0174) 

  0.0754
 a
 0.0736

 a
 -0.0066 0.0356

 a
 

 (0.0178) (0.0223) (0.0898) (0.0171) 

  0.9849
 a
 0.9972

 a
 0.9581

 a
 0.9965

 a
 

 (0.0041) (0.0009) (0.0816) (0.0048) 

AIC  -1401.9678 -67.4109 6.6844 -0.1744 

 

TVP-rotated Gumbel  

  -0.0082 -0.0084 -0.0144 -0.0147 

 (0.0149) (0.0103) (0.0357) (0.0138) 

  0.0756 0.0588 0.0321 0.0355
 a
 

 (0.0730) (0.0380) (0.0463) (0.0138) 

  0.9852
 a
 0.9968

 a
 0.9963

 a
 0.9958

 a
 

 (0.0269) (0.0041) (0.0094) (0.0040) 

AIC  -1530.5475 -72.8748 15.2325 -3.6294 

Notes: the table reports the maximum likelihood estimates for the different pair-copulas. 95% confidence 

intervals are given in brackets. Standard errors are given in parenthesis. 
a
 indicates significance at 1%. 
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Table 7: Estimates of static and time-varying copulas: UK-related Pairs 

 

Panel A: Parameter estimates for time-invariant copulas 

 UK- South Africa UK-Egypt UK-Kenya UK-Nigeria 

Gaussian copula 

̂  
0.3478

 a
 0.0613

 a
 -0.0039 0.0130 

 (0.0161) (0.0178) (0.0162) (0.0140) 

AIC  480.7052 15.9648 2.0566 2.626 

 

Student-t copula 

̂  
0.3498

 a
 0.0624

 a
 -0.0042 0.0136 

 (0.0148) (0.0182) (0.0162) (0.0142) 
1ˆ d  0.0798

 a
 0.0100 0.0100 0.0100

 a
 

 (0.0227) (0.0184) (0.0143) (0.0030) 

AIC  505.5392 20.1938 5.0554 3.9482 

 

Gumbel copula 

̂  1.2555
 a
 1.0229

 a
 1.0030

 a
 1.0000

 a
 

CI%95  [1.2268    1.2841] [1.0030    1.0427] [0.9867    1.0193] [0.9832    1.0169] 

AIC  428.5182 -36.7376 -85.1466 -87.8474 

 

Rotated Gumbel copula 

̂  1.2655
 a
 1.0405

 a
 1.0010

 a
 1.0052

 a
 

CI%95  [1.2359    1.2952] [1.0202    1.0609] [0.9876    1.0145] [0.9875    1.0229] 

AIC  462.2446 -6.4062 -96.283 -75.4704 

 

Panel B: Parameter estimates for time-varying copulas 

 South Africa Egypt Kenya Nigeria 

TVP-Gaussian copula 

0  0.6445
 a
 0.1207

 a
 -0.0106 0.0266 

 (0.1567) (0.0571) (0.0355) (0.0345) 

1  0.0069
 a
 0.0028 0.0100 0.0093 

 (0.0020) (0.0017) (0.0073) (0.0096) 

2  0.9985
 a
 0.9965

 a
 0.8642

 a
 0.8121

 a
 

 (0.0015) (0.0037) (0.1121) (0.1803) 

AIC  -522.6071 -12.4225 4.1819 4.5830 

 

TVP-Student-t 

  14.6947
 a
 26.7856

 a
 53.5511 198.7639

 a
 

 (3.9230) (11.0560) (84.383) (2.2860) 

~  0.0063
 a
 0.003

 b
 0.0108 0.0098 

 (0.0020) (0.0020) (0.0090) (0.0110) 


~

 0.9923
 a
 0.9937

 a
 0.8558

 a
 0.8015

 a
 

 (0.0030) (0.0030) (0.0600) (0.0960) 

AIC  -539.9817 -17.1798 2.8237 4.862 

 

TVP-Gumbel 
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  -0.0030
 c
 -0.0125 -0.0149

 a
 -0.1601 

 (0.0015) (0.0077) (0.0000) (0.2287) 

  0.0281
 a
 0.0390

 a
 0.0295 0.0400 

 (0.0070) 0.0192) (0.0759) (0.5577) 

  0.9979
 a
 0.9964

 a
 0.9962

 a
 0.9622

 a
 

 (0.0011) (0.0022) (0.0010) (0.0541) 

AIC  -465.1842 -2.8861 11.7838 9.3908 

 

TVP-Rotated Gumbel 

  -0.0026
 a
 -0.0121

 a
 -0.0183

 a
 -0.1783

 a
 

 (0.0007) (0.0027) (0.0000) (0.0000) 

  0.0237
 a
 0.0406

 c
 0.0148 0.0070 

 (0.0068) (0.0217) (0.0151) (0.0540) 

  0.9981
 a
 0.9964

 a
 0.9956

 a
 0.9606

 a
 

 (0.0004) (0.0006) (0.0007) (0.0059) 

AIC  -491.4105 -16.1150 14.6976 6.1919 

Notes: the table reports the maximum likelihood estimates for the different pair-copulas. 95% confidence 

intervals are given in brackets. Asymptotic standard errors are in parenthesis. 
a
 and 

b
 indicates significance at 1% 

and 5%, respectively.  
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Figure 1: Time-varying Gaussian dependence of the USA, UK and African stock markets 
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Figure 2: Time- varying dependence of the US and UK with African stock markets 
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Figure 3: Downside Value-at-Risk (VaR) and conditional Value-at-Risk (CoVaR) for African 
stock market returns 
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