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Abstract

Based on the axiomatic framework of Choquet decision theory, we develop a

closed-form model of Bayesian learning with ambiguous beliefs about the mean

of a normal distribution. In contrast to rational models of Bayesian learning the

resulting Choquet Bayesian estimator results in a long-run bias that reflects the

agent’s ambiguity attitudes. By calibrating the standard equilibrium conditions

of the consumption based asset pricing model we illustrate that our approach

contributes towards a resolution of the risk-free rate puzzle. For a plausible para-

meterization we obtain a risk-free rate in the range of 3.5− 5%. This is 1− 2.5%
closer to the empirical risk-free rate than according calibrations of the rational

expectations model.
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1 Introduction

Starting with the seminal contribution of Lucas (1978), the consumption based asset

pricing model for a representative consumer economy has become the workhorse of the

macroeconomic �nance literature. As its main virtue the model derives the relationship

between the consumer’s uncertainty with respect to future consumption growth and

equilibrium asset prices. However, as �rst demonstrated by Mehra and Prescott (1985),

predicted asset returns under the rational expectations hypothesis are, by some large

margin, at odds with actually observed asset returns. Several authors–e.g., Cecchetti,

Lam, and Mark (2000); Brav and Heaton (2002); Abel (2002); Giordani and Soderlind

(2006); Jouini and Napp (2008)–have relaxed the rational expectation hypothesis in

order to explain asset-pricing puzzles through “incorrect” subjective beliefs. Any at-

tempt to relax the rational expectations hypothesis in this manner faces the following

questions:

Question 1: Why should subjective beliefs signi�cantly di�er from objective probabil-

ities?

Question 2: Even if there exist initial di�erences between subjective beliefs and objec-

tive probabilities, why do these di�erences not vanish through Bayesian learning

from large data-samples?

Question 3: Even if any signi�cant di�erence between subjective beliefs and objective

probabilities is persistent, can plausible magnitudes of such di�erences explain

observed asset-pricing puzzles?

We develop a closed-form model of biased Bayesian learning of the mean of a normal

distribution which addresses the above questions on a sound decision-theoretic foun-

dation. As our starting point we modify a standard closed-form model of Bayesian

learning–according to which a decision maker has a normal distribution as prior over

the unknown mean parameter of some normal distribution–by two more realistic as-

sumptions. First, the prior is given as a truncated normal distribution. Second, informa-

tion is given as interval- rather than point-observations. We then embed this benchmark

model of rational Bayesian learning within a model of Choquet Bayesian learning. This

allows us to capture an agent’s ambiguity attitudes through neo-additive capacities in

the sense of Chateauneuf, Eichberger and Grant (2007). The agent of our model resolves

this ambiguity by putting additional decision-weight on extreme (zero versus one) prob-

abilities. As a consequence, the Choquet Bayesian estimator will generically result in an

under- or over-estimation compared to the corresponding rational Bayesian estimator.
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In the remainder of this introduction we sketch in more detail how our approach

addresses Questions 1-3.

Addressing Question 1: Neo-additive capacities

We model subjective beliefs as non-additive probability measures such as neo-additive

capacities. These arise as generalizations of subjective additive probability measures

in Choquet expected utility (CEU) theory, which relaxes Savage’s (1954) sure thing

principle in order to accommodate for ambiguity attitudes as elicited in Ellsberg (1961)

paradoxes (Schmeidler 1986, 1989; Gilboa 1987). CEU theory is formally equivalent to

(cumulative) prospect theory (=PT 1992) (Tversky and Kahneman 1992; Wakker and

Tversky 1993) whenever PT 1992 is restricted to gains (for a comprehensive treatment of

this equivalence see Wakker 2010). PT 1992, in turn, extends the celebrated concept of

original prospect theory by Kahneman and Tversky (1979) to the case of several possible

gain values in a way that satis�es �rst-order stochastic dominance.

By focusing on neo-additive capacities in the sense of Chateauneuf et al. (2007)

we model the possible di�erence between ambiguous subjective beliefs and objective

probability measures in a parsimonious way. In addition to information about the sam-

ple mean the agent’s estimator of the distribution’s mean re�ects ambiguity. This is

expressed through the parameter � � [0� 1]. Ambiguity is then resolved through the
agent’s ambiguity attitudes, resulting either in under- or overestimation. This is ex-

pressed through an “optimism” parameter � � [0� 1]. Our model of Choquet Bayesian
learning thus considers two additional parameters that are rooted in axiomatic decision-

theory. It nests the benchmark model of rational Bayesian learning (� = 0).

To work with neo-additive capacities is attractive for two reasons. First, neo-additive

capacities reduce the potential complexity of non-additive probability measures in a

very tractable way. Important empirical features, e.g., inversely S-shaped probability

transformation functions are thereby portrayed (Chapter 11 in Wakker 2010).1 Second,

Bayesian learning with respect to neo-additive capacities is closed, i.e., the prior and

posterior are conjugate distributions.

Addressing Question 2: Biased Bayesian learning

Standard models of consistent (=rational) Bayesian learning have been applied to sev-

eral topics in economics and management sciences. For instance, early contributions by

1To quote Peter Wakker (2010): “[���] the neo-additive functions are among the most promising

candidates regarding the optimal tradeo� of parsimony and �t.” (p. 209)
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Cyert, DeGroot, and Holt (1978) and Tonks (1983) apply a Bayesian learning model–

formulated within a normal distribution framework–to a �rm’s decision problem to in-

vest in di�erent technological processes. Viscusi (1979) and Viscusi and O’Connor (1984)

apply a Bayesian learning model–formulated within a Beta-distribution framework–to

the risk-learning behavior of workers in injury-prone industries. Viscusi (1990, 1991)

uses the same learning model to address the question of how far smokers underestimate

their health risk.

Zimper (2009) and Zimper and Ludwig (2009) have developed Choquet Bayesian

learning models as generalizations of Viscusi’s Beta-distribution approach to non-additive

beliefs. In contrast, the present paper’s Choquet Bayesian learning model is based on

a normal distribution framework similar to Cyert et al. (1978) and Tonks (1983). As

one main di�erence, the rational benchmark model of our approach takes a truncated

normal distribution as prior. As a second main di�erence, we consider updating con-

ditional on imprecise information; that is, we formally de�ne information as interval-

rather than as point-observations. These assumptions turn out to be technically and

conceptually convenient when we extend the rational benchmark model to our model of

Choquet Bayesian learning. They also add more realistic appeal to the rational bench-

mark model. For example, a representative agent’s realistic prior over the mean of the

annual consumption growth rate–which will be relevant to the risk-free rate puzzle

discussed in this paper–should arguably assign positive probability mass only to some

subset (�� � �� � ��) and not to any subset of the (����) interval.
The Choquet Bayesian estimator of our model remains generically bounded away

from the sample mean whenever the agent expresses the slightest initial ambiguity about

his prior. This contrasts with consistency results for Bayesian estimators for additive

probability spaces (Doob 1949). Consequently, our approach provides a sound decision-

theoretic answer to Question 2 as to why an initial di�erence between subjective beliefs

and objective probabilities may, actually, increase rather than decrease in the long-run.

Addressing Question 3: The risk-free rate puzzle

Three major asset pricing puzzles have emerged in the macro-economic asset pricing

literature: the “equity premium puzzle”, the “risk-free rate puzzle” and the “excess-

volatility puzzle” (Kocherlakota 1996; Campbell 1999). As an illustrative application of

our theoretical approach we investigate in how far a sensible calibration of our learning

model may contribute towards a resolution of the risk-free rate puzzle, originally for-

mulated in Weil (1989). According to the risk-free rate puzzle, a realistically calibrated

standard consumption based asset pricing model yields a return on risk-free assets of

about 6% compared to a real-world actual risk-free rate of about 2%.
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Under the assumption of myopic time-period agents–who ignore any dynamic in-

consistencies between themselves and their future selves–we use the biased Choquet

estimator for the mean of the consumption growth rate in the equilibrium condition of

the standard consumption based asset pricing model. We argue that any resolution of the

risk-free rate puzzle through our model requires low values of the optimism parameter in

combination with high values of the ambiguity parameter. This qualitative relationship

has intuitive appeal: Given that (unrealistically) high degrees of risk-aversion can resolve

the original formulation of the risk-free rate puzzle by Mehra and Prescott (1985), it is

not surprising that high degrees of ambiguity combined with a pessimistic resolution of

this ambiguity can achieve the same result. We then establish that plausible behavioral

parameter values result in risk-free rates that are in the range of 3�5�5%. Our approach
can thus account for 1� 2�5% of the risk-free rate puzzle. A full resolution of the puzzle
through biased Bayesian learning of the mean alone appears however implausible.

The remainder of our analysis is structured as follows. Section 2 brie�y discusses the

related literature on learning models. In Section 3 we develop the rational benchmark

case of Bayesian learning in the absence of ambiguity. Section 4 generalizes our rational

learning model to a model of Choquet Bayesian learning which is generically biased.

In Section 5 we apply our model to illustrate the partial resolution of the risk-free rate

puzzle. Finally, Section 6 concludes. All formal proofs are relegated to the Mathematical

Appendix. A Supplementary Appendix contains additional material.

2 Related literature

There exists a rich macroeconomic literature on the question in how far agents’ learning

behavior will converge towards rational expectations. This literature can be roughly

divided in boundedly rational and rational learning models. The boundedly rational

approach describes agents’ learning behavior in terms of adaptive learning rules whereby

the resulting learning process may or may not converge to the true underlying model

(classical contributions include Evans and Honkapohja 2001, 2003; Bullard and Mitra

2002; Evans and McGough 2005; Branch and Evans 2007; for more recent contributions

see Assenza and Berardi 2009; Tetlow and von zur Muehlen 2009 as well as references

therein). In contrast, the rational approach is synonymous with (standard) Bayesian

learning which–in line with Doob’s consistency theorem–implies convergence to the

true value whenever the data is drawn from some i.i.d. process (Kasa 1999; Bigio 2010).

Our approach complements these learning models because we describe Bayesian

learners whose learning process will remain bounded away from true values in the long
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run. The key to the biased learning behavior of our model is thereby not the assumption

of bounded rationality in the form of overly simplistic learning rules but rather Bayesian

learning which additionally re�ects the updating of existing ambiguity attitudes.

Within the rational approach, models with Bayesian updating that establish long-

run biases of subjective beliefs are based on the assumption that data is not drawn from

an i.i.d. process. The main assumption of Doob’s consistency theorem does thereby not

apply to these models. For example, Brennan and Xia (2001), Lewellen and Shanken

(2002), and Pastor and Veronesi (2003) consider the case in which the mean of an

exogenous dividend process may not be constant over time. Consequently, the agent

can never fully learn the objective parameters of the underlying distribution because

observed frequencies do not admit any conclusion about objective probabilities even in

the long run. Along the same line, Weitzman (2007) considers a setup in which the

variance of the consumption growth rate is a hidden parameter whereas the mean is

known. In contrast to these approaches, the agent of our model observes data drawn

from an i.i.d. process. He nevertheless fails to learn the true parameter value because

his ambiguity attitudes rather increase than decrease in the long-run.

Marinacci (1999, 2002) studies a non-Bayesian learning environment with non-additive

beliefs. He considers a decision maker who observes an experiment such that the out-

comes are i.i.d. with respect to the decision maker’s non-additive belief. In this setup,

Marinacci derives laws of large numbers for non-additive probability measures to the

e�ect that ambiguity does not necessarily vanish in the long-run. While Marinacci’s

approach can be regarded as a frequentist approach towards non-additive probabilities,

our approach is purely Bayesian.

More closely related to our Bayesian learning model is the recursive multiple priors

learning model of Epstein and Schneider (2007, 2008) which can be interpreted as a

learning model with Bayesian overtones based on max min expected utility (MMEU)

preferences of Gilboa and Schmeidler (1989).2 There exist two major conceptual dif-

ferences between the approach of Epstein and Schneider (2007, 2008) and our model.

First, Epstein and Schneider go beyond the standard (i.e., based on behavioral axioms)

Bayesian framework by introducing the notion of ambiguous information (in the form of

multiple likelihoods). This implies that an agent might not express ex-ante ambiguity

but rather deals ex-post with ambiguity by permanently receiving ambiguous signals. In

2Recall that the MMEU theory of Gilboa and Schmeidler (1989) formally coincides with CEU theory

restricted to convex capacities (e.g., neo-additive capacities for which the optimism parameter equals

zero) whenever the set of priors is given as the core of the convex capacity. Also notice that recent

robust control applications to asset pricing puzzles where pessimism results from an agents’ caution in

responding to concerns about model misspeci�cation can be rationalized by Gilboa and Schmeidler’s

(1989) MMEU theory, cf. Hansen and Sargent (2007) and the literature cited therein.
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contrast, our model is axiomatically embedded within the standard Bayesian approach

because our decision maker has a unique (neo-additive) prior de�ned over all possible

future events whereby his (neo-additive) posteriors are generated through a Bayesian

update rule. Our approach thus treats ambiguity as a psychological feature of the agent

which impacts on his interpretation of (possibly imprecise but never ambiguous) infor-

mation rather than as a property of information itself. Second, the agent of our learning

model may express a wider range of ambiguity attitudes because–in contrast to Epstein

and Schneider–these ambiguity attitudes are independent of the information that the

agent receives.

To comprehend this later di�erence observe that the framework of Epstein and

Schneider (2007, 2008) satis�es the reduction principle (cf. Siniscalchi 2011) accord-

ing to which dynamic decision situations reduce to static decision situations within the

Savage framework. Under the reduction principle the dynamic principles of consequen-

tialism and dynamic consistency together3 imply Savage’s sure thing principle (Sarin and

Wakker 1998; Ghirardato 2002). Under the Savage axioms, any dynamic decision the-

oretic model that universally satis�es consequentialism as well as dynamic consistency

within a Bayesian framework is therefore unable to express ambiguity attitudes because

it reduces to expected utility theory. Because Epstein and Schneider (2007, 2008) keep

consequentialism, dynamic consistency as well as the possible expression of ambiguity

attitudes, their model must restrict the domain of both dynamic principles. The Epstein

and Schneider (2007, 2008) learning model is based on the recursive multiple priors ap-

proach of Epstein and Schneider (2003) which, in turn, goes back to Sarin and Wakker

(1998, Theorem 2.1). Sarin and Wakker consider �xed decision trees. They show that

updating with respect to the information structure of a given tree satis�es consequential-

ism and dynamic consistency whenever the set of multiple priors is given as the reduced

family of probability measures4. Similarly, Epstein and Schneider (2003) �x some in-

formation structure and assume that Savage’s sure thing principle holds exactly at all

observable events.

However, linking ambiguity attitudes to a given information structure is conception-

ally questionable. For example, agents with di�erent information partitions–e.g., a well

informed versus a less informed agent–cannot typically have the same ambiguity at-

titudes within the Epstein and Schneider framework. Furthermore, an agent who will

learn in the future every possible event cannot exhibit any ex-ante ambiguity attitudes

3Losely speaking, consequentialism refers to a situation where the agent “never looks back”, i.e., he

does not care about how he arrived at a speci�c decision node and only looks forward to the future

consequences of his actions. Dynamic consistency refers to a situation in which, from the perspective

of any period, all future plans are consistent with all past plans.
4Rectangular priors in the terminology of Epstein and Schneider (2003, 2007).
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in the Epstein-Schneider framework because he must be modeled as an expected utility

decision maker. In contrast, there do not exist any such information driven restrictions

on the ambiguity attitudes expressible in our learning model. A formal discussion of

these aspects is given in our supplementary appendix.

3 The benchmark case: Rational Bayesian learning

This section develops a closed-form model of Bayesian learning of the mean of a normal

distribution for the rational benchmark case according to which the agent’s beliefs do

not express any ambiguity. Formally, we consider a probability space (	���F) where
	 denotes a subjective additive probability measure such that the agent’s prior over

possible parameter values is given as a truncated normal distribution. In a �rst step

(Subsection 3.1), we derive the resulting Bayesian estimator under the standard assump-

tion that the agent updates his belief conditional on point-observations, which have zero

prior probability in our framework. In a second step (Subsection 3.3), we formally in-

troduce information partitions such that, �rst, the agent may exhibit a lack of memory

and, second, the observed information has positive prior probability. The analytical

characterization of the rational Bayesian estimator with respect to positive probability

information (Proposition 1) constitutes this section’s main result.

3.1 Preliminaries and a lemma

Construction of the state space �. For some numbers �� � such that � � � denote by

� = (�� �) the parameter-space that collects all parameter-values that the agent regards

as possible. Denote by 
� = ×��=1R the sample-space that collects all possible in�nite
sequences of observations. The state space of our model is de�ned as

� = �×
�, (1)

with generic element � = (�� 1� 2� ���).

Construction of relevant �-algebras. Endow � with the Euclidean metric and denote

by B (�) the Borel �-algebra on �, i.e., the smallest �-algebra containing all open subsets
of the Euclidean interval (�� �). Similarly, denote by B (R) the Borel �-algebra on the
Euclidean line R. Denote by T (�) the trivial �-algebra in �, i.e., T (�) = {���}, and
denote by T (R) the trivial �-algebra in R, i.e., T (R) = {��R}.

• De�ne �� as the product �-algebra generated by B (�) � T (R) �T (R) � ���; formally
written as

�� = B (�)�0 T (R)�1 T (R)�2 T (R) ���.
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• Let � � 1 and de�ne �� as the following product �-algebra

�� = T (�)�0 B (R)�1 ����� B (R)��+1 T (R)��+2 T (R) ���. (2)

Observe that the sequence of �-algebras �1��2� ��� constitutes a �ltration.

• Finally, we de�ne the following �-algebra

F = B (�)�0 B (R)�1 B (R)�2 B (R) ���,

which covers any event of interest in our framework; in particular, ����� 	 F .

Construction of the additive probability measure 	. De�ne by �̃ : �
 � such that

�̃ (�� 1� 2� ���) = �

the ��-measurable coordinate random variable that assigns to every state of the world

the corresponding true parameter value. By assumption, the true parameter value lies

in (�� �) implying that our agent always regards the true parameter value as possible.

We assume that the agent’s prior over �̃ is given as a truncated normal distribution with

support on the open interval (�� �) such that, for all � � B (�),

	
³n

� � � | �̃ (�) � �
o´

=

Z
���

��̃ (�) ��

with

��̃ (�) =

��
�

1
� (�)�� (�) ·

1�
2	
2

exp
h
�1
2
(���)2

2

i
for � ��

1
��� for � =��

(3)

for � � (�� �). � (·) denotes here the cumulative distribution function of the correspond-
ing untruncated normal distribution with mean � and variance � 2, i.e.,

� (�) =

�Z
��

1�
2	� 2

exp

"
�1
2

(� � �)2

� 2

#
��.

De�ne the �-measurable coordinate random variable 
 : �
 R, with � = 1� 2� ���,

such that


 (�� 1� 2� ���) = .

We assume that, conditional on the parameter-value � � �, the 
 are independent and

identically normally distributed with mean � and variance �2 whereby �2 is known to

the agent. That is, for all � � (�� �) and all � � B (R),

	
³n

� � � | �̃ (�) = ��
 (�) � �
o´

=

Z
���

��� ( | �) · ��̃ (�) �
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with

��� ( | �) =
1�
2	�2

exp

"
�1
2

(� �)2

�2

#
for  � R.

Lemma. Consider some point-observation

{� | 
1 (�) = 1� ����
� (�) = �} (4)

with corresponding sample mean

̄� =
1

�

�X
=1

.

Under the above distributional assumptions the expected value of �̃ conditional on

(4) is given as

�
h
�̃� 	 (· | 1� ���� �)

i
= �� � ��

�� (�)� �� (�)

�� (�)� �� (�)
(5)

such that

�� () =
1p
2	�2�

exp

"
�1
2

(� ��)
2

�2�

#
for  � R (6)

with corresponding cumulative distribution function

�� (�) =

�Z
��

�� () � for � � R (7)

where

�� =
�2��

�2��+ � 2
· �+ � 2

�2��+ � 2
· ̄� (8)

and

�2� =
� 2�2��

� 2 + �2��
. (9)

3.2 A consistency result

A sequence of posterior probability measures {	 (· | 
1� ���� 
�)}��N on �� is called con-

sistent at parameter-value �0 � � i� it weakly converges with 	
³
· | �̃ (�) = �0

´
proba-

bility one to the degenerate probability measure ��0 on �� such that, for all � � ��,

��0 (�) =

(
1 if (�0� ���) � �

0 else;

10



formally written as

{	 (· | 
1� ����
�)} 
� ��0 a.s. 	 (· | �0) .

According to Doob’s (1949) consistency theorem, the sequence {	 (· | 
1� ����
�)}��N
is consistent at all parameter-values in some set �0 � � such that

	
³n

� � � | �̃ (�) � �0
o´

= 1�

Applied to (5), Doob’s consistency theorem therefore immediately establishes that the

Bayesian estimator converges with probability one to almost all true parameter values

�� � (�� �) since, by weak convergence,

lim
���

Z
�

�̃ (�) �	 (· | 
1� ���� 
�) =

Z
�

�̃ (�) ���� a.s. 	 (· | ��)


lim
���

�
h
�̃� 	 (· | 
1� ���� 
�)

i
= �� a.s. 	 (· | ��) .

The following corollary to the Lemma establishes the even stronger result that the

Bayesian estimator converges with probability one to all true parameter values �� �
(�� �).

Corollary 1. For all �� � (�� �),n
�
h
�̃� 	 (· | 
1� ���� 
�)

io

 �� a.s. 	 (· | ��) .

3.3 The rational Bayesian estimator

According to our assumption of independent and identically normally distributed 
,

� = 1� 2� ���, any point-observation (
1 = 1� ����
� = �) is a zero probability event

so that the Bayesian estimator �
h
�̃� 	 (· | 
1� ����
�)

i
, as derived in the Lemma, is

conditioned on zero-probability information only. In our opinion, however, a meaningful

interpretation of Bayesian learning in the face of zero-probability information is highly

problematic.

In this subsection we therefore introduce our concept of a rational Bayesian estimator

which is de�ned for positive probability information. We thereby recover (5) as an

approximation for this Bayesian estimator whenever the agent receives information with

probability arbitrarily close to zero. We start with the construction of the period �

agent’s information structure whereby we allow for the possibilities of restricted memory

or memory loss.
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Construction of an information-partition and the corresponding �-algebra. Fix some

pair (�� �) such that � � 1 and ��� � 0� Consider a sequence of partitions ����� ������ of
the real-line such that �� 	 B (R), � = ���� ���� �. Denote by I� the period � information

partition of � whereby I� is formally de�ned as the following collection of information
cells

�� = {�×0 R×1���×����1R×��� ����×���+1���×��� ×�+1 R×�+2 ��� | � � �� � = �� �� ���� �} .

• Given some period � information partition I�, de�ne by � (I�) the �-algebra gen-
erated by I�. That is, � (I�) is the smallest collection of subsets of � that is a
�-algebra and that contains all information cells in I�. Clearly, �� 	 �(I�) with
�� de�ned by (2).

The interpretation of I� is as follows: If � � � is the true state of the world, the
period � agent observes for the past � periods the information �, � = �� �� ��� �, such

that

� � �×0 R×1���×����1R×��� ����×���+1���×��� ×�+1 R×�+2 ���.

That is, whenever �� � 6= 0, the period � agent cannot observe any non-trivial informa-

tion from the initial 1� ��� � � � � 1, periods. Consequently, the sequence of �-algebras
� (I1) ��(I2) � ��� does not necessarily constitute a �ltration thereby allowing for the
possibility of agents who ignore previously available information.

The following proposition derives our rational benchmark Bayesian estimator condi-

tional on “well-behaved” information, i.e., conditional on information cells with positive

probability. More speci�cally, we consider information cells �� � I� such that 	 (�) � 0
for all � = � � �� ���� �, implying 	 (��) � 0 under the independence assumption. De�ne

the set of possible values of the average 
̄� that corresponds to information cell

�� = �×0 R×1���×����1R×��� ����×���+1���×��� ×�+1 R×�+2 ��� (10)

as

�̄� =

½
1

�
(��� + ���+ �) | ��� � ����� ���� � � ��

¾
.

Proposition 1. Consider some information-cell �� � I� such that 	 (��) � 0. The pe-

riod � agent’s rational Bayesian estimator of the mean of 
, � � {1� 2� ���} conditional
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on �� is given as

�
h
�̃� 	 (· | ��)

i
=

Z
���̄�

�
h
�̃� ��̃ (� |  )

i
· ��̄� ( )Z
���̄�

��̄� ( ) � 

� (11)

with �
h
�̃� ��̃ (� |  )

i
given by (5) and

��̄� ( ) =
1

� (�)� � (�)
· (12)

1p
2	 (� 2 + �2��)

exp

"
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Consider now the special case of an information cell (10), denoted �� (!) � I�, such
that � = ( � !�  + !], � = �� �� ���� �, for some ! � 0. That is, instead of learning

the exact value of the random variable 
 the period � agent only learns that this value

lies in the interval ( � !�  + !] implying for the corresponding set of possible average

values

�̄� (!) = (̄� � !� ̄� + !] (13)

with

̄� =
1

�

�X
=���

.

Corollary 2. Consider some information cell �� (!) � I� as de�ned by (13). The

period � agent’s rational Bayesian estimator �
h
�̃� 	 (· | ��)

i
can be approximated

by (5) for su�ciently small !. That is,

lim
��0

�
h
�̃� ��̃

¡
� | �̄� (!)

¢i
= �

h
�̃� ��̃ (� | ̄�)

i
.

With (11) we have constructed a closed-form model of a rational Bayesian estimator

of the mean of a normal distribution under the assumption that the observed sample

information has positive probability (e.g., belongs to some non-degenerate interval).

Moreover, this Bayesian estimator converges to some value that is close to the true mean

whenever, �rst, the sample information is close to point-observations and, second, the

agent has no lack of memory (i.e., the sequence of �-algebras � (I1) ��(I2) � ��� constitutes
a �ltration). Such a consistency result does not apply to a Bayesian estimator de�ned

as the Choquet expected value with respect to a non-additive probability measure. This

will drive the results of the remainder of this paper.
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4 Choquet Bayesian learning

4.1 Choquet decision theory and neo-additive capacities

We brie�y recall basic elements of Choquet expected utility theory and neo-additive

capacities. CEU theory was �rst axiomatized by Schmeidler (1986, 1989) within the

Anscombe and Aumann (1963) framework, which assumes preferences over objective

probability distributions. Subsequently, Gilboa (1987) as well as Sarin and Wakker

(1992) have presented CEU axiomizations within the Savage (1954) framework, assuming

a purely subjective notion of likelihood.

Consider a measurable space (��F) with F denoting a �-algebra on the state space

� and a non-additive probability measure (=capacity) " : F 
 [0� 1] satisfying

(i) " (�) = 0, " (�) = 1
(ii) � 	 # � " (�) � " (#) for all ��# � F �

The Choquet integral of a bounded function � : �
 R with respect to capacity " is

de�ned as the following Riemann integral extended to domain � (Schmeidler 1986):

� [�� " (��)] =

Z 0

��
(" ({� � � | � (�) � �})� 1) �� +

Z +�

0

" ({� � � | � (�) � �}) ��
(14)

whereby I simply write � [�� "] for � [�� " (��)]. For example, assume that � takes on

$ di�erent values such that �1� ���� �� is the unique partition of � with � (�1) � ��� �

� (��) for �� � ��. Then the Choquet expectation (14) becomes

� [�� "] =
�X
�=1

� (��) · [" (�1 � ��� ���)� " (�1 � ��� ����1)] � (15)

We focus on non-additive probability measures that are de�ned as neo-additive ca-

pacities in the sense of Chateauneuf, Eichberger and Grant (2007). Recall that the set

of null events, denoted N , collects all events that the decision maker deems impossible.

De�nition. Fix some set of null-events N 	 F for the measurable space (��F). The

neo-additive capacity, ", is de�ned, for some �� � � [0� 1] by

" (�) = � · "� (�) + (1� �) · 	 (�) (16)

for all � � F such that 	 is some additive probability measure satisfying

	 (�) =

(
0 if � � N
1 if �\� � N

14



and the non-additive probability measure "� is de�ned as follows

"� (�) =

���
��
0 i� � � N
� else

1 i� �\� � N .

For simplicity we restrict attention to sets of null-events N such that � � N if and

only if 	 (�) = 0. Call � an essential event i� 0 � 	 (�) � 1 and observe that the

neo-additive capacity " in (16) simpli�es to

" (�) = � · �+ (1� �) · 	 (�) (17)

for essential �. Neo-additive capacities can thus be interpreted as non-additive be-

liefs that stand for deviations from additive beliefs such that a parameter � (degree

of ambiguity) measures the lack of con�dence the agent has in some subjective addi-

tive probability measure 	. The following observation extends a result (Lemma 3.1)

of Chateauneuf, Eichberger and Grant (2007) for �nite random variables to the more

general case of random variables with a bounded range.

Observation 1. Let � : � 
 R be an F-measurable function with bounded range.

The Choquet expected value (14) of � with respect to a neo-additive capacity (16)

is then given by

� [�� "] = � (� sup � + (1� �) inf �) + (1� �)� [�� 	] . (18)

According to Observation 1, the Choquet expected value of a random variable �

with respect to a neo-additive capacity is a convex combination of the expected value

of � with respect to some additive probability measure 	 and an ambiguity part. If

there is no ambiguity, i.e., � = 0, then the Choquet expected value (18) reduces to the

standard expected value of a random variable with respect to an additive probability

measure. In case there is some ambiguity, however, the second parameter � measures

how much weight the decision maker puts on the least upper bound of the range of

�� Conversely, (1� �) is the weight he puts on the greatest lower bound. For high

(resp. low) values of �, the Choquet expected value � [�� "] is greater (resp. less) than

the corresponding additive expected values � [�� 	] whenever the agent expresses some

ambiguity, i.e., � � 0. This formal feature gives rise to the possibility of over-estimation

(resp. under-estimation) with respect to the rational benchmark case.
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4.2 Full Bayesian updating of neo-additive capacities

Recall that a Savage act � is an F-measurable function that maps the state space �
into an arbitrary set of consequences 
, i.e., � : � 
 
. Whenever � � � is the

(unique) true state of the world and the agent has chosen Savage act � , he ends up

with the consequence � (�) after the uncertainty is resolved. Given two Savage acts �� %,

let ��¬� � F denote two complementary (essential) events and de�ne the Savage act

��% : �
 
 as follows:

��% (�) =

(
� (�) for � � �

% (�) for � � ¬�.
(19)

Ex ante preferences over Savage acts, denoted º, are interpreted as the decision maker’s
preferences before he receives any information. In contrast, ex post preferences over

Savage acts, denoted º� , are interpreted as preferences conditional on �, i.e., after the

decision maker has observed the information � � F .
A Bayesian update rule speci�es how the ex ante preference ordering º over Savage

acts determines, for all essential � � F , the ex post preference orderings º� , which
describe the agent’s preferences over Savage acts after having received information �.

Consider, for example, Bayesian update rules such that for every essential � � F and

every pair of Savage acts �� % there is some Savage act & satisfying

��& º %�& implies ��&
0 º� %�&00 for all &0� &00. (20)

Because the ex post preferences are independent of consequences that happened outside

of observation �, such update rules satisfy the principle of consequentialism but violate

dynamic consistency whenever the sure-thing principle is violated. In contrast to the

unique Bayesian update rule for additive probability measures, there exists a multitude

of perceivable Bayesian update rules satisfying (20). In the present paper we focus on

the so-called full (or generalized) Bayesian update rule for which (20) becomes: for all

acts �� %,

� º� % if and only if ��& º %�& (21)

such that & is the conditional certainty equivalent of %, i.e., & is the constant act such that

% �� &. The corresponding de�nition of conditional non-additive probability measures

for Choquet decision makers is then given as follows (Eichberger, Grant, and Kelsey

2006):

" (� | �) = " (� � �)

" (� � �) + 1� " (� � ¬�) (22)

for �� � � F such that � is essential. For the special case of conditional neo-additive

capacities we obtain:

16



Observation 2. Suppose that 0 � 	 (�) � 1. Then an application of the general-

ized Bayesian update rule (22) to a prior neo-additive capacity (17) results in the

posterior neo-additive capacity

" (� | �) = �� · �+ (1� ��) · 	 (� | �) (23)

such that

�� =
�

� + (1� �) · 	 (�) (24)

and

	 (� | �) = 	 (� � �)

	 (�)
. (25)

The full Bayesian update rule is popular in the literature because it avoids the ex-

treme updating behavior of the so-called optimistic and pessimistic update rules (Gilboa

and Schmeidler 1993). Furthermore, Cohen, Gilboa, Ja�ray, and Schmeidler (2000)

experimentally investigate the question whether the pessimistic–in their terms: the

maximum likelihood (=ML)–update rule or the full Bayesian (=FB) update rule is

consistent with ambiguity averse subjects’ choice behavior. Their experimental �ndings

establish an approximate ratio of 2:1 in favor for the full Bayesian update rule.

4.3 The Choquet Bayesian estimator of the mean of a normal

distribution

This subsection goes back to the learning situation described in Section 3. However,

instead of the additive probability space (	���F) we now consider the neo-additive

probability space (" (· | ·) ���F) such that, for all �� �� � F with 0 � 	 (�) � 	 (��) � 1,

" (� | ��) is given by (23). The following proposition follows immediately from Observa-
tion 2 combined with Proposition 1.

Proposition 2. Consider some information-cell �� � I� such that 0 � 	 (��) �

1. The period � agent’s Choquet Bayesian estimator of the mean of 
, � �
{1� 2� ���} conditional on �� is given as

�
h
�̃� " (· | ��)

i
(26)

= ��� · (� · �+ (1� �) · �) + (1� ���) ·�
h
�̃� 	 (· | ��)

i
with

��� =
�

� + (1� �) · 	 (��)
(27)
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and �
h
�̃� 	 (· | ��)

i
given by (11).

Observe that the Choquet Bayesian estimator (26) generically deviates from the

rational Bayesian estimator (11) whenever ��� � 0. More precisely, whenever the agent

expresses some ambiguity, i.e., � � 0, the Choquet Bayesian estimator results as a

weighted average between the rational Bayesian estimator and the agent’s attitudes

towards resolving his ambiguity as expressed by the optimism parameter �. If we think

of the Choquet learning model of Proposition 2 as a class of learning models indexed

by ambiguity parameter � � [0� 1], then rational Bayesian learning–as characterized
in Proposition 1–corresponds to the Lebesgue measure zero special case for which the

agent does not express any ambiguity, i.e., � = 0.

Furthermore, observe that the Choquet Bayesian estimator (26) puts the more weight

��� on the ambiguity part the smaller the value of 	 (��), i.e., the smaller the probability

of observing information �� about sample data. In other words, the more surprised an

agent is when he observes new information, the less con�dent will he become about his

additive belief. In contrast to the consistency result for rational Bayesian estimation,

Choquet Bayesian estimation will therefore generically result in a long-run bias between

the Choquet Bayesian estimator �
h
�̃� " (· | ��)

i
and the rational Bayesian estimator

�
h
�̃� 	 (· | ��)

i
. The following corollary characterizes the long-run Choquet Bayesian

estimator for the relevant situation in which the additive prior probability attached to

any speci�c sample observation goes towards zero as the sample-size becomes large.

Corollary 3. Consider some sequence of information cells �1� �2� ��� such that

lim
���

	 (��) = 0 a.s. 	.

Then

lim
���

�
h
�̃� " (· | ��)

i
= � · �+ (1� �) · � a.s. 	.

That is, this long-run Choquet Bayesian estimator ignores any statistical informa-

tion as conveyed by the limit of the sample mean.

Similarly, the Choquet Bayesian estimator �
h
�̃� " (· | �� (!))

i
ignores any statistical

information coming from the sample the more precise the information is, i.e., the closer

�� (!) resembles some point-observation.
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Corollary 4. Consider some information cell �� (!) � I� as de�ned by (13). The

agent’s Choquet Bayesian estimator �
h
�̃� " (· | �� (!))

i
can be approximated by

� · �+ (1� �) · �

for su�ciently small !. That is, for all � � �,

lim
��0

�
h
�̃� " (· | �� (!))

i
= � · �+ (1� �) · �.

5 An illustrative application: The risk-free rate puz-

zle

In this section, we apply our model of Choquet Bayesian learning to the risk-free rate puz-

zle (Weil 1989). To this end we adopt the original utility structure of Mehra and Prescott

(1985). The representative period � agent maximizes his expected utility from today’s

and future consumption under the assumptions that, �rst, the consumption growth rates

are independent and identically normally distributed and, second, the agent’s von Neu-

mann Morgenstern utility function is additively time-separable and each period’s utility

of consumption is of the CRRA (constant relative risk aversion) form.

In contrast to the rational expectations hypothesis–which stipulates that subjective

and objective distributions must coincide–the period � agent of our model bases his

portfolio optimization decision on a subjective normal distribution over the consumption

growth rate. The mean results from some process of Choquet Bayesian learning as

derived in the previous section. That is, ambiguity in terms of non-additive beliefs enters

the portfolio optimization problem only indirectly through the agent’s learning behavior

about distributional parameters. We further assume that the period � agent is unaware

of any ambiguity-driven bias in his learning process to the e�ect that he–incorrectly–

assumes that his Choquet estimator (11) is an unbiased estimator to which the law of

iterated expectations applies. As a consequence, the period � agent of our model is

myopic in the sense that he ignores any dynamic inconsistency that may result from the

biased learning process but rather maximizes his expected utility over uncertain future

consumption streams as if he solves a dynamically consistent maximization problem.5

5For an asset pricing model under ambiguity that considers dynamically inconsistent but sequentially

sophisticated (i.e., non-myopic) agents see Zimper (2011).
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5.1 The risk-free rate puzzle revisited

The period �+ 1 equilibrium return, denoted '�+1, of any given asset in a Lucas (1978)

fruit-tree economy is characterized by the following Euler equation

1 = � ['�+1 ·(�+1� 	 (· | ��)] � (28)

where

(�+1 = ) · *
0
(+�+1)

*0 (+�)

is the so-called stochastic discount factor . ) � 1 is the agent’s time-discount factor,

and +� is consumption in period �.

For sake of simplicity, we assume that the per period utility function features constant

relative risk aversion (CRRA),

* (+�) =
+1��
� � 1
1� ,

� (29)

where , is the coe	cient of relative risk aversion. However, as pointed out byWeil (1989),

the inter-temporal elasticity of substitution (IES)–given by - = 1
�
in case of CRRA

preferences–is primarily relevant for the risk-free rate whereas the equity premium is

almost exclusively driven by risk aversion. We therefore interpret (the inverse of) , as

measuring the IES. Our supplementary appendix provides a sensitivity analysis using

recursive Epstein-Zin-Weil preferences (Epstein and Zin 1989; Weil 1989) that allow us

to disentangle both motives. There, we show that the in�uence of risk aversion per se

on our results is negligible. This �nding directly relates to the equity premium puzzle,

cf., also our concluding discussion.

With this parametric assumption, the constant equilibrium gross-return of any risk-

free asset in (28) becomes

'�+1 = � [(�+1� 	 (
�+1 | ��)]�1 (30)

where

(�+1 = ) · exp (�,
�+1)

and the random variable 
�+1 = ln+�+1 � ln+� denotes consumption growth.
Suppose now that the probability distribution of the consumption growth rate is

given as the normal distribution . (�� �2) implying that

'�+1 = �
£
(�.

¡
�� �2

¢¤�1
. (31)

Or, equivalently stated in logarithmic terms with / = ln'�+1,

/ = � ln) + ,�� 1
2
,2�2� (32)
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Under the rational expectations hypothesis, the quantitative implications of (32) are

strongly at odds with the data, as �rst demonstrated by Mehra and Prescott (1985). To

see this let us calibrate the model with a discount factor of ) = 0�98, an IES of - = 0�5–

corresponding to , = 2–which is the conventional estimate of the IES since Hall (1988).

In a next step, we take as data updated versions of those studied, e.g., by Shiller (1981)

and Mehra and Prescott (1985).6 The data are annual and we focus on the postwar

period 1950 to 2004. The risk-free rate is computed as government bond yields and

consumption is real per capita consumption of non-durables and services. Both series are

in�ation-adjusted by the annual consumer price index (CPI). The resulting moments are

� = 2�13%, and � = 1�08%. Substituting–under the rational expectations hypothesis–

these moments in (32), we obtain a risk-free rate of about 5�7%. This exceeds our point

estimate of the risk-free rate of 2�19% by about 3�6 percentage points.

5.2 Partial resolution of the puzzle

To address the risk-free rate puzzle through our model of biased Bayesian learning, we

consider a representative period � agent who learns the mean of the economy’s consump-

tion growth rate by observing sample-data from � previous periods with � � �. That

is, we �x some period �–e.g., the “present”–and assume that the period � agent bases

his estimator on information cells given as (10). In contrast to the rational expectations

hypothesis we thus consider the subjective normal distribution .
¡
������ �2

¢
such that

the subjective mean ����� of the consumption growth rate is given as the Choquet esti-

mator derived in Proposition 2. As a consequence, the risk free rate of our approach,

denoted /����, is characterized by the following equilibrium condition

/���� = � ln) + � · �
h
�̃� " (· | ��)

i
� 1
2
· ,2 · �2 (33)

with the Choquet estimator �
h
�̃� " (· | ��)

i
given by (26).

A full resolution of the risk-free rate puzzle through our model of biased Bayesian

learning means that the equilibrium condition (33) results in a risk-free rate of 2�19%.

One perceivable approach to calibration is to accordingly let the data be informative

about the structural model parameters. Following this approach, we would �x /� to the

empirical estimate and invert (33) to compute the Choquet Bayesian estimator

�
h
�̃� " (· | ��)

i
=

1

,

μ
/� + ln) +

1

2
· ,2 · �2

¶

for appropriate choices of )� , and �.

6We take the data from Robert Shiller’s website http:��www.econ.yale.edu�shiller�data�chapt26.xls.
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To provide a numerical example, suppose that we feed into the model the same

structural model parameters as for rational expectations, hence ) = 0�98� , = 2 and � =

0�0108. We then get �
h
�̃� " (· | ��)

i
= 0�001. Instead of considering the objective mean

of the consumption-growth rate, given by 2�13%, the period �-agent of our model would

have to base his utility maximization problem on a subjective mean close to zero.

With the new7 free parameters of our model–mainly ��� and � (see below)–it is

mathematically easy to generate a wide range of possible parameter constellations such

that our model would fully “explain” the risk-free rate puzzle. The implied degrees

of pessimism (1 � �) and ambiguity would, however, be too high to be regarded as

reasonable. We therefore choose a reasonable parametrization where key structural

model parameters are not determined within the model. We then ask for the scope of

our model to contribute towards a (partial) resolution of the risk-free rate puzzle.

5.2.1 Calibration of the Choquet model

For calibration of our model, notice, �rst, that our model signi�cantly alters beliefs and

updating of beliefs relative to rational expectations. Parameters used under rational

expectations are therefore generally inappropriate. Second, our model gives rise to two

additional parameters, the degree of optimism � and the limit degree of ambiguity, ���.

As in our calibration of the rational expectations model, we exogenously feed in

the point estimates of �, � and /� . With regard to � and the range of consumption

realizations that the agent regards as reasonable, we introduce two rather innocuous

assumptions.

Assumption (A1). We set zero as the largest lower bound for the possible mean of

the consumption growth rate. In addition, we �x an interval of possible values for

the mean of the consumption-growth rate that is centered around the true value

� = 0�00213 resulting in the following support of the agent’s prior

� � (�� �) = (0� 2 · �) = (0� 0�0426) .

Assumption (A2). We set the agent’s rational Bayesian estimator for the consumption-

growth rate, as derived in Proposition 1, equal to the true value � = 0�0213, i.e.,

�
h
�̃� 	 (· | ��)

i
= � = 0�0213.

7”New” in the sense that these parameters are relevant to our Choquet Bayesian learning model but

become obsolete in the standard Bayesian learning model with additive beliefs.
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By assumption (A1), we suppose that the agent only regards a relatively narrow

range of mean consumption growth rates as possible. By assumption (A2), the rational

part �
h
�̃� 	 (· | ��)

i
of the Choquet estimator �

h
�̃� " (· | ��)

i
behaves as if the agent has

already learnt the true parameter value. As a consequence of assumption (A2), any dif-

ference between our equilibrium condition (33) and the rational expectations equilibrium

condition (32) is therefore driven by the di�erence between our biased Bayesian learning

model and the rational benchmark case. Combining assumptions (A1) and (A2), the

Choquet Bayesian estimator (26) simpli�es to

�
h
�̃� " (· | ��)

i
= ��� · � · �+ (1� ���) · �
= (1 + (2 · �� 1) · ���) · ��

It remains to determine reasonable parameter values for the free structural model

parameters )� ,� � and ��� . We are not aware of any experiments on simple capacities

or the related probability weighting functions arising in PT 1992 in an inter-temporal

setting. We therefore �x ) and - = 1
�
to the above standard value from the rational

expectations literature, hence ) = 0�98 and , = 2.

As to � and ��� we proceed as follows. According to observation 2, Choquet inte-

gration with simple capacities e�ectively transforms objective probabilities into a linear

function with two discontinuous jumps at the endpoints, i.e, "(� | �) = (���) · �+ (1�
���) · 	(� | �) = 0 for 	(� | �) � (0� 1) and "(� | �) = 0 for 	(� | �) = 0 as well

as "(� | �) = 1 for 	(� | �) = 1. For � � (0� 1) and � � (0� 1) this gives higher decision
weight to outcomes with low objective probability (and lower weight to outcomes with

high objective probability) than under rational expectations, just as in PT 1992. Ex-

periments based on PT 1992 typically use probability weighting functions with a single

parameter, e.g.,

"̃(�)(0) =
	(�)�

(	(�)� + (1� 	(�))�)
1
�

(34)

cf., e.g., Tversky and Kahnemann (1992) as well as Wu and Gonzalez (1996). Standard

estimates of 0, as, e.g., reported by Wu and Gonzalez (1996), are in the range of [0�3� 0�9].

This gives rise to equivalent qualitative predictions as simple capacities. The point

estimate of Tversky and Kahnemann (1992) is 0�61 which is well in this range. As

our baseline value we use the point estimate reported by Tversky and Kahnemann. As

sensitivity analysis, we consider the standard range of 0, G� = [0�3� 0�9].
In order to determine � and ��� from these values, we interpret the experimental

evidence as re�ecting stationary posterior beliefs. Given "̃(�)(0) we can then identify �
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and ��� from observation 2 by running an ordinary least-squares regression of "̃(�)(0) on

a constant and 	(�) for a pre-speci�ed grid of 	(�) � (0� 1). The regression equation is
hence

"̃(�)(0) = )0 + )1	(�) + 1

and we identify, according to observation 2, the respective degrees of optimism and

ambiguity by )0 = ���� and )1 = 1 � ���. For 0 = 0�61 this results in � � 0�3

and ��� � 0�3.
Figure 1 displays the linear map of objective probabilities–denoted as 	–to their re-

spective subjective counterparts–denoted by "–under rational expectations–for which 0 =

1–as a blue solid line. The black dashed dotted line is the PT 1992 probability weighting

function derived from the Tversky and Kahnemann (1992) point estimate of 0 = 0�61.

The linear red dashed line is the approximation with simple capacities resulting from

our least-squares regression.
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Figure 1: Probability Weighting Function and Approximation with Simple Capacities

Figure 2 repeats the exercise for the entire range of 0 � G�. As the probability
weighting function becomes more strongly S-shaped–i.e., as 0 decreases–the implied
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degree of ambiguity increases and the implied degree of pessimism decreases. Overall,

we �nd that ��� is roughly in the range [0�05� 0�45] and � roughly in [0�225� 0�45].
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Figure 2: Implied Ambiguity and Optimism

Wu and Gonzalez (1996) derive these estimates of 0 from static experiments in which

they combine (34) with a CRRA utility function as in (29). Consistently with numerous

other experimental studies, Wu and Gonzalez report that estimated coe	cients of rel-

ative risk aversion (RRA) are considerably less than one. The reason is that S-shaped

probability functions preserve risk aversion. Estimates of risk aversion based on models

with objective probabilities are consequently biased upward due to omitted variables.

One may therefore argue that we should calibrate our model with simultaneously low

values of the IES and RRA. As stated previously, we address this aspect in our supple-

mentary appendix where we show that the e�ect of RRA per se is low.

5.2.2 Results

For our benchmark calibration–i.e., for ) = 0�98� , = 2� � � 0�3 and ��� � 0�3–our

model predicts a biased mean consumption growth rate of 0�016 and a corresponding
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risk-free rate of 5�2 percent. This is 0�5 percentage points lower than the corresponding

rational expectations model predicts. Figure 3 repeats the exercise for all parameter

combinations G� � [0�3� 0�9] . The risk-free rate decreases quite strongly when 0 is de-

creased. The minimum risk-free rate predicted by our model for 0 = 0�3–corresponding

to ��� � 0�7 and � � 0�1–is roughly 3�5 percent. We therefore conclude that our model
can contribute towards a resolution of the risk-free rate puzzle by up to 2 percentage

points.
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Figure 3: Risk-free rate under biased beliefs

26



6 Concluding remarks

This paper develops a closed-form model of rational Bayesian learning in which an

agent learns the mean of a normal distribution by updating his truncated normal prior

through observations from an independent and identically normally distributed data

process. We further extend this model by allowing for ambiguity attitudes as expressed

by neo-additive capacities. The resulting Choquet estimator of the mean of the normal

distribution is generically biased, also in the long-run. We argue that our learning model

thus gives a decision-theoretically rigorous answer to the question why subjective beliefs

of Bayesian learners may persistently di�er from their objective counterparts.

As an illustrative application of our learning model we calibrate the standard equilib-

rium conditions of the consumption based asset pricing model with normally distributed

consumption growth. For plausible values of the decision-theoretic parameters which

we derive from estimates arising in cumulative prospect theory we obtain a risk-free

rate which can be considerably lower. The lowest value predicted in our model for a

reasonable degree of pessimism is 3�5%. This is about two percentage points lower than

the risk-free rate predicted under the rational expectations counterpart of the model.

Although our approach can thus contribute towards a partial resolution of the risk-free

rate puzzle, we also conclude that biased Bayesian learning alone cannot resolve the

risk-free rate puzzle entirely.

Our work gives rise to two avenues of future research. First, in order to derive our

illustrative �ndings, we have embedded our Choquet learning model of the mean con-

sumption growth into a consumption based asset pricing model. In this experiment, we

have treated as constant the variance of consumption growth and took the objective data

as point estimate. We plan to extend our framework to a general asset pricing model

with at least two assets which incorporates uncertainty and learning with respect to the

mean and the variance. We will then ask whether such an extended framework will give

rise to a reasonable risk-free rate and equity premium. Second, our discussion of cali-

bration of our model has highlighted the importance of choosing reasonable parameters

in models with psychologically biased beliefs. Future research has to design experiments

in an inter-temporal setting that allow us to disentangle inter-temporal parameters (the

discount rate and the inter-temporal elasticity of substitution) and parameters measur-

ing risk (relative risk aversion, degree of optimism) and ambiguity. Such experiments

will provide a more solid ground for calibration.
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Mathematical appendix

Proof of the Lemma. Note that under our distributional assumptions


̄� =
1

�
(
1 + ���+
�)

is a su	cient statistic for �̃, implying (cf. Lemma 1 in Berger 1985) that

	 (· | 
1� ����
�) = 	
¡
· | 
̄�

¢
.

Consequently, for any point-observation (4),
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i
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�̃� ��̃ (� | ̄�)

i
.

To complete the proof of the Lemma it therefore remains to derive an analytical expres-

sion for

�
h
�̃� ��̃ (� | ̄�)

i
.

According to our distributional assumptions, 
̄� is–conditional on parameter �–

normally distributed such that, for all � � (�� �) and all � � B (R),
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Let � denote the joint density function of �̃ and 
̄�. Then, by Bayes’ rule, the posterior

density function of �̃ conditional on ̄� � 
̄� (�) is given by
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Standard calculations (Berger 1985, p.127) show that, for � � (�� �),
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where

�� =
�2��

�2��+ � 2
· �+ � 2

�2��+ � 2
· ̄�

and

�2� =
� 2�2��

� 2 + �2��
.

Consequently,

��̄� (̄�) =

Z �

�

� (�� ̄�) �� (35)

=
1

� (�)� � (�)
·

1p
2	 (� 2 + �2��)

exp

"
�1
2

(̄� � �)2

� 2 + �2��

#
·
Z �+�

���

1p
2	�2�

exp

"
�1
2

(� � ��)
2

�2�

#
��,

so that, by an application of Bayes’ rule,
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by the de�nition of ��. Observe now that the conditional density function ��̃ (� | ̄�)
corresponds to a truncated normal distribution of �̃ with support on (�� �). Conditional

on ̄�, �̃ has therefore the expected value

�
h
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This proves the Lemma.¤

Proof of Corollary 1. Observe at �rst that

lim
���

�� = lim
���

� 2�2

� · � 2 + �2
= 0. (36)

By the strong law of large numbers (Theorem 22.1 in Billingsley 1995),
©

̄�

ª
��N con-

verges with 	 (· | ��) probability one to �� as � gets large. Since all probability mass
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gets thus concentrated around ��, it holds for any point-observation (4) that

lim
���
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with 	 (· | ��) probability one whenever �� � (�� �). Collecting equations (36) - (40) and
substituting into the limit of (5) gives
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which proves Corollary 1.¤

Proof of Proposition 1. Since �� 	 �(I�), we have, by the law of iterated

expectations, that
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The analytical expression for the density ��̄� has already been derived as (35) in the

proof of the Lemma.¤
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Proof of Corollary 2. Observe that
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whereby the fourth line follows from L’Hopital’s rule combined with Leibniz’s integral

rule.¤

Proof of Observation 1: By an argument in Schmeidler (1986), it su	ces to

restrict attention to a non-negative function � so that
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which is equivalent to
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since � bounded. We consider a partition 2�, � = 1� 2� ���, of � with members
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Obviously,
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implying for a neo-additive capacity
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Proof of Observation 2. Observe that
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Proof of Corollary 3. At �rst observe that, for all � � � and all �,
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Supplementary appendix

On dynamic consistency and consequentialism

The following discussion about the relationship between Savage’s sure thing principle,

dynamic consistency and consequentialsim closely follows Zimper (2011). Throughout

the text a Bayesian framework is considered that reduces in the standard way dynamic

decision situations to a static Savage framework such that ex ante and ex post preferences

are de�ned over Savage acts; that is, the reduction principle holds (Siniscalchi 2011).

For such a framework Epstein and Schneider (2003) describe a decision theoretic model,

i.e., the rectangular MMEU model, that combines some notion of ambiguity attitudes

with dynamic consistency. Since the rectangular MMEU model also satis�es consequen-

tialism, it follows from existing results in the decision theoretic literature (Ghirardato

2002, Epstein and Le Breton 1993) that this MMEU model must somehow violate uni-

versalism to the e�ect that both principles, consequentialism and dynamic consistency,

cannot simultaneously hold at all events. In this supplementary appendix we make this

argument more precise by showing in which speci�c sense the rectangular MMEU model

violates universalism.

To be more precise consider some state space � and some �-algebra F which contains
all events that are relevant to the decision maker in the sense that he attaches proba-

bilities to these events, (for example, we might simply follow Savage (1954) and assume

that F is given as the power-set 2�). In a next step, let us follow Epstein and Schneider
(2003) and �x some partition � of � whereby � (�) � F denotes the �-algebra gener-

ated by �. The events in � (�) are interpreted as the events that are ex post observable

by the decision maker. In what follows we will de�ne behavioral principles restricted

to the events in � (�) whereby the principle of universalism is satis�ed if and only if

� (�) = F . Intuitively speaking, universalism means that the behavioral principles will

hold at all relevant events, i.e., at all events included in the largest possible information

structure � (�) = F , to the e�ect that the resulting decision theoretic model will be
invariant with respect to any particularly �xed information structure � (�).

Recall that a Savage act � maps � into a set of consequences 
, i.e., � : � 
 
.

Further, consider any �nite partition {#1� ���� #�} of � such that #� � F for � = 1� ��� �.

Given Savage acts �1� ���� ��, denote by �1�1 ����
�
�� : �
 
 the Savage act such that

�1�1 ����
�
�� (�) =

���
��

�1 (�) for � � #1

��� ���

�� (�) for � � #�.
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For complements #�¬# � F and acts �� %, let us simply write ��% instead of ��%¬�.
Ex ante preferences over Savage acts, denoted º, are interpreted as the decision maker’s
preferences before he receives any information. In contrast, ex post preferences over

Savage acts, denoted º�, are interpreted as preferences conditional on #, i.e., after the

decision maker has observed the occurrence of some non-null event # � F . It is assumed
that º as well as º�impose a weak order on all Savage acts.

De�nition: � (�)-consequentialism. For all Savage acts �� %� &� &0� &00� &000 and all

non-null events # � � (�), the following condition holds for ex post preferences:

��& º� %�&
0  ��&

00 º� %�&
000. (43)

The notion of consequentialism in the context of decision trees under risk goes back

to Hammond (1989) and Machina (1989) whereby Burks (1977) already refers to the

same concept as “invariance axiom” (see the formal de�nition at p. 268, Burks 1977).

The above de�nition is closest to Machina’s interpretation once the reduction principle

is applied to decision trees:

“The philosophy behind this approach [=consequentialism; the author] is

that the uncertainty that was involved in the rest of the tree, as represented

by the probabilities at the snipped-o� chance nodes and the planned choices

at the snipped-o� choice nodes, is now irrelevant and should be treated as if

it never existed.” (p. 1641)

In other words, (43) states that it should not matter for ex post preferences con-

ditional on observation # whatever consequences, governed either by &� &0� &00, or &000,
might have happened outside of #. Innocuous and straightforward as this dynamic

principle may appear, Machina (1989) argues strongly against its appeal for non-EU

decision making. Nevertheless, consequentialism is, e.g., satis�ed for the CEU decision

makers of our model as well as for the MMEU decision makers in Epstein and Schneider

(2003).

De�nition: � (�)-dynamic consistency. For all Savage acts �� %� & and all non-null

events # � � (�), the following condition holds for the relationship between ex

ante and ex post preferences:

��& º %�&  ��& º� %�&. (44)
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De�nition: � (�)-sure thing principle. For all Savage acts �� %� &� &0 and all events

# � � (�), the following condition holds for ex ante preferences:

��& º %�& � ��&
0 º %�&

0. (45)

The following observation basically restates an implication of Lemma 2 in Ghirardato

(2002) for our slightly di�erent de�nitions of consequentialism and dynamic consistency.

Observation. � (�)-consequentialism (43) combined with � (�)-dynamic consistency

(44) implies the � (�)-sure thing principle (45) under reduction.

Proof: Consider any non-null # � � (�). Observe that

��& º %�&

� ��& º� %�& by (44)

� ��&
0 º� %�&

0 by (43)

� ��&
0 º %�&

0 by (44)�

which proves the claim.¤

Next consider the following version of dynamic consistency restricted to events in

� (�) as introduced in Epstein and Schneider (2003) for their rectangular MMEU model.

De�nition: Epstein and Schneider (E-S) � (�)-dynamic consistency. Given

any �nite partition #1� ���� #� of � such that #� � � (�) for � = 1� ��� �. For all

Savage acts �1� ���� �� and %1� ���� %�, the following condition holds:

�1 º�1 %1, ..., �� º�� %� � �1�1����
�
�� º %1�1 ���%

�
�� , (46)

whereby º is strict i� at least one º�� is strict.

Observation. � (�)-consequentialism (43) combined with E-S � (�)-dynamic consis-

tency (46) implies the � (�)-sure thing principle (45) under reduction.

Proof: By E-S dynamic � (�)-consistency, we have for any non-null # � � (�)

��& º� %�&, &��� º�� &��% � ��& º %�&. (47)

Furthermore, observe that

&¬�� º ¬�&¬�� by re�exivity of º¬�
 &¬�� º¬� &¬�% by (43),
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so that

&¬�� º¬� &¬�%

is always satis�ed under our assumptions of weak order and consequentialism. Conse-

quently, (47) is equivalent to

��& º� %�&� ��& º %�&,

which implies, by completeness,

��& º� %�&� ��& º %�&.

That is, under the assumptions of the observation, E-S � (�)-dynamic consistency is

equivalent to � (�)-dynamic consistency (44), which proves the result.¤

By the above observation, the rectangular MMEU model of Epstein and Schneider

(2003)–satisfying � (�)-consequentialism as well as the reduction principle–satis�es

the sure thing principle at all events in � (�). As a consequence, a violation of the sure

thing principle is restricted to events that are not observable by the decision maker to

the e�ect that ex ante ambiguity attitudes are governed by the decision maker’s ex post

information structure.

Results for recursive preferences

The e�ect of risk aversion per se on our results is negligible. To show this we here

adopt recursive Epstein-Zin-Weil preferences (Epstein and Zin 1989, 1991; Weil 1989).

Wu and Gonzalez (1996) document that estimates of risk-aversion are below one, once

non-standard subjective beliefs are considered. Our calibration will therefore consider a

�exible parametrization of risk aversion, holding the IES constant.

Adopting recursive preferences, the period � utility function is given by

4� =

(
5
1� 1

�

� + )
¡
��
£
41��
�+1

¤¢ 1� 1
�

1�	

) 1

1� 1
�

(48)

where ) is the discount factor, - is the inter-temporal rate of substitution and , is the

measure of relative risk aversion.

We continue to assume that the representative period � agent maximizes expected

utility under the assumption that the consumption growth rates are independent and

identically normally distributed. Employing results of Kocherlakota (1990, 1996) for

Epstein-Zin-Weil preferences and our i.i.d. distributional assumption gives

(�+1 = )
¡
��
£
(
�+1)

1��¤¢	� 1
�

1�	 ��
£
(
�+1)

��¤ � (49)
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where the random variable 
�+1 = ln+�+1� ln+� denotes consumption growth as before
(details of the derivation are provided below).

Under i.i.d. normally distributed consumption growth with parameters (�� �2) we

get from the above that

/ = ln(') = � ln) + 1
-
�� 1

2
�2(, � 1

-
(1� ,))�

The point estimate of , reported in the pooled pooled regressions of Gonzalez and

Wu (1986) is , = 0�5. In order to illustrate how the indirect e�ect of biased beliefs–

via re-calibration of , relative to the rational expectations benchmark–adds to their

direct e�ect on expected mean consumption growth, we extend this range to include the

range used under rational expectations which is usually , � [1� 4]. This consideration
gives , � G� = [0�5� 4�0].
We here repeat our calculation of subsection 5.2 for a box of all parameter combi-

nations G� � G� = [0�5� 0�9] � [0�5� 4] holding - constant at 0�5. Results are shown in

�gure 4. Our conclusions from the main text remain unaltered. In particular, we ob-

serve that increasing , more or less decreases the risk-free rate predicted under rational

expectations and our Choquet model in parallel such that di�erences between the two

models are roughly constant. Moreover, the overall e�ect of , on the level of the risk-free

rate is small.

First-order conditions for recursive preferences

We here repeat the steps of Kocherlakota (1990). By the chain rule, the partial deriva-

tives of (48) with respect to 5� and 5�+1 are given by

4��� = 4
1
�

� 5
� 1
�

�

4���+1 = 4
1
�

� )
¡
��
£
41��
�+1

¤¢ 	� 1
�

1�	 ��

�
4

1
�
��

�+1 5
� 1
�

�+1

¸
�

The marginal rate of substitution, or the stochastic discount factor(�+1, is therefore

(�+1 = )
¡
��
£
41��
�+1

¤¢	� 1
�

1�	 ��

"
4

1
�
��

�+1

μ
5�+1
5�

¶� 1
�

#
�

Next, observe that homotheticity and the i.i.d. assumption imply

4� = 65�

for all t. Using this in the above we get (49).
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Figure 4: Risk-free rate under biased beliefs: Recursive preferences
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