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Abstract

We develop a model linking contraceptive efficiency to birth spacing decisions

that incorporates the costs and benefits of child-rearing on the potential mother,

as well as the stochastic process surrounding human reproduction. The model fits

within the realm of optimal stopping-time problems, which naturally leads to the

development of a First Hit Time duration model that we estimate using data from

the Democratic Republic of Congo. Increased contraceptive efficacy is found to in-

crease time to first birth. Furthermore, the results are consistent with the hypothesis

that children are normal goods, in that both income and child-related benefits are

associated with decreased durations to childbirth.
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1 Introduction

In family planning, optimal family size is achieved mainly through the use of contra-

ceptives. As such contraceptive use has two main goals: delay the onset of childbearing

and/or increase the duration of the intervals between births. The impact of contracep-

tion in delaying childbirth, stopping unwanted childbearing and postponing childbirth

is an important contributor to fertility reduction (see Goldin and Katz, 2002; Moultrie

et al., 2012).

Contraception derives its importance from the uncertainty at the center of the human

reproduction process. In particular, when looking for some pattern in any birth history

data, one quickly realizes that the number and timing of births is naturally uncertain.

One way of dealing with uncertainty in birth spacing would be to assume that for

every fecundable woman there is an underlying stochastic process leading to childbirth.

Then, borrowing from the current literature on event history analysis, two types of

stochastic fertility models can be formulated. A stochastic hazard fertility model where

the childbirth hazard rate is some suitable function of the underlying stochastic process

(see Woodbury and Manton, 1977; Yashin and Manton, 1997), and a birth interval

model, which assumes that a woman becomes pregnant when the underlying stochastic

process first satisfies a specified condition; thus, the time until birth of the next child is

a first hitting time (see Aalen and Gjessing, 2001; Abbring, 2012).

We are interested in both types of models. In particular, we present a stochastic

childbirth hazard model, as well as a first hitting time (FHT) fertility model. Both

models use the diffusion process describing the dynamics of the continuation value of

contraception as the main building block, and, therefore, provide similar predictions.

While the stochastic childbirth hazard directly models a woman’s childbirth hazard

rate, the FHT fertility model arrives at the childbirth hazard by estimating the density

and survival function of the time-to-birth, computing the hazard as a ratio of the two.

However, directly modeling the hazard is limited, because closed-form solutions require

specific assumptions about the underlying stochastic process. The more flexible FHT

model is more easily extended to account for practical empirical problems related to

censoring, which we account for through the application of a propensity score.
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The duration of the interbirth interval can be affected by a variety of factors, other

than contraception (and its efficacy) that are more parity specific, such as breastfeeding

duration, temporary postpartum infecundity and the characteristics and survival of

the preceding child. In this research our goal is to explicitly address the contribution

of contraceptive efficiency. To assess the net effect of contraception, we focus on its

efficacy and the relation to first birth timing. We choose to focus on the duration to

first childbirth, because it has the advantage of not depending on parity-specific factors.

Moreover, the age at which childbearing begins is not only an important determinant

of the overall level of fertility, it is a key factor in the realized level of a woman’s human

capital investment, i.e. education and work experience (see Klepinger et al., 1995;

Upchurch and McCarthy, 1990; Fitzenberger et al., 2013). It is generally assumed that

increased age at first birth (see te Velde et al., 2012) and longer birth intervals reduce the

number of children a woman can have, although Bongaarts and Casterline (2013) suggest

that these intervals are naturally longer in Africa than in other regions. Unfortunately,

not so much attention has been directed towards explicitly understanding the behavioral

pathways linking contraceptive efficiency to birth spacing and timing (see Yeakey et al.,

2009), which influences the fertility transition, and underpins the contribution of this

research.

For our analysis we use information on the timing of a woman’s first birth in an

attempt to link contraceptive efficiency to birth spacing and contribute to the debate

over why the fertility transition has so far eluded the Democratic Republic of Congo.

According to recent research, while most countries have completed or are well advanced

in the transition to low fertility, DR Congo is still far from meeting conditions for a

sustained fertility transition (see Romaniuk, 2011). In the empirical analysis we focus

on the timing of the first birth, given the high fertility rate among Congolese teenagers

and to mitigate worries surrounding the effects of parity on birth spacing. Defining

duration as the time between first intercourse and first birth, we find that the efficiency of

contraception plays an important role in increasing the observed durations, as predicted

by our model.

Furthermore, since our model explicitly incorporates income and child-related ben-
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efits, our results suggest a partial explanation for the income-fertility puzzle. At the

aggregate, empirical evidence invariably suggests that, within a given society, fertility

is often higher in poorer families (see Becker, 1960; Jones and Tertilt, 2008). Further

evidence suggests that countries with higher average fertility levels have lower average

levels of industrialization (see Galor and Zang, 1997; Bloom et al., 2009). Despite the

aggregate evidence, our empirical results support the hypothesis that children are nor-

mal goods, since both income and child-related benefits are associated with reduced

childbirth ‘intervals’. Because effective contraception is costly, access to it is limited to

those in better economic circumstances. Such an explanation does not deny that chil-

drearing costs may be socio-economic status expenditures directly related to parents’

income or that there are implicit costs associated with parent’s time spent looking after

a child that are linked to wage rates in the labour market (see Becker, 1965; Mincer and

Polachek, 1974) – in fact, our model includes such costs – or that these costs could result

in a quality-quantity tradeoff (see Becker and Lewis, 1973; Leibenstein, 1975; Caldwell,

1976). Instead, such an explanation provides a means for understanding how parents

might achieve their objectives.

2 Continuation Value of Contraception

Assume that from first intercourse and for the rest of her sexually active life, a woman

makes decisions about the level et of contraception efficiency at each time t, where

fertility decisions are based on the reward she expects to derive from using contraception.

If the contracepting woman is forward looking at parity P , her reward from contraception

at this parity is the full flow of resources plus the expected discounted future earnings

(i.e., the continuation value), less contraception costs h(et).

Consider a woman at parity P , who experiences natural fecundity pt, has access

to It resources per unit of time, and bt net child related resource benefits per child.

Further, assume that if she decides to move to parity P + 1, she will have to take some

time off to care for the newborn child, thus losing a possible αt percent of her resources

It. If t is a stopping time, and V denotes the total expected discounted reward from

following an optimal contraception strategy over a finite horizon [0, T ], where T is the
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time to next childbirth or the advent of menopause. Given information at the beginning

of a birth interval, t = 0, the woman’s total expected reward from contracepting with

efficiency et can be thought of as the sum of two terms: expected reward over [0, t) and

the continuation value over [t, T ) (see Stokey, 2009)

V0 = Expected reward over [0, t) + Expected reward over [t, T )

=

∫ t

0
e−ρs

[
(1− πs) (R1s − h (es)) + πs (R2s − h (es))

]
ds+ e−ρtWt(e, P ),

where πt[≡ (1 − et)pt] is the probability of falling pregnant, ρ is the rate of time pref-

erence, and R1t[≡ It + btP ] and R2t[≡ (1 − αt)It + bt (P + 1)] are the streams of the

woman resources at parity P and P + 1 respectively. After multiplying through and

collecting terms, the total expected reward becomes

V0 =

∫ t

0
e−ρs [Is + bsP + πs (bs − αsIs)− h(es)] ds+ e−ρtWt(e, P ). (1)

By the Martingale Representation Theorem (see Gawarecki and Mandrekar, 2011, pg.

49), the continuation value of contraception, Wt(e, P ) in (1), is described by a diffusion

process which solves the following linear stochastic differential equation (see Sannikov,

2008)

dWt = (ρ(t)Wt − µ(t)) dt+ φ(t)dBt, (2)

which, provided that sup
0≤t≤T

[
|µt| + |ρ| + |φt|

]
< ∞ and E(|w0|2) < ∞, has a unique

solution,

Wt = eρt
[
w0 −

∫ t

0
e−ρs (µsds− φsdBs)

]
, (3)

where Bt is a Gaussian Brownian motion, µt ≡
[(
It + ntN − h(et)

)
− πt(αtIt − nt)

]
is the expected current net rewards from contracepting with efficiency level et, and

φt ≡ πtσ(pt) are the diffusion coefficients. Assume for illustration purposes that the

childbirth risk process is time homogeneous. Then, the expected current net flow of

rewards µ and the diffusion coefficient φ do not depend explicitly on time t, and the
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diffusion process in (2) can be reduced to

dWt = [ρWt − µ] dt+ φdBt (4)

with realization

Wt =
µ

ρ
+ eρt

[
w0 −

µ

ρ
+ φ

∫ t

0
e−ρsdBs

]
, (5)

where ρ is assumed to be negative, ρ < 0. A negative rate of time preference implies

that if a contracepting woman’s objective is to maximize the expected utility of the

continuation value Wt at a stopping time t, when she decides to stop contraception,

then, holding total value constant, she would prefer an increasing series of continuation

values to a declining one; thus, there is a negative rate of time preference (i.e., ρ < 0)

for choices among continuation value sequences (see Loewenstein and Prelec, 1991). In

statistical terms, assuming ρ < 0 makes the process Wt mean-reverting (see Aalen et al.,

2008), which means that the continuation value of contraception will tend to oscillate

around some equilibrium state, and ρ is the speed of reversion.

However, the expected net benefit of childbearing can be negative or positive, µ ∈ R.

If the net flow of resources at parity P is bigger than the expected loss in earnings due

to childbearing, µ will be positive, and vice-versa if the expected loss in earnings is

higher than the net flow of resources at parity P . If µ > 0, the continuation value Wt is

attracted to negative values and the birth interval is likely to be shorter, as illustrated

in the left panel of Figure 1. On the other hand, the right panel of the same figure

shows that if µ < 0, the process Wt generally stays positive and away from zero, such

that giving birth is an accidental or unwanted event.

For fixed t and W0 = w0, with probability 1, Wt has a mean-reverting Gaussian

distribution

Wt ∼ N
[µ
ρ

+ eρt
(
w0 −

µ

ρ

)
,−φ

2

2ρ

(
1− e2ρt

)]
, (6)

where ρ < 0 and µ ∈ R. The ratio µ/ρ is the intertemporal equilibrium level of the

continuation value of delaying child birth, and w0 − µ/ρ is the deviation from that

equilibrium and the force pulling Wt back toward µ/ρ (see Aalen et al., 2008, p. 421).

The continuation value of contraception becomes stationary over time. As time
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Figure 1: Three simulated paths for the continuation value Wt for parameter values
ρ = −5, φ = 2, w0 = 25, when µ = 5 (left panel) and µ = −5 (right panel). Differences
within each panel driven by realizations of the simulated stochastic process.

passes Wt itself will not converge, because of the noise dBt, but its expected value

moves from its starting point w0 and converges to the mean reversion point µ/ρ. From

(6), letting t → ∞ suggests that the process is ergodic, and its invariant law is the

Gaussian density with mean µ/ρ and variance −φ2/2ρ

W∞ ∼ N
(
µ

ρ
,−φ

2

2ρ

)
. (7)

3 Childbirth Hazard Rates

As implied above, human reproduction is a stochastic dynamic process, which naturally

implies that the risk of falling pregnant is a stochastic process. In survival analysis, the

goal is to evaluate the rate at which a stochastic dynamic process fails, and the relation
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between that rate and observed and unobserved covariates. Unfortunately, standard

survival models rarely take into account the dynamics of unobserved covariates. Thus,

we underpin our analysis using a stochastic hazard model developed by Yashin (1984),

which has the necessary properties to characterize a woman’s childbirth hazard as a

stochastic process. Unlike models of fixed unobserved heterogeneity used in standard

survival analysis, Yashin’s (1984) approach has the advantage of explicitly taking into

account the dynamics of the underlying stochastic covariates leading up to the event,

and gives rise to non-proportional childbirth hazards.

Initially, Woodbury and Manton (1977) proposed a random-walk model of the me-

chanics of human physiological aging and mortality. In their model, the hazard rate is

a quadratic function of an Ornstein-Uhlenbeck diffusion process. Their model has been

extended to deal with the combination of observed and unobserved state variables by

using equations similar to the Kalman filter equations developed to estimate signals (see

Yashin, 1984). However, given the current state of knowledge, obtaining such analyt-

ical results for hazard functions other than quadratic functions, or for more complex

diffusion processes, is not yet feasible.

3.1 Marginal versus Conditional Birth Hazard Rates

Given the stochastic nature of the human reproduction process, assume that Wt is

an unobserved process as described in (2), which defines a woman’s randomly chang-

ing willingness to conceive and encompasses changes in her immediate environment

and influences her individual childbirth hazard through time, and leads (potentially) to

childbirth.

Let k(Wt) be a nonnegative stochastic process on a continuous time and state space,

and assume that it describes the childbirth hazard at time t of a woman, with unobserved

continuation value Wt, randomly selected from a population of fecundable women. Since

Wt is a developing stochastic process, it follows that the lifetime variable T , which

denotes the time until the occurrence of a childbirth, can be interpreted as the time at

which her cumulative childbirth hazard strikes a randomized barrier H. If the latter

is exponentially distributed with mean 1, and is stochastically independent of Wt (see
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Aalen and Gjessing, 2004) then

T = inf

{
t :

∫ t

0
k(Ws)ds = H

}
, (8)

where the distribution of T depends on the path of Wt on the same interval. In particular

conditional on W t
0 and the trajectory of Wt for the interval [0, t], the distribution of the

woman’s time to childbirth T is determined by k(Wt) such that

S(t|W t
0) = P (T > t|W t

0) = exp

[
−
∫ t

0
k(Ws)ds

]
, (9)

where S(t|W t
0) denotes the conditional survival function, and E[k(Ws)] < ∞ for any

s > 0. Since individuals are naturally dissimilar and face, at any time t, a different set

of factors, every woman will have her own level of risk of falling pregnant, which we

assume to be driven by the benefits she expects to derive from contraception, i.e. her

continuation value of contraception. Assuming the probability distribution of Wt and

the functional form of k(Ws) are known, T is measured for N women and it is the only

observable information available, then the marginal (i.e. population) survival function,

averaged over Ws, is

S(t) = P (T > t) = E

[
exp

(
−
∫ t

0
k(Ws)ds

)]
= exp

(
−
∫ t

0
E[k(Ws)|T > s]ds

)
, (10)

where T is related to Ws by

P(T > t|Ws, s ≤ t) = exp

(
−
∫ t

0
Wsds

)
. (11)

Thus, the relation between the observed and the conditional hazards is

θt = E
[
k(Wt)|T > t

]
, (12)

where θt is the marginal, or observed, childbirth hazard (Yashin, 1984). The observed

childbirth hazard rate is the risk a woman to becomes pregnant at time t, such that

θ(t)dt represents the instantaneous probability that a woman will become pregnant in
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the interval (t, t+ dt) given that this woman is not pregnant at t. The hazard function

can be defined as

θ(t) = −P(T > t)−1
dP (T > t)

dt
. (13)

3.2 Individual Childbirth Hazard as the Square of Wt

In applied work, the computation of the observed hazard θt is simplified if averaging over

the unobserved variable can be expressed in an analytic form. Therefore, tet us assume

that the individual childbirth hazard rate is a quadratic function Zt = k(Wt) = W 2
t (see

Yashin, 1984). For a stochastic process Wt, Yashin (1984) proved the Gaussian property

of the distribution of survivors at any time t, P (Wt ≤ w|T > t), as well as the following

proposition in the case where the distribution of the initial position of Wt is a normal

distribution with mean m0 and variance v0.

Proposition 1. Let the stochastic process Wt satisfy

dWt = [ρWt − µ] dt+ φdBt. (14)

Then the average survival function is given by

E
[

exp
(
−
∫ t

0
W 2
s ds
)]

= exp

{
−
∫ t

0

[
m2(s) + v(s)

]
ds

}
, (15)

where the mean m(s) = E[Wt|T > s] and variance ν(s) = Var[Wt|T > s] of the condi-

tional distribution of Wt given survival are the unique solutions to the Riccati equations

dm(t)

dt
= ρm(t)− 2m(t)v(t)− µ, (16)

dv(t)

dt
= φ2 + 2ρv(t)− 2v2(t), (17)

with initial conditions m(0) and v(0).

If µ, ρ, and φ are known scalars, analytic form solutions to the system of nonlinear

differential equations in (16) and (17) can be obtained. Thus a complete description of

the hazard process conditional on survival is available. Assuming, for simplicity, that

all coefficients are constant, solving first for the variance of the normal distribution of
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survivors (i.e. non pregnant fecundable women), v(t) in the separable (17), yields 1

v(t) =
1

2
ρ+

1

2

√
ρ2 + 2φ2 tanh

[
t
√
ρ2 + 2φ2 − arctanh

(
−2v(0) + ρ√
ρ2 + 2φ2

)]
. (18)

Following Aalen et al. (2008), define the constant C =
√
ρ2 + 2φ2 and let

h = arctanh

(
−2v(0) + ρ√
ρ2 + 2φ2

)

and then solve for m(t) to get

m(t) =

√
sinh2(tC − h)− cosh2(tC − h)

cosh(tC − h)

[
cosh(h)√

sinh2(h)− cosh2(h)
m(0)

− µ
∫ t

0

cosh(sC − h)√
sinh2(sC − h)− cosh2(sC − h)

ds

]
. (19)

Using the identity cosh2(x)− sinh2(x) = 1 reduces (19) to

m(t) =
1

cosh(tC − h)

[
cosh(h)m(0)− µ

∫ t

0
cosh(sC − h)ds

]
, (20)

and since we know that cosh(ax+b) = cosh(ax) cosh(b)+sinh(ax) sinh(b) and sinh(−x) =

− sinh(x), the integral in (20) can be computed as

∫ t

0
cosh(sC − h)ds =

1

C

[
sinh(tC − h) + sinh(h)

]
. (21)

Substituting (21) into (20) yields the following solution for the mean of the distribution

of survivors

m(t) =
1

cosh(tC − h)

{
cosh(h)m(0)− µ

C

[
sinh(tC − h) + sinh(h)

]}
. (22)

Similar and related results have been reported in Wenocur (1990) and Aalen and Gjessing

(2004).

1All analytical solutions are obtained using the symbolic computation software Maple 13 from Maple-
soft.
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3.3 Quasi-stationarity

In what follows we focus on the properties of the childbirth hazard rates explicitly

reviewing the effects of the latent stochastic process Wt. Recall that the continuation

value of contraception Wt is the latent underlying risk process leading to childbirth. As

such, it represents an unobserved stochastic development that influences the individual

hazard of becoming pregnant as time evolves. The solutions for the conditional moments

m and v ()(22) and (18), respectively) suggest that the distribution of women who

are not yet pregnant may stabilize over time, and has a normal limiting distribution

N
(
− µ/C, 1/2(ρ + C)

)
. This quasi-stationary distribution is useful in understanding

the shape of the hazard. In particular, it tends to produce non-proportional hazards,

which characteristically stabilize at a positive value over time (see Aalen et al., 2008,

chap. 10). In our case, the childbirth hazard converges to a limit

lim
t→∞

θt =
(
− µ
C

)2
+

1

2
(ρ+ C). (23)

As an illustration, we simulated the shape of the observed childbirth hazard assuming

the hidden heterogeneity is a square of the stochastic process Wt. Figure 2 illustrates

the different values of the population childbirth hazard, θt = m2(t) + v(t), associated

with different values of the expected current net reward of contraception µt.

If we compare the group of women with positive expected gain from childbearing

(µ > 0) to those with a negative expected gain from childbearing (µ < 0), the quadratic

model for the individual childbirth hazard produces non-proportional childbirth haz-

ards between the two groups. Over time, these steadily converge towards a limiting

value. Women who expect a loss of due to childbearing have childbirth hazards that are

essentially declining, while the opposite is true for women expecting to gain.

For all its advantages, the stochastic quadratic hazard model has some serious short-

comings. Though mathematically convenient, the assumption that the unobserved het-

erogeneity is a quadratic function of the underlying stochastic process is somewhat

arbitrary and may not be well-suited for survival analysis in population studies. In

particular, it is hard to believe that all women with µ > 0 have quasi-proportional in-
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Figure 2: Population childbirth hazard θt for different values of µ, when ρ = −1 and
φ = 1, along with starting values m(0) = 1 and v(0) = 0.

creasing hazards, and vice versa. As seen in Section 3, for a negative value of µ, there is

no guarantee that the childbirth risk process will reach the threshold in zero. It follows

that it is practically impossible for the stochastic quadratic hazard model to account for

cure effects, the fact that a certain portion of women will remain childless be it naturally

or by choice.

4 FHT Fertility Model

Rather than assuming a stochastic quadratic hazard model, we interpret reproductive

history data as first passage times of a threshold by sample paths of a stochastic process,

and present an FHT model as a model for the onset of childbearing. Instead of directly

modeling the population childbirth hazard, through the individual childbirth hazard
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rates as shown in Section 3, one might first choose to model the birth interval before

deriving the childbirth hazard. We define birth interval as the length of time between

two successive live births, or between a woman’s date of first intercourse and the birth

of her first child; empirically, however, we focus on the latter.

FHT models are threshold models with regression structures that accommodate the

effects of observed covariates and unobserved heterogeneity in duration data analysis.

An FHT model is a useful alternative to the Cox proportional hazards model, and such

models are gradually finding broad application, due to their conceptual appeal and

flexibility (see Lee and Whitmore, 2006, 2010). In economics, first hitting times arise

in structural models in which agents are assumed to solve an optimal-stopping problem

with related rewards described by stochastic processes (see Stokey, 2009). Economic

applications have so far been confined to labour economics, including Lancaster’s (1972)

strike duration study, the analysis of labour turnover (Whitmore, 1979), and the analysis

of unemployment spells (Shimer, 2008).

To the best of our knowledge, the FHT model has not been previously applied to

the study of the onset of childbearing using large household level survey data, especially

in the context of a high fertility environment. The FHT fertility model we present

here is driven by the latent stochastic process as defined in Section 2, based on the

continuation value of delaying conception, which is assumed to influence women’s birth

spacing practices. We assume that a woman optimally times the decision to become

pregnant, and the dynamics surrounding the decision are largely explained by this latent

stochastic process. Applying the FHT framework to the field of population economics

is inspired by the sequential fertility model introduced in Heckman and Willis (1976)

and the discrete-time mixture duration model based on a latent process that crosses

thresholds developed by Heckman and Vytlacil (2007).

4.1 A Basic First Hitting Time Fertility Model

The FHT framework provides a modeling structure that is both flexible and realistic

enough to incorporate the impact of a variety of observed and unobserved demographic

and socio-economic characteristics on the parameters of the latent stochastic process.
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One of the main covariates in our analysis is contraceptive efficiency. We assume that

at each point in time, the woman weighs the direct rewards of stopping contraception,

against the value of retaining the option of postponing childbearing, given the primitive

parameters and the history of the continuation value. In this case, she maximizes her

expected discounted rewards by becoming pregnant when the continuation value of

contraception hits a time-invariant threshold for the first time; implying that the optimal

decision rule involves a threshold. Thus, our fertility model has two basic components:

(1) a parent latent stochastic process in time {Wt, t ≥ 0} which describes the dynamics

of the continuation value of postponing childbearing, with initial value {W0 = w0} and

(2) an absorbing set B in the state space of the unobserved stochastic parent process

and defines its stopping condition.

For simplicity, we assume that the woman places equal value on both present and

future utility, meaning that the rate of time preference ρ is equal to zero(see Ramsey,

1928). As a result, the diffusion process in (14) reduces to a Brownian motion with drift

of the form

dWt = −µdt+ φdBt. (24)

This assumption is underpinned by the observation that the population hazards resulting

from an Ornstein-Uhlenbeck process, as the one in (14), and the Brownian motion in

(24) are almost identical (see Aalen et al., 2008). Also, working with Brownian motion

with drift has the advantage of allowing us to use the well-known analytical result that

the first hit time of a Brownian motion has an inverse Gaussian probability distribution.

Since the childbirth risk process is unobservable for the econometrician, the only

observable effect of Wt is through the individual event time T > 0, when the woman

gives birth. Let the process Wt start in a positive initial value W (0) = w0 > 0, and

assume that the timing of the birth coincides with the time when the process is absorbed

in the absorbing boundary zero. Thus, the random variable T is defined as

T = inf
t≥0
{t : Wt = 0}, (25)

Consider one fecundable woman for a moment. As she postpones childbearing
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through birth control, the rewards she expects from postponing childbearing fluctuate.

Over time, since first intercourse or her last live birth, she might experience a relatively

steady decline in this contraception continuation value, and, eventually, it hits zero, the

level at which we assume she gives birth. The first hitting time to zero is the woman’s

duration of the birth interval. On the other hand, the woman may have experienced a

relatively steady increase in her level of the continuation value. In this case, she may

never give birth. If the latter woman does give birth, it will be unplanned.

If we assume that a woman’s level of the continuation value of contraception as a

function of time is described by the Brownian motion in (24), and that all coefficients

are constant, then the first hitting time T from the initial level of the continuation value

w0 to the threshold set at Wt = 0 has an inverse Gaussian probability distribution which

has the following probability density function (i.e. p.d.f) (see Chhikara and Folks, 1989)

f(t) = w0(2πφ
2t3)−

1
2 exp

{
− (w0 + µt)2

2φ2t

}
, for φ2 > 0, w0 > 0, (26)

and the associated survival function (i.e. c.d.f)

S(t) = Φ

(
w0 + µt√

φ2t

)
− exp(−2w0µ/φ

2)Φ

(
− (w0 − µt)√

φ2t

)
, (27)

where Φ(·) is the c.d.f of the standard normal distribution, and µ and φ are the drift

and volatility of the process, respectively.

The theory-based hazard rate for time to childbirth is found from θ(t) = f(t)/S(t)

and its shape generally exhibits the same stability phenomenon as for the stochastic

hazard derived in Section 3. Figure 3 illustrates the fact that regardless of initial value

of the continuation value of contraception, all hazards for the Brownian motion converge

to the same limiting hazard. Furthermore, as expected, the shape of the hazard rate

is associated with the distance between the starting point and the point of absorption.

At time t = 0, if the process Wt starts at a level close to zero relative to the quasi-

stationary distribution, the childbirth hazard rate is essentially decreasing; if it starts

at an intermediate value of w0 the childbirth hazard first increases and then decreases;

while if it starts at a value of w0 far from zero the childbirth hazard rate is essentially
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increasing (see Aalen et al., 2008).
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Figure 3: Hazard rates for time to childbirth θ(t) when the process starts in different
values of w0, when µ = 1 and φ2 = 1.

The drift parameter quantifies the rate at which the woman approaches childbirth.

However, there is no guarantee that the process will reach the boundary set B. We

recognize the fact that for some women, the childbirth risk process Wt may diffuse away

from the childbirth threshold for a long time, and diffuse almost directly toward it for

others. This would be the case when some women are temporarily infertile or choose not

to have a child, such that T = ∞. To use the terminology in Abbring (2012), infertile

women make up an unobserved subpopulation that may be described as stayers, while

those women who might choose not to have a child are defecting movers.

If µ ≥ 0, meaning that the expected loss from childbearing is less than or equal

to current income, then there is a tendency to drift towards the childbirth threshold
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zero. In this case, childbirth is a certain event, which will occur in some finite time with

probability one. The mean survival time conditional on the event that the childbirth

threshold is eventually reached is

E(t) =
w0

|µ|
, for µ 6= 0.

To complete the model, we now turn our attention to the issue of estimating the

model from data as a practical application of our FHT fertility model. So far, taking

advantage of the fact that the probabilistic specification of the parent stochastic process

in FHT models is usually explicit, parameter estimation for FHT models have been

conducted mostly through maximum likelihood methods (see Lee and Whitmore, 2006).

In a total sample of N = NA + NB women, each woman i who has given birth

contributes probability density f(ti|wi0, µi) to the sample likelihood function, where ti

is the observed time of childbirth for i = 1, · · · , NA, while a woman j in the sample

dataset who stays childless to the end of the study contributes the survival probability

S(tj |wj0, µj) = 1 − F (tj |wi0, µj), where tj is the right-censored survival time of the

woman for j = NA + 1, · · · , NA + NB. Then the sample likelihood function to be

maximized should be of the form

L(θ|t) =

NA∏
i=1

[
f(ti|wi0, µi)

] NA+NB∏
i=NA+1

[
S(ti|wi0, µi)

]
. (28)

However, if the expected loss from childbearing is higher than current income (i.e µ <

0), a woman may never fall pregnant, because she is “cured”. Let T be a random variable

representing survival time to next child birth. Let S(t) represent the survivor function

for the population of woman of reproductive age where, like before, S(t) = P (T > t).

The cure rate is defined as limt−→∞ S(t). In order to explicitly accommodate the cure

effect, we enrich the FHT model with a new parameter c representing the propensity

score of giving birth. In fact, for values of µ < 0, the distribution is defective, that is

T (∞) > 0 with a probability density mass concentrated at S = ∞ and the expected
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proportion of cured women given by

1− c = P (T =∞) = 1− exp

(
2w0µ

φ2

)
,

which implies that the probability of childbirth P (T < ∞) = 1 − P (T = ∞) may be

less than 1. We denote the proportion of women who will eventually give birth to a

child if given enough time by c, the propensity rate. The propensity rate may either be

determined by the parameter values of the latent stochastic process when µ < 0 or be a

free parameter that is independently linked to covariates in the FHT regression model.

It follows that the modified likelihood function for the cure-rate FHT model becomes

L(c, θ|t) =

NA∏
i=1

ci

[
f(ti|wi0, µi)

] NA+NB∏
i=NA+1

[
1− cjF (ti|wi0, µi)

]
. (29)

Although the model has three parameters, namely w0, µ, and φ, there are, statisti-

cally speaking, only two free parameters. The distribution only depends on the three

parameters through two functions: µ/φ and w0/φ. Thus, the variance φ2 may be set

to one without loss of generality, when considering time to childbirth (see Aalen et al.,

2008).

5 Pathways to a First Child in DR Congo

In what follows we apply the FHT fertility model to data mothers’ first births from

the DR Congo’s 2007 Demographic and Health Survey (DHS). Our analysis considers

a sample of individuals, i = 1, · · · , n and the individual latent childbirth risk process

Wi(t) as defined in (24). For every fecundable woman i, if φ2i the variance of Wi(t) is

set to one, the density of the first-hitting time T is inverse Gaussian distributed as in

(26) with a vector of free parameters θ = (ci, w0i, µi) representing the propensity rate,

the initial value and drift of the childbirth risk process, respectively.
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5.1 Incorporating Covariate Information

Focussing on a woman who has just had her first intercourse, some personal character-

istics are expected to influence the underlying childbirth risk process Wt. In particular,

the values of her parameters c, w0i, and µi are linked to k covariates that are represented

by the vectors xi = (1, xi1, · · · , xip), yi = (1, yi1, · · · , yir) and zi = (1, zi1, · · · , ziq).2

We follow Xiao et al. (2012) and link the log-odds ratio of c to a linear combination

of covariates as follows

logit(ci) = log
( ci

1− ci

)
= λi0 + λ1xi1 + · · ·+ λpxip = X′λ. (30)

Let us further assume that ln(w0i) and µi are linear in regression coefficients, and use

an identity function of the form

µi = Y′β (31)

to link the parameter µi to the covariates, and the following logarithmic function to link

the parameter w0i to covariates

ln(w0i) = Z′γ, (32)

where λ = (λ0, λ1, · · · , λp)′, β = (β0, β1, · · · , βq)′ and γ = (γ0, γ1, · · · , γr)′ are the

respective covariate effects (see Aalen and Gjessing, 2001; Aalen et al., 2008).

We use the theoretical model presented in Section 4 as a guide in choosing the

covariates to include in X′, Y′ and Z′. According to Aalen et al. (2008), one of the

major advantages of the threshold regression framework is its ability to differentiate

between the effects of covariates on how far the risk process has advanced prior to the

study (i.e the effects on the initial level w0) and the causal effects on the dynamics of

the risk process (i.e the effects on the drift µi), although some variables may have both

effects.

Regarding the covariates to include in X′, we assume that the propensity to give

birth to a first child is determined by physiological and environmental factors; however,

we only have information related to her age at first marriage, which we use. As for

2In the most general FHT model, the parameters of the process, threshold state and time scale may
also depend on covariates (see Abbring, 2012).
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w0i, the initial value of the childbirth risk process, we assume that it will depend on

external factors related to the young woman’s socio-economic background at the time

of her first sexual intercourse. These factors may include, among others, the woman’s

taste for risks, her general childhood environment and the age at which she first got

married. With regard to the drift µi we can deduce, from the analysis in Section 2, that

for a young woman with no children we have

µi ≡ Ii(1− αiπi) + biπi − hi(e),

which suggests that values of the woman’s income Ii induce higher values of µi, the

rate at which the process moves towards the threshold, since (1 − αiπi) will always be

positive. This is the same for the child related benefits bi which is positively related to µ.

Note that higher values of µi mean shorter intervals between first sexual intercourse and

first birth. In the same vein, the prospect of higher income loss due to childbearing will

increase this interval, since αi is negatively related to µ, and the woman’s probability

of conception πi ≡ (1− e)pi is always positive.

Let us fix, for simplicity, the parameters representing the potential loss in income,

αi, and the one representing the woman’s probability of giving birth, πi. The equation

for µi becomes

µi = aIi + biπ − hi(e), (33)

where it is clear that, increased affordability through the rise in income or the availability

of child related transfers will shorten the waiting time to first motherhood. Furthermore,

assuming that the cost of contraception h(·) is a positive monotonic transformation of

the efficiency of the contraception method e, our model suggests that higher values of e

give rise to lower values µ, meaning that the use of a more efficient contraceptive method

will increase the interval between first intercourse and first birth.

5.2 Data

The 2007 DHS for the DRC is a nationally representative survey for urban and rural

residence, which provides information mainly on reproductive behaviour and reproduc-
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tive health for 9, 995 women aged 15 − 49, as well as 4, 757 men aged 15 − 59. The

choice of the Congo is dictated by the fact that, despite its size and a large population,

very little is known about this country, and its fertility level remains among the highest

in the world. With a total population estimated at around 70 million people unevenly

distributed on a 2, 344, 858 km2 surface area, the Congo’s fertility rate is estimated at

6.3. In the sample, some women were still virgins and were not included, while some

had given birth to their first child at the time of the interview; still, others were childless

and are right-censored observations in our analysis.

Deciding which covariates influence the two parameters of the underlying Brownian

process, w0 and µ, is facilitated by our theoretical model. We assume that baseline

characteristics only influence the initial childbirth risk process state w0, and include the

woman’s place of childhood residence and her age at first marriage. On the other hand,

according to our theoretical model, other covariates, such as income, contraception effi-

ciency, and child related benefits influence the drift in the childbirth risk process. In the

absence of income information, a common DHS limitation, we assume that the woman’s

current wealth represents her long-term income. We define a woman’s contraception

efficiency as the interaction between the woman’s literacy and her choice of contracep-

tive method.3 Also, since Congo lacks a formal system of child related benefits, we let

the number of the young woman’s older siblings represent the value of the child related

support she can expect to access at childbirth.

Summary statistics in Table 1 suggest that the majority of young women in our

study are poor, live in small towns, have difficulties reading and have never used modern

contraception in their lives. They further indicate that the average woman has a duration

of 2 years and 9 months from the time of first intercourse to first childbirth, has 2 older

siblings and was first married at the age of 18.

3In the data set contraception methods are classified as traditional, folklore and modern. Traditional
methods include Periodic Abstinence (also known as Rhythm), Withdrawal and Abstinence. Modern
methods include Pill, IUD, Injections, Diaphragm, Condom, Sterilization, Implants, Foam/Jelly and
Lactational amenorrhea. Folkloric methods include all the methods not specifically mentioned, but
believed to be less efficient than the traditional methods. If a woman has used both a traditional
method and modern method then the latter takes priority. In the same vein, a woman who is recorded
to have used a traditional method if she has used both a traditional method and folkloric method.
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Table 1: Summary Statistics

Nominal Variables

Levels %
∑

% Obs.

Childhood Residence City 34.25 34.25 2,213

Town 65.75 100.00 4,248

Literacy Cannot Read 54.02 54.02 3,490

Can Read 45.98 100.00 2,971

Wealth Non Rich 60.08 60.08 3,882

Rich 39.92 100.00 2,579

Contraception Use Never 45.95 45.95 2,969

Traditional Only 31.92 77.87 2,062

Modern Only 22.13 100.00 1,430

Continuous Variables

Min. Median Mean Max.

Survival Time (Years) 0.58 2.75 4.09 35.08

Age at first Marriage 10.00 18.00 18.29 44.00

Number of Older Siblings 0.00 2.00 2.77 15.00

Sample size, N = 6,461.
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5.3 Parameter Estimates

In order to show the importance of the concept of contraceptive efficiency, rather than

the simple choice of contraceptive method, we start by fitting a model where the choice

of contraceptive method is not interacted with the level of literacy. We then add the

interaction between contraception choice and the level of literacy to the µ-term. Using

the Akaike information criterion, it is clear that adding the interaction term improves the

fit (lower AIC), suggesting that it is not enough to include the choice of a contraceptive

method in the analysis, one must also look at how efficiently it is being used.

The estimated parameters for both models are shown in Table 1. Results are consis-

tent with our theoretical model and suggest that contraception efficiency is negatively

correlated with the rate at which the expected benefits from contraception approaches

zero, which means higher contraceptive efficiency leads to a longer waiting period from

the first intercourse to the birth of the first child. In particular, we note that the use of

modern contraceptive methods by women who can read has a very strong negative effect

on the onset of motherhood, as compared to those who have never used contraception.

For those women who can read but have only used traditional contraception methods,

the effect is statistically insignificant, but still has the expected negative effect on the

drift.

Furthermore, the parameter estimates tell us something more consistent with the

theoretical model. They suggest that the level of wealth, which we assume to be a good

approximation of the woman’s long-term income, and the presence of older siblings in

the family have a statistically significant ‘income effect’ on children that implies children

are normal goods. In particular, higher levels of wealth and the presence of older siblings

motivate young women to have their first child earlier; they are positively related to the

drift, µ, of the stochastic process. On the other hand, as expressed by the positive sign of

the estimates linked to age at first marriage and childhood residence, young women who

spent their childhood years in a small town or those who were married at a relatively

advanced age start with a lower risk of giving birth to the first child.
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Table 2: Threshold Regression Cure Rate Model Estimates

Model 1 Model 2

AIC 27,450.97 27,446.39

Estimate Std. Err. Estimate Std. Err.

lnw0

Intercept .13398 .03484 .13519 .03480

Age at First Marriage .03152 .00171 .03160 .00171

Childhood Residence .04020 .01607 .03752 .01611

µ

Intercept .46178 .01518 .44445 .01621

Wealth .04712 .01563 .03664 .01687

Number of older Siblings .00597 .00279 .00593 .00280

Contraception (Traditional) .02299 .01608 .03410 .02040

Contraception (Modern) -.01424 .01893 .03137 .02968

Literacy .07153 .02402

Contraception (Trad.)× Lit. -.04876 .03308

Contraception (Mod.)× Lit. -.10028 .03921

logit c

Intercept 8.94160 .63608 8.97492 .64436

Age at First Marriage -.21834 .02247 -.21944 .02266

Estimates of FHT model, based on the application of Xiao et al.’s (2012)
STATA package sttthreg. Separate estimates presented for equations
(30), (31) and (32). Recall, positive estimates for (31) imply reduced du-
rations, while positive values for estimates in (32) relate to higher initial
conditions, and, thus, imply longer durations.
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5.4 Estimated Hazards and Probabilities of First Childbirth

As expected from our theoretical model, the shapes of the estimated hazards and cu-

mulative hazards suggest nonproportionality. To show this, we group the women into

three different risk groups: High, Moderate and Low -risk. We define a high-risk group

to include women that are closer to the point of absorption than the moderate, who

are closer to the point of absorption than the low-risk group. In other words, a woman

belongs to the high risk group if her estimate of the initial value of the stochastic process

is less than the lower quartile of the estimated values of w0, moderate risk if it is between

the lower and the upper quartiles, and low risk if it is above the upper quartile.
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Figure 4: Hazards (left panel) and the corresponding Probability of Giving Birth by
Time t (right panel) by Risk Group according to the estimated Model 2.

It is natural to think that women in the low-risk group start their reproductive

history with a “wait and see” attitude and have higher expectations of the contraception

related benefits than the other groups. Using the median (by risk group) of the individual
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estimated values of the parameters w0 and µ, we show (see Figure 4) that the median low-

risk woman is characterized by a delay in her childbirth hazard, before catching up with

those of the median woman in other groups with higher risk. This confirms a stylized

fact related to the delay in childbirth hazard for low-risk groups that has been reported

by other scholars (see Aalen et al., 2008, p. 414). As a consequence, the probability of

the onset of motherhood by any given time is clearly lower for those women who start

their active sexual life with higher expectations of contraception related benefits, than

for those women who start with lower initial values of the expected future benefits linked

to contraception.
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Figure 5: Hazards (left panel) and the corresponding Probability of Giving Birth by
Time t (right panel) by Method of Birth Control Used according to the estimated Model
2 .

Moreover, if we analyze the median values of w0 and µ by the most efficient contracep-

tion method ever used, we find that the median woman who has never used contraception

and the one who has only used traditional contraception have failry similar initial values
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of the expected contraception related benefits; the estimated value of ŵ0 = 2.03, while

those whose most efficient contraception method ever used is the modern method start

their active sexual life at a relatively lower risk level (ŵ0 ≈ 2.09). However, the median

woman who has never used contraception has the lowest drift towards zero, µ̂ = 0.47,

as compared to her counterpart who has only used the traditional method (µ̂ = 0.52),

or the one who used a modern method (µ̂ = 0.50).

The combined effect of the estimated values of w0 and µ for a median woman (by

risk group), as expected, produces non-proportional hazards (see Figure 5). A median

woman who has never used contraception has the highest risk of giving birth to the first

child and, consequently, the highest probability of first child birth by any time compared

to the one who uses any contraception. However, estimation results suggest that modern

contraception methods are only slightly better than traditional methods in postponing

the timing of the first child birth. There appears to be no difference between traditional

and modern contraception methods with respect to risk and probability of first child

birth. The probability of giving birth to the first child by any time for an average

woman who uses only traditional contraception methods is just marginally higher than

the probability of her counterpart who uses modern contraception methods. Also note

that at approximately 18 months from first intercourse, the hazards for a median woman

who has only used a traditional method of contraception and the one who has used a

modern method cross each other, further suggesting non-proportionality.

6 Conclusion

In this paper, we presented a model for birth timing that was based upon the stochastic

nature of the human reproductive process and focused on contraception decisions. An

empirical counterpart, based on first hit times, was estimated using threshold regres-

sions. It focussed on the duration to first childbirth using data from a high fertility

country in Africa, where there is evidence that birth intervals and the fertility transition

is rather different than in other parts of the world (see Romaniuk, 2011; Moultrie et al.,

2012; Bongaarts and Casterline, 2013). Our empirical results suggest a negative ef-

fect of contraception efficiency on the duration from first intercourse to first childbirth.
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As expected, the use of higher efficiency modern contraceptive methods result in the

postponement of the onset of motherhood.

The aim of this paper was to develop a theoretical model consistent with that ob-

servation and present empirical evidence on that negative relationship. The question

is of importance, because optimal birth timing, and ultimately optimal family size, is

achieved through the practice of birth control. Our model and findings can be used

as an additional building block in explaning the puzzling negative relationship between

income and family size.

Our analysis did not explicitly account for a quality-quantity trade-off that women

might take into account in their optimal family size decision calculus, which suggests

a direction for future research. In particular, one could allow child related benefits in

the model to depend on parity or on the expected costs of child quality. Furthermore,

our analysis does not consider higher parity birth intervals, primilary because of data

limitations. Extending the model to account for these additional considerations could

provide further insights into family formation, and the fertility transition.
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