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Abstract

This paper proposes a new online learning algorithms for portfolio selection

based on alternative measure of price relative called the Cyclically Adjusted Price

Relative (CAPR). The CAPR is derived from a simple state-space model of stock

prices and we prove that the CAPR, unlike the standard raw price relative widely

used in the machine literature, has well defined and desirable statistical proper-

ties that makes it better suited for nonparametric mean reversion strategies. We

find that the statistical evidence of out-of-sample predictability of stock returns is

stronger once stock price trends are adjusted for high persistence. To demonstrate

the robustness of our approach we perform extensive historical simulations using

previously untested real market datasets. On all the datasets considered, our pro-

posed algorithms significantly outperform their comparative benchmark allocation

techniques without any additional computational demand or modeling complexity.

JEL Classification Numbers: C3, E32

Keywords: Online Learning, Portfolio Selection, Kalman Filter, Price Relative.

1 Introduction

The conventional investment wisdom over the last several decades has been to buy-and-

hold good-quality stocks for the long run with the hope that securities markets will

rise over time. It has been generally believed that securities markets were extremely
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effi cient in reflecting information not only about individual stocks but also about the

stock market as a whole. The accepted view was that when information arises, the

news spreads very quickly and is incorporated into the prices of securities without any

material delay. Thus, neither technical analysis, nor even fundamental analysis would

enable an investor to achieve returns greater than those that could be obtained by

holding a randomly selected portfolio of individual stocks, at least not without taking

additional risk.

However, the amount of evidence showing the disadvantage that traditional, long-

term, buy-and-hold investors currently face is staggering. After recent bear markets

and the resulting poor performance delivered by most fund managers, there is renewed

search for reliable active investment strategies that can outperform not only the market

but also the best stock.

In recent years the growth of theoretically well grounded algorithms for online port-

folio selection problems has been significant. These algorithms have demonstrated good

finite sample properties with a performance that generally exceeds both the market and

the best stock even after accounting for transaction costs. More specifically algorithms

such as Universal Portfolio (Cover [1991]), Exponential Gradient (Hembold et al. [2003])

and Online Newton Step (Agarwal et al. [2006]) have demonstrated that the wealth

achieved through sequential rebalancing strategy possesses explicit lower bounds given

suffi ciently long period of time. Although very elegant in their mathematical formula-

tion these state of the art algorithms have displayed very disappointing performance in

practical applications when compare to some alternative algorithms derived from simple

heuristics like the Anticor algorithm of Borodin et al. (2006). More particularly empiri-

cal simulations using real market data sequences have shown that algorithms which has

no theoretical guarantees have perform rather surprisingly well.

This paper presents a new heuristic approach to online portfolio selection within the

context of algorithmic trading. We build on the existing Anticor (Borodin et al. (2006))

algorithm for portfolio selection but use ideas from signal processing and statistical

learning to demonstrate the superiority of our newmethodology. In a sense our algorithm

extends the Anticor (AC) algorithm along many lines.

First we generalize the Anticor to account not only for price reversal but also for

momentum that seem to coexist in the market place as demonstrated by an extensive

body of behavioral finance literature (see Conrad and Kaul [2006]). This coexistence

of both momentum and reversal means that our algorithm is capable of generating

abnormal returns from these stock market peculiarities much better than the Borodin

et. al (2006) benchmark Anticor algorithm that focuses only on mean reversals.

Second unlike most online learning algorithms that use the raw price relative as the
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sole input in the program trading, we propose an alternative measure of price relative

that is more consistent with portfolio manager’s best practice. We use a state-space

model via the Kalman Filter algorithm to filter price-cycle oscillations out of the current

share prices and compute the cyclically adjusted price relative (CAPR in short). The

CAPR helps to de-noise the stock price data in other to account for the possibility of

multi period mean reversion in stock prices as argued by Li et al. (2012). To our knowl-

edge this is the first time that a research has combined ideas from signal processing with

online learning algorithms to select portfolios in an optimal way. To demonstrate the

usefulness of our methodology we evaluate our algorithm against some benchmark on-

line portfolio allocation techniques using previously untested market datasets (including

South Africa). Our algorithm substantially outperforms existing online stock selection

techniques without much additional computational demand or modeling complexity.

The rest of the paper is organized as follows. In Section 2 the mathematical model is

described, and related results are surveyed briefly. In Section 3, we introduce the concept

of Cyclically Adjusted Price Relative (CAPR) for online portfolio selection problems.

Section 4 presents our new online portfolio selection algorithms together with a pseudo

code. Numerical results based on various data sets are described in Section 5 and section

6 draws some concluding remarks for our work.

2 Mathematical Model

The stock market model considered in this paper is the same as investigated by amongst

others Gyorfi et al. [2007] and Algoet [1996]. Consider a market of m assets such

that a market vector x = (x1, x2, ..., xm) ∈ R+m is the vector of m numbers representing

price relatives for a given trading period. The jth component xj ≥ 0 of x expresses

the ratio of two consecutive closing prices of asset j, such that xt,i =
pt,i
pt−1,i

and each

element pt,i represents the closing price of asset i on period t and pt−1,i is the closing

price of stock i on period t − 1. Thus, an investment in asset i on period t increases
by a factor of xt,i.. The investor distributes his capital at the beginning of each trading

period according to a portfolio vector b = (b1, b2, ..., bm), where the jth component bj of

b denotes the proportion of the investor’s capital invested in asset j. Throughout the

paper we assume that the portfolio vector b has non negative components which means

that the investment strategy is self- financing and that both consumption of capital and

short selling is not permitted. Mathematically this simply means that
m∑
j=1

bj = 1 and

bj ≥ 0.
Let S0 denote the investor’s initial capital and S1 the investor’s wealth at the end of
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the first trading period

S1 = S0

n∑
j=1

bjxj = 〈b, x〉 (1)

where 〈..〉 denotes the inner product.
The evolution of the market in time is represented by a sequence of market vectors

x1,x2,...,xt ∈ R+m where the jth component x
j
i of xi denotes the amount obtained after

investing a unit capital in the jth asset on the ith trading period. We denote by b
(
xi−11

)
the portfolio vector chosen by the investor on the tth trading period, upon observing

the past behavior of the market. b1 is a constant uniform portfolio vector, usually

b1 =
(
1
m
, ..., 1

m

)
.

Starting with an initial wealth S0, after n trading periods, the investment strategy

B achieves the wealth

Sn = S0

n∏
i=1

〈
bi
(
xi−11

)
, xi
〉
= S0 exp

{
n∑
i=1

log
〈
bi
(
xi−11

)
, xi
〉}

(2)

Sn = S0 exp {nWn (B)} (3)

where Wn (B) denotes the average growth rate and is given by

Wn (B) =
1

n

n∑
i=1

log
〈
bi
(
xi−11

)
, xi
〉
. (4)

This is essentially a log utility function whose expected value needs to be maximized

given a suitable choice of nonnegative portfolio vectors bi
(
xi−11

)
. Therefore maximizing

Sn = Sn (B) is equivalent to maximizing the average growth rate whose expression is

given by

Wn (B) : b
∗
i

(
xi−11

)
= argbmaxE

{
log
〈
bi
(
xi−11

)
, xi
〉
| xi−11

}
(5)

This is a nonlinear convex optimization problem for which closed-form solutions are

not easily available. The search for an acceptable solution has lead many researchers in

the machine-learning community to suggest various deterministic or randomized rules

that explicit determine a sequence of portfolios weights with the aim of maximizing the

investor’s wealth without prior knowledge of the statistical distribution of stock prices.

The current research study proposes one such algorithm.
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2.1 Benchmark Portfolio Selection Algorithms

The complexity of equation (5) makes it very hard to find closed form solutions for the

portfolio selection problem unless some structure is imposed a priory on the evolution

of the portfolio weights. This certainly explains why market practitioners have adopted

rather simplistic but intuitive portfolio selection rules in an attempt to derive optimal

portfolio weights. The most basic of portfolio selection algorithms is the so called Buy

and Hold (BAHb) which buys stocks using some portfolio b. This algorithm invests

according to b on the first trading day, and then never re-invests any money after that.

This results in a portfolio sequence given by

bi+1 =
〈xi, bi〉
m∑
i=1

bixi

. (6)

Of course there is an optimal Buy-and-Hold strategy, called BAHb∗ that can achieve

maximal growth although in hindsight. The BAHb∗ is simply a portfolio that assigns

a weight of 1 to the best stock, and a weight of 0 to all others. Mathematically this is

expressed as

b∗ = arg
b(.)

max retx (BAHb) (7)

where retx (BAHb) is simply the returns achieved by the Buy-and-Hold given the

sequence of price relative x. When b is set such that the total available investment

is initially equally distributed amongst various assets b =
(
1
m
, 1
m
, ..., 1

m

)
, the BAHb is

referred to as the Uniform Buy-and-Hold or UBAHb. The BAHb strategy has at least

two major advantages. First the Buy-and-Hold strategy does not incur any transaction

costs after the initial trade allocation is made given that no trade is generated after

that. The second advantage is that this strategy does not induce any market impact

and other stock market frictions irrespective of the portfolio size. The major drawback

of the BAHb is the over reliance on the tendency of stock markets to grow over time.

In the event of severe market correction as was the case in 2008 this strategy can suffer

severe losses.

An alternative approach to the static buy-and-hold is to dynamically change the

portfolio during the trading period. In this case the algorithm maintains a fixed portfolio

weights throughout the entire trading period by actively re-investing every portfolio gains

at the end of each trading day. One example of an active trading strategy is the Constant

Rebalancing methodology which fixes a portfolio b and (re)invest each available capital

according to b. We denote this constant rebalancing strategy by CBALb and let CBALb∗

denote the optimal (in hindsight) CBAL where b is given by
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b∗ = arg
b(.)

max retx (CBALb) (8)

A major benefit of the constant rebalancing strategy lies in its ability to take ad-

vantage of market fluctuations to achieve a return sometime significantly greater than

that of BAHb∗ although this might come at the expense of much higher transactions cost.

CBALb∗ is always at least as good as the best stock andBAHb∗ (retxCBALb∗ ≥ retxBAHb∗) ,

and in some real market sequences a constant rebalancing strategy will take advantage

of market fluctuations and significantly outperform the best stock. (see Borodin et al.

[2006]).

2.2 Machine Learning Portfolio Selection Algorithms

Machine learning methods for stock selection encompass a variety of trading strategies

for which the stock selection algorithm operates in rounds. On round t the algorithm

receives a vector of price relatives xt ∈ Rm
+ to which it applies its current prediction rule

to produce a vector of portfolio weights bt. At time t+ 1 after the initial prediction has

been made the portfolio manager receives the new stock price returns xt+1 and incur

a portfolio period returns equal to bᵀt xt+1 after which he updates the total wealth as

St+1 = St (b
ᵀ
t xt+1). With the new wealth determined the portfolio manager updates

his prediction rule and proceeds to the next round. Of course the goal of the portfolio

manager is to maximize his total wealth in the long run without any prior knowledge

of the statistical distribution of the stock prices. This typical problem specification has

its origins in the perceptron algorithm of Rosenblatt [1958] and has now been studied

extensively in the machine learning community with various degrees of success.

Several approaches to online portfolio selection have been proposed in the machine

learning literature. Cover [1991] for example proposed Universal Portfolios (UP) strategy

that weights all constant rebalanced portfolios, referred to as experts, by their empiri-

cal probability distribution generated from the performance of each expert. The regret

achieved by Cover’s UP is O (m log n), where m denotes the number of stocks and n de-

notes the number of trading days. However, the implementation cost of the UP algorithm

is exponential in the number of stocks and thus restricts the number of assets used in

real market experiments. Although Kalai and Vempala [2002] presented a time-effi cient

implementation of Cover’s UP based on non-uniform random walks, the performance of

the UP algorithm has not been satisfactory enough in historical simulations.

The Exponential Gradient strategy of Helmbold et al. [1996, 1997] for online port-

folio selection proposes a portfolio selection algorithm using multiplicative updates. To

achieve this, the EG strategy tries to maximize the expected logarithmic portfolio daily
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return (approximated using the last price relative), and minimize the deviation between

next portfolio and last portfolio. One straightforward interpretation of the EG algorithm

is that it tends to track the stock with the best performance in last period but keep the

new portfolio close to the previous portfolio weights.

Borodin et al. [2004] propose a non-universal but empirically robust portfolio strategy

named Anti-Correlation (Anticor or simply AC). The Anticor strategy simply takes ad-

vantage of the statistical properties of mean-reverting stock prices where the underlying

motivation is to bet on the consistency of positive lagged cross-correlation and negative

autocorrelation. Although it does not provide any theoretical guarantee, empirical re-

sults showed that Anticor can outperform most existing state of the art strategies in real

market historical data.

Györfi et al. [2006] introduced a framework of Nonparametric Kernel-based learning

strategies for portfolio selection based on nonparametric prediction techniques of Györfi

and Schäfer [2003]. Their algorithm first identifies a list of similar historical price relative

sequences whose Euclidean distance with the recent market window is smaller than a

threshold, and then optimizes the portfolio with respect to the list of observed realized

returns following instances of similarity. Following the same line the Nonparametric

Nearest Neighbor learning (NN) strategy proposed in Györfi et al. [2008] aims to search

for the nearest neighbors in historical price relative sequences rather than search price

relatives within a specified Euclidean ball.

Recently, Li et al. [2012, 2013] proposed the Confidence Weighted Mean Reversion

(CWMR) and the Passive Aggressive Mean Reversion (PAMR) strategies. These algo-

rithms actively exploit the mean reversion property and the second order information of

a portfolio. Their algorithms have been empirically shown to be a robust trading strategy

as they outperform many earlier state of the art algorithms in historical simulations.

3 CAPR in Online Portfolio Selection Algorithms

The generally accepted practice in published state of the art algorithms (see Borodin et

al. [2004]; Li et al.[2012])) is to use the raw price relative as the main argument in the

machine learning algorithm. Raw price relative is defined as the ratio of two consecutive

closing prices xt =
pt
pt−1

.at time t . However, raw price relatives and their logarithms are

notoriously volatile time series and there is very little to believe that the mean reversion

characteristics will be effective in the very next periods, if at all. While the academic

research community has settled on raw price relative as the primary input argument,

market practitioners have always recognized the need for smoothing stock prices before

proceeding to any credible statistical analysis.
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Many stochastic processes, including stock prices, have inherent noise that obscure

the true underlying values. To be successful in today’s market place, portfolio managers

need to see through all the market noise that occurs on a daily basis and be able to

identify the trend of prices. Classical approaches to this problem have been to apply a

moving average, as in Li et al. (2012), or an exponential moving average to the time-series

to obtain a smoothed one We believe that it is potentially risky to use simple moving

averages on time-series because they most likely will change the statistical properties of

the time-series under consideration.

Appropriate smoothing of price data can eliminate some of the market noise and allow

the portfolio manager to focus on trading. In order to reduce the impact of these noises

in smoothing stock prices we use the scalar Kalman Filter (KF). The KF is an optimal

filter that provides us with clearer resolution and allow us to isolate the peak excursions

when the stock price significantly departs from its "true" unobserved component. When

the stock price significantly departs from it’s trend price we anticipates that the move

is unsustainable and takes the view that short-term price will reverse from these peaks.

Therefore, critical to our analysis is not how much the price moves from one period to

the next as assumed by comparable studies, but instead, how far apart is the stock price

from its Kalman trend.

To illustrate why CAPR and raw price relative can lead to two very distinct con-

clusions we plot in Figure 1 two actively traded stock prices in the Johannesburg stock

exchange together with their simple moving average. There are clearly periods where

both stocks lie above, below or in opposite side of their respective moving averages. On

the surface, it seems as though the higher the stock price is from its moving average,

the more bullish the market is (and the lower it goes, the more bearish). In practice,

however, the reverse is generally true. Extremely high readings are a warning that

the market may soon reverse to the downside. High readings reveal that traders are

far too optimistic. When this occurs, fresh new buyers are often few and far between.

Meanwhile, very low readings signify the reverse; the bears are in the ascendancy and a

bottom is near.

At time t for example (see Figure 1) stock A is below its moving average while stock

B lies above its trend. At time t + 1, stock A rises by about 3% while stock B falls

by 1%. Given this outperformance of stock A over B most online learning algorithms

exclusively based on mean reversion would likely start transferring wealth from stock A

to stock B depending on their speed of adjustment. However this is a very misleading

interpretation of the dynamics of these stocks as stock A comes from a very over sold

position and is simply "catching up". Our proposed algorithm acknowledges this fact

and will instead recommend transferring more wealth from stock B to stock A. As a
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consequence the distance between a stock price and its moving average (or trend) is of

critical importance in our algorithm.

Figure 1: Impact of smoothing on two stock prices
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In this paper we use the Kalman Filter, instead of a simple moving average, as

the appropriate filtering methodology since it is robust to noise measurements. Using

the Kalman Filter helps us to filter out very volatile and cyclical components of stock

prices and derive what we refer to as the cyclically adjusted price relative (CAPR). If

pt represents the stock price and pkt the filtered or unobserved "true" price (as defined

below) at time t, the cyclically-adjusted price relative is expressed as

CAPR =
pt
pkt

In summary the CAPR ratio is used in this paper to judge how over sold or over

bought the stock of a corporation is relative to its own unobserved true price. The

further away the price relative is from its own trend the more attractive the stock will

be for purchase or for sale in our model. Because our algorithm takes a bet only when a

given stock price significantly deviates from its trend, this new measure of price relative is

therefore expected to yield better mean reversion characteristics compared to traditional

counterparts.
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3.1 Some Statistical Properties of the CAPR

Let us assume that the stock price process is governed by a state-space representation

where the measurement equation is given by pt =Mpkt +vt, whereM is known and vt ∼
N (0, R) with R known. This equation essentially describes the relationship between

observed stock price pt and the unobserved "true" stock price pkt . Let us also assume

that the transition equation follows autoregressive AR(1) process given by the equation

pkt = φpkt−1 + wt, in this equation |φ| < 1 is assumed known and wt ∼ N(0, Q) with Q

known.

The ratio pt
pkt
=M+ vt

pkt
, represents our measure of the cyclically adjusted price relative

(CAPR) centered around the known coeffi cientM . CAPR is dominated by the behavior

of the ratio vt
pkt
whose statistical properties could be defined in the following way .

From the specification of the transition equation it is easy to demonstrate that the

mean E
(
pkt
)
= 0 and the variance V ar

(
pkt
)
= Q

1−φ2 therefore pt ∼ N
(
0, Q

1−φ2

)
In Appendix A we prove (using the Taylor expansions around g (.)) that given two

random variables R and S where S has support [0,∞[ the function G = g (R, S) = R
S
,

has the following approximates for E (G) and V ar (G).

E

(
R

S

)
=
ER

ES
− Cov (R, S)

E2S
+
V ar (S)ER

E3S
(9)

V ar

(
R

S

)
≈ E2R

E2S

[
V ar (R)

E2R
− 2Cov (R, S)

ER ES
+
V ar (S)

E2S

]
(10)

We therefore provide the following expression for the mean and variance of the ratio
pt
pkt

E

(
pt
pkt

)
=M (11)

and

V ar

(
pt
pkt

)
= aV ar(vt) + bV ar(pkt ), where a =

E2vt
E2pktE

2vt
, b =

E2vt
E2pktE

2pkt
(12)

The ratio of the observed stock price to its unobserved component (Kalman trend )

is such that

pt
pkt
∼ N

(
M,aR + b

Q

1− φ2
)

(13)

This last expression demonstrates that the statistical properties of the cyclically

adjusted price relative pt
pkt
are well established and that in a sense assures better mean
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reversion characteristics. This finding is the main motivation why we would expect

historical simulations that use the new price relative measure to outperform the base

line models that rely on raw price relative as used as default in most empirical analyses.

In the rest of the paper, price relative will therefore need to be understood as observed

prices relative to the Kalman trend prices and not the ratio of two consecutive closing

prices.

3.2 The Scalar Kalman Filter Algorithm

The Kalman Filter is a recursive algorithm that produces estimates of a time series of

unobservable variables (along with parameter estimates for the theoretical model that

generates the data) using a related but observable time series of variables. The estimates

of the unobservable variables are updated at each time step based on the revelation of

new observable data. The Kalman filter uses the current observation to predict the

next period’s value of unobservable and then uses the realization next period to update

that forecast. The linear Kalman filter is optimal, i.e. minimum Mean Squared Error

estimator if the observed variable and the noise are jointly Gaussian. Suppose p1, p2, ..., pt
is the observed values of the stock prices for a given firm at time 1, 2, ..., t. We assume

that pt depends on an unobservable quantity pkt , known as the state of nature or the

true stock price.

The Kalman Filter recursive estimation algorithm works as follows. At time t0 the

process start with an initial estimate pk∗0 for pkt which has a mean of µ0 and a variance

P = E
(
pk0 − pk∗0

)2
At time t1 and before any measurement is taken (or before any stock price is revealed)

the state price is given by

pk1 = φpk∗0

its variance is given by

P = E
(
pk1 − pk1

)2
= E

[
φpk0 + µ0 − φpk∗0

]2
= φ2P +Q,

and the transition equation is given by

p1 =Mpk1

Still at time t1 and after the measurement p1 becomes available

pk∗1 = pk1 +K [p1 − p1] = pk1 +K
[
p1 −Mpk1

]
11



where K is the kalman gain. After p1 becomes the variance of the measurement

needs to be updated in the following way.

P =
[
pk1 − pk∗1

]2
=
[
p1 − pk1 −K

[
p1 −Mpk1

]]2
P =

[
pk1 − pk1 −K

[
Mpk1 + w1 −Mpk1

]]2
= P (1−KM)2 +RK2

The value of the kalman gain (K) that minimizes the variance is

K =MP
(
PM2 +R

)−1
4 CAPR and Online Learning Algorithms for Port-

folio Selection

In this section we demonstrate the merit of our methodology using a generalized version

of the Anticor algorithm of Borodin et al [2004].

4.1 The Anitcor (AC) algorithm Revisited

In its original form, the Anticor (AC) algorithm of Borodin et al. [2006] provides re-

sults on historical stock prices that show that some an algorithm derived from simple

heuristics can significantly outperform those that provide theoretical guarantees Unlike

competing state of the art algorithms that are derived from sound mathematical and

statistical learning theory, the AC algorithm is derived from simple heuristics. The al-

gorithm evaluates changes in stocks’performance by dividing the historical sequence

of past returns series into equal-sized periods called windows, each with a length of w

days where w is an adjustable parameter. According to the AC algorithm the wealth

is transferred from recently high-performing experts to anti-correlated low-performing

experts. Specifically, whenever the algorithm detects that stock i outperformed stock

j during the last window, but i′s performance in the last window is anti-correlated to

j′s performance in the second-to-last window (µ2 (i) ≥ µ2 (j) and Mcorr (i, j) > 0), it

transfers wealth from stock i to stock j and calculate new portfolio weights. Borodin et

al. [2006] show historical simulation results or some real market datasets that demon-

strate that the AC algorithm is indeed very robust in those datasets based solely on the

mean reversion principal.

Despite this impressive empirical performance, an extensive body of behavioral fi-

nance literature has documented that price reversals is hardly the only feature at play
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in equity markets. It has been argued that price momentum and reversals tend to co-

exist in world stock markets in short term. In a comprehensive investigation, Conrad

and Kaul [2006] find both momentum and contrarian profits in the U.S. market, de-

pending on the time horizon investigated. Balvers and Wu [1998] also demonstrate that

mean reversion and momentum can simultaneously occur on the same set of assets in 18

developed countries. This coexistence of both momentum and reversal means that an

exclusive focus on mean reversion is likely to generate suboptimal results. It is therefore

possible that in the presence of both price reversal and price continuation the original

AC algorithm will fail to perform optimally. To correct this shortcoming we provide an

important modification to the AC algorithm that can deal with both momentum as well

as reversal in the following way.

As in Borodin et al. [2006], for a window length w, we consider LX1 and LX2 as two

w × n matrices over two consecutive time windows which we compute as follows
LX1 = (log (Xt−2w+1) , ..., log (Xt−w))

T and LX2 = (log (Xt−w+1) , ..., log (Xt))
T

The jth column of LXk is denoted by LXk (j) and simply tracks the performance of

stock j in window k where k = 1, 2. Let µk (j) be the mean of LXk (j) and σk (j) be

the corresponding standard deviation. The cross-covariance matrix between the columns

vectors of LXk is defined as followsMcov (i, j) = 1
w−1 [LX1 (i)− µ1 (i)]

T [LX2 (j)− µ2 (j)]
and the corresponding cross-correlation matrix is given by

MCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0
0 otherwise

The reversion to mean strategy of Borodin et al. [2006] states that if µ2 (i) ≥
µ2 (j) and Mcorr (i, j) > 0 the proportion of wealth to be moved from stock i to stock

j is defined as

claimi→j =Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0)

To account for the possibility of short term momentum we expand the benchmark

AC algorithm as follows. If µ2 (i) ≥ µ2 (j) andMcorr (i, j) ≤ 0 the proportion of wealth
to be moved from stock i to stock j is defined as

claimi→j = −Mcorr (i, j) + max (MCorr (i, i) , 0) + max (MCorr (j, j) , 0)

Therefore whenever our algorithm detects that stock i outperformed stock j dur-

ing the last window, but i′s performance in the last window is not anti-correlated to

j′s performance in the second-to-last window (µ2 (i) ≥ µ2 (j) and Mcorr (i, j) ≤ 0), it
transfers wealth from stock j to stock i (the model is adding into the holding of stock

i) and calculate new portfolio weights. The simple logic here is that there will be price

continuation in the direction of the outperforming stock.

From both the reversal to the mean and the price continuation conditions we calculate

the transfers of stock i to stock j as
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transferi→j = bt−1 (i)
claimi→j∑
j claimi→j

Using these transfer values, the portfolio is defined to be

bt (i) = bt−1 (i) +
∑
i 6=j
(transferj→i − transferi→j)

and we call the resulting algorithm the Momentum-Anticor or ACM. In Table 1

below, we show a pseudo code implementation of the proposed K-ACM algorithm where

the input price relative is the CAPR derived from the scalar Kalman Filter procedure.

Table 1: K − ACM (w, φ,M, P )

w: window size

φ: autoregressive coeffi cient of the state equation

M : coeffi cient in the measurement equation

b0: initial portfolio weights b0 =
(
1
m
, ..., 1

m

)
Initialize the Kalman Filter parameters (Q,R,Z, V )

for t = 1, 2, ...

1 Estimate the true price Zt using the following procedure

1.1 Z = φẐ

1.2 V = V φ2 +Q

1.3 K =MV
[
VM2 +R

]−1
1.4 Ẑ = Z +K

[
Pt −MZ

]
1.5 V = V [1−KM ]2 +RK2

2 CAPR = xt =
Pt
Ẑt

3 Return the current portfolio bt if t < 2w

4 compute LX1 = (log (Xt−2w+1) , ..., log (Xt−w))
T

5 compute LX2 = (log (Xt−w+1) , ..., log (Xt))
T

6 compute µ1 = average (LX1) and µ2 = average (LX2)

7 compute Mcov (i, j) = 1
w−1 [LX1 (i)− µ1 (i)]

T [LX2 (j)− µ2 (j)]

8 compute MCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0
0 otherwise

9 Initialize claimi→j = 0

10 if µ2 (i) ≥ µ2 (j) and Mcorr (i, j) > 0

11 claimi→j =Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0)

12 else if µ2 (i) ≥ µ2 (j) and Mcorr (i, j) ≤ 0
13 claimi→j = −Mcorr (i, j) + max (MCorr (i, i) , 0) + max (MCorr (j, j) , 0)

14 transferi→j = bt−1 (i)
claimi→j∑
j claimi→j

15 bt (i) = bt−1 (i) +
∑
i 6=j
(transferj→i − transferi→j)

end
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The pseudo code presented in Table 1 is clearly a generalization of the AC algorithm.

Because it accounts for both price reversals and price momentum while accepting the

CAPR as the main input we expect our K-ACM to perform significantly better than the

original AC algorithm. Further to that Table 1 also allows us to derive new algorithms

specification that could form the basis for valid investment strategies. For example if the

portfolio manager uses the original AC Algorithm together with the CAPR we refer to

this algorithm as the Kalman Anticor (K-AC) algorithm. Similarly if a portfolio manager

uses the raw price relative as main argument together with our proposed generalized AC

Algorithm we refer to this version as the Momentum Anticor or ACM.

4.2 Combining Portfolio of Experts

All our new Anticor based online portfolio selection algorithms requires an important

fine tuning parameter, namely the window length w. This means that for all practical

purposes the portfolio manager will need to set w to some level ex ante. In most instances

the performance of the algorithm could fluctuate significantly depending on the set

window size. Because it is practically impossible to know ex ante what window period

will generate better trading performance our approach is simply to select a number of

window periods and allow them to compete. In this paper we achieve this by choosing

a wider range of parameters, w, where for each window we obtain a set of historical

results, called experts, that are dependent on that particular window size. As in Gyorfi

et al. [2006] we form a mixture of all experts using a positive probability distribution qw
on the set of all window lengths w of positive integers. The investment strategy simply

weights these experts Hw according to their past performances and the qw such that

after the tth trading period the investor wealth becomes

St =
∑
w

qwSt (H
w) (14)

where St (Hw) is the capital accumulated after tth trading period using the expert

Hw with initial capital S0 = 1. We then form our final portfolio by weighting all expert

portfolio using the following

b
(
X t−1
1

)
=

∑
w qwSt−1 (H

w)hw
(
xt−11

)∑
w qwSt−1 (H

w)
(15)

There are of course many alternative ways one could choose to combine expert port-

folios given by a range of window choices. Borodin et al. (2006) proposed using the

Anticor algorithm to combine portfolio experts given an appropriate choice of the win-

dow size. However we decided against such a procedure as this will again be dependent
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on the choice of a new optimal window size that needs to be selected by the portfolio

manager. The methodology adopted here has therefore the major advantage that no

further parameter tuning is required.

4.3 Trading Costs and Market Impacts

Because our algorithm is likely to generate a large amount of daily transactions and

that transaction are not costless, we need to be concerned about the amount of com-

missions this portfolio will incur in actual market trading. Although these costs have

been significantly reduced in recent years due to technological advances and improved

market liquidity, transaction costs remain an issue to be carefully analyzed if algorithms

are to be trusted for real market applications. In this study we work on the assump-

tion that there are charges on all transactions equal to a fixed percentage of the amount

transacted. We adopt the proportional transaction cost model following Blum and Kalai

[1999] and Borodin et al. [2004], that is, rebalancing the portfolio in any given day incurs

transaction costs for both buy and sells orders.

At the beginning of the tth trading day, the portfolio manager rebalances the portfolio

from the previous closing price adjusted portfolio bt−1 to a new portfolio bt. Specifically,

we consider a transaction cost rate c ∈ (0, 1), so the transaction cost will be charged
according to

c

2

∑
k

∣∣b(t,k) − b(t−1,k)∣∣ (16)

Thus, with transaction cost rate the total wealth achieve by the strategy becomes

ScT = S0

T∏
t=1

[
(btxt)

(
1− c

2

∑
k

∣∣b(t,k) − b(t−1,k)∣∣
)]

(17)

In this paper, transaction costs are therefore taken into account and we assume a

round-trip trading cost per trade of 10 basis points, to incorporate an estimate of price

slippage and other costs as a single market friction coeffi cient. All our Anticor-based

algorithms also assume that all portfolio adjustments are implemented using the quoted

prices and that all transactions are implemented simultaneously using these prices. This

is of course an oversimplification of what really happens in actual trading where a time

delay is needed between updating of portfolio weights and actual trading. Although

recent technological advances have made computerized systems a natural candidate for

fast order execution there is still no guarantee that they will be all implemented instantly

unless the portfolio manager is happy to cross the bid-ask spread at every round of
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trading. This trading friction will necessarily generate discrepancies between the model

returns and those realized in actual trading.

5 Empirical results

This section presents numerical results obtained by applying the above algorithms (K-

ACM, ACM, K-AC and the AC) to six financial market data sets. The back-testing

experiments consists in running the signals through historical data, with the estimation

of parameters, signal evaluations and portfolio re-balancing performed daily. However

before testing the algorithms with data from real financial markets we hilight some

assumptions implied in our model that are not found in real markets. As in Gyorfiet al.

(2008) we assume that assets are available in any desired quantities at any given price.

We also assumed that all trades are done at the closing price of that day and all the

wealth achieved in the last period is fully invested in the next one, without any extra

investment allowed.

5.1 Data Description

Our empirical experiments perform numerical evaluations on six real datasets by com-

paring the performance of our proposed algorithms with some benchmark methods. The

first four datasets summarized in table 1 are obtained from Bloomberg and cover the

period of January 2000 to October 2013 (see Table 1). Bloomberg stock prices are ad-

justed for stock split splits and dividends have been included in this simulations. To our

knowledge this datasets has never been tested and possess the advantage that it covers

the subprime crisis period of 2007 to 2009. This datasets covers about 4508 trading days

that exclude weekends.

The first datasets is the TOP40 Index which consists of the largest 42 stocks by

market capitalization listed in the Johannesburg Stock Exchange in South Africa. This

datasets contains price relatives of 4508 trading days, ranging from January 2nd 2000

to October 2013 and is by far the most liquid index available to South African investor.

The second datasets, FTSE100 Index, is a share index of the 100 companies listed on

the London Stock Exchange with the highest market capitalization. It is one of the most

widely used stock indices and is seen as a gauge of business prosperity in the United

Kingdom. The third datasets is that of the Toronto Stock Exchange referred to as the

S&P/TSE 60 or simply the TSE60 Index. This index represents the stock market index

of 60 large companies listed on the Toronto Stock Exchange and it currently exposes the

investors to about 10 industry sectors. The fourth datasets is derived from the NAS-
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DAQ stock exchange. The NASDAQ100 is a stock market index of 100 of the largest

non-financial companies listed on the NASDAQ. It is a modified capitalization-weighted

index. The companies’weights in the index are based on their market capitalizations,

with certain rules capping the influence of the largest components. It does not con-

tain financial companies, and could include companies incorporated outside the United

States.

Table 2: Data Description

Data Set Region Time Frame Trade Days Stocks

TOP40 SA JAN-2000 - OCT-2013 4508 42

FTSE100 UK JAN-2000 - OCT-2013 4508 100

TSE60 CANADA JAN-2000 - OCT-2013 4508 60

NASDAQ100 US JAN-2000 - OCT-2013 4508 100

NYSE(O) US JUL-1962 - DEC-1984 5651 36

NYSE(N) US JAN-1985 - JUN-2009 6179 23

The last two datasets, NYSE (O) and NYSE (N), are from the New York Stock

Exchange in the US. This NYSE datasets have been widely analyzed in many previous

studies [Cover [1991]; Helmbold et al. [1998]; Borodin et al. [2004]; Agarwal et al.

[2006]; Gyorfi et al. [2006; 2008]] and recently by Li et al [2012]. Although not very

useful for practical applications this datasets provides a benchmark against which one

can compare historical simulation and testing of empirical data across many previously

published state of the art online portfolio selection strategies. The NYSE (O) for example

contains 5651 daily price relatives of 36 stocks in the New York Stock Exchange (NYSE)

for a 22-year period from July 3rd 1962 to December 31st 1984. The NYSE(N) datasets

is the one used by Li et al. (2012) that covers the period from January 1st 1985 to June

30th 2009 and contains 6179 trading days and 23 stocks.

The diverse markets and datasets in our test bed have witnessed several cycles of the

stock markets, especially during the dot-com bubble from 1995 to 2000 and the subprime

mortgage crisis from 2007 to 2009. While the first four previously untested datasets are

used to test the performance of our methodology on up to date stock markets data the

last two datasets are used to empirically evaluate our models on earlier datasets as these

have been used extensively in similar studies.
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5.2 Paper Trade and Historical Simulation Results

The first experiment evaluates the total wealth achieved by different learning-to trade

algorithms including a 10 basis points transaction cost. Table 2 summarizes the total

wealth achieved by various algorithms on the six market datasets. The market index is

calculated as equal weighted constantly rebalanced portfolio on all stock available for

that particular market.

Several observations can be drawn from the results. First of all, we find that all

learning-to-trade algorithms can beat both the best stock and the market index on all

the datasets. Second, we observe that our proposed algorithms K-ACM performs much

better than its respective benchmarks AC and ACM on all datasets and for all period

of time as shown in Figure 2.

Table 3: Total Wealth achieved by selected algorithms

FTSE NASDAQ NYSE(N) NYSE(O) TOP40 TSE60

SIZE 4507 4507 4507 5651 6431 4507

COUNTRY UK USA USA USA RSA CANADA

BEST STOCK 4.1E+01 2.7E+02 8.5E+01 5.3E+01 5.3E+01 2.7E+01

UBAH 3.3E+00 1.0E+01 1.8E+01 1.4E+01 8.3E+00 4.7E+00

UBCRP 3.6E+00 9.1E+00 3.2E+01 2.7E+01 8.3E+00 6.4E+00

BCRP* 4.4E+01 6.6E+02 1.2E+02 2.5E+02 7.3E+01 5.5E+01

K-ACM 2.6E+03 1.3E+04 2.3E+07 3.6E+10 7.8E+03 5.6E+04

ACM 8.4E+01 2.9E+02 6.4E+05 1.3E+09 1.9E+02 2.7E+03

K-AC 2.4E+02 9.1E+02 6.5E+06 1.7E+09 2.9E+03 5.1E+03

AC 4.1E+01 2.0E+02 5.6E+05 4.2E+07 9.6E+01 1.0E+03

MARKET 3.6E+00 9.1E+00 3.2E+01 2.7E+01 8.3E+00 6.4E+00

For example, on the NYSE (N) datasets after trading for 22 years, the total wealth

achieved by the AC strategy and the ACM strategy impressively increases from $1 to

almost $560K and $640K, respectively, which are much higher than the best stock that

achieves $84.82 and the market index that achieves a mere $31.82. For the same datasets

the performance of the K-AC and K-ACM are even more impressive. In the case of the K-

AC for example a 1$ rises to $6.5-million after 6431 days of trade while the K-ACM rises

to an impressive $23.0-million during the same time frame. Our propose methodology

therefore achieves a growth in wealth that is more than 41 times that achieves by its

benchmark algorithm. This dominance of our proposed algorithms relative to their

benchmarks is also evident in all datasets and time frames as shown in Table 2. Both
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K-AC and K-ACM achieve considerably better results than the market index, the best

stock in the market, as well as all their benchmark state-of-the-art strategies. Besides

the preceding results, we are also interested in examining how the total wealth achieved

by various strategies change over different trading periods. Figure 2 shows the changes

of total wealth achieved by the various strategies on the 6 datasets. From the figure,

we first observe that our proposed algorithms consistently outperform their benchmark

algorithms over all trading periods. It is also interesting to note that, although the

market drops sharply due to the financial downturn in 2008, the proposed K-AC and K-

ACM algorithms are still able to achieve encouraging returns in some datasets, which is

especially more impressive in the later part of the South Africa Top40 datasets. All these

impressive results reiterate the effi cacy and robustness of the proposed learning-to-trade

algorithm.

Figure 2: Performance of Various Online Learning Algorithms
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The superior investment performance of our proposed methodology is unsurprising

to us as it results from a better and more systematic exploitation of both mean reversion

and momentum features of stock prices over short period of time. While existing state

of the art algorithms are based on raw price relative as input our algorithm is rather

based on the CAPR that has been shown to have not only desirable statistical properties

but also seems perfectly in tune with portfolio managers actual trading practices. We

do not only hope that stock prices will mean revert in subsequent period, but we only

trade at those instances where the stock prices has the highest likelihood to reverse
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in the short term. Our methodology searches for instances where the stock prices are

suffi ciently distant from their unobserved true price before initiating a trade. This search

for maximum excursion means that the probability of mean reversion is likely to be much

higher in our case than it is for comparable state of the art benchmark algorithms.

6 Conclusion

We have presented a new online approach to portfolio selection which builds on exist-

ing state of the art portfolio selection algorithms. Our algorithm combines powerful

online portfolio selection algorithms with ideas from signal processing and statistics to

produce portfolios that substantially outperform their benchmark equivalent on real

market datasets. Historical simulations have demonstrated that experiments with both

K-ACM, the K-AC and the ACM brought to the fore the exceptional empirical perfor-

mance improvement that a suitable heuristic can achieve over theoretically well-grounded

approaches. De-trending price series and using the ratio of stock prices to their Kalman

Filter trend improves the performance of the algorithm quite spectacularly in some cases.

This impressive performance using data that are widely available casts some doubts on

the market effi ciency hypothesis at least on its weakest form. Only in the presence of

weakly ineffi cient markets can these algorithms give the very good performance that

we show in the examples. As argued by Gyorfi et al. 2006 this superior performance

on datasets available to all investors may partially be explained by the fact that the

dependence structures of the markets revealed by the proposed investment strategies

are quite complex and, even though all information we use is publicly available, the way

this information can be exploited remains hidden from most traders.
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Appendix: Statistical Properties of Ratio of Random Variables
Consider two random variables R and S where S has support [0,∞[. Let G =

g (R, S) = R
S
, our goal is to find an approximation for E (G) and V ar (G) using the

Taylor expansion around g (.).

For any function f (x, y) the bivariate first order Taylor expansion about θ is

f (x, y) = f (θ) + f
′

x (θ) (x− θx) + f
′

y (θ) (y − θy) + remainder

Let θ = (EX,EY ), the simplest approximation for E (f (X, Y )) is therefore

E (f (x, y)) = f (θ) + f
′

x (θ) (0) + f
′

y (θ) (0) +O
(
n−1
)
≈ f (EX,EY )

The second order Taylor expansion is

f (x, y) = f (θ) + f
′
x (θ) (x− θx) + f

′
y (θ) (y − θy)

+
{
f
′′
xx

(
θ (x− θx)2 + 2f

′′
xy (x− θx) (y − θy) + f

′′
yy (θ) (y − θy)

2)}+ remainder

So a better approximation is given by

E (f (X, Y )) = f (θ)+
{
f
′′

xx (θ)V ar (X) + 2f
′′

x y (θ)Cov (X, Y ) + f
′′

yy (θ)V ar (Y )
}
+remainder

For

g =
R

S
, g
′′

RR = 0, g
′′

RS = −S−2, g
′′

SS =
2R

S3

Then E
(
R
S

)
is approximately

E

(
R

S

)
u E (g (R, S)) ' ER

ES
− Cov (R, S)

E2S
+
V ar (S)ER

E3S

Using the first order Taylor expansion, the variance is

V ar (f (X, Y )) = E
{
[f (X, Y )− E (f (X, Y ))]2

}
' E

{
[f (X, Y )− f (EX,EY )]2

}
= E

{[
f
′
x (θ) (X − θx)− f

′
y (θ) (Y − θy)

]2}
+O (n−1)

' f
′
x (θ)

2 V ar (X) + 2f
′
x (θ) f

′
y (θ)Cov (X, Y ) + f

′
y (θ)

2 V ar (Y )

Since

g
′

R = S−1, g
′

S = −
R

S2
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V ar
(
R
S

)
' 1

E2S
V ar (R)− 2 ER

E3R
Cov (R, S) + E2R

E4S
V ar (S)

= E2R
E2S

[
V ar[R]
E2R

− 2Cov(R,S)
ER ES

+ V ar(S)
E2S

]
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