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Abstract

This paper experimentally tests whether violations of Savage’s (1954) subjec-

tive expected utility theory decrease if the ambiguity of an uncertain decision

situation is reduced through statistical learning. Because our data does not show

such a decrease, existing models which formalize ambiguity within an Anscombe-

Aumann (1963) framework– thereby reducing to expected utility theory in the

absence of ambiguity– are violated. In contrast, axiomatic models of prospect

theory can accommodate our experimental findings because they allow for viola-

tions of von Neumann and Morgenstern’s (1947) independence axiom whenever

uncertain decision situations transform into risky decision situations for which

probabilities are known.
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1 Introduction

As a reaction to empirically observed violations of Savage’s (1954) sure-thing principle

(STP), a class of axiomatic decision theories have been developed which model any

deviation from expected utility (EU) theory through ambiguity1 attitudes without giving

up von Neumann and Morgenstern’s (1947) independence axiom for known probabilities.

For example, the celebrated Choquet expected utility (CEU) model of Schmeidler (1989)

expresses ambiguity attitudes through non-additive probability measures whereas the

multiple priors expected utility (MEU) models of Gilboa and Schmeidler (1989) and

Ghirardato et al. (2004) use sets of subjective additive probability measures. These

highly influential models reduce to standard EU theory in the absence of ambiguity; i.e.,

whenever a non-additive probability measure reduces to an additive probability measure

or a set of priors only contains a unique additive probability measure.

For an intuitive understanding of ambiguity the multiple priors approach has proved

to be persuasive because it interprets ambiguity as a lack of statistical information. In

the words of Gilboa and Schmeidler (1989, p. 142): “[...] the subject has too little infor-

mation to form a prior. Hence (s)he considers a set of priors.”By this interpretation, one

would intuitively expect that a decision maker’s ambiguity attitudes will become more

and more irrelevant with statistical learning. Under this plausible notion, Schmeidler’s

CEU as well as an MEU decision maker will ever closer resemble an EU decision maker

whenever more and more statistical information becomes available. Consequently, for

such decision makers we would conjecture a decline in the number of EU violations if

they are exposed to ongoing statistical learning.

In this paper we report the results of an experimental study which has put this

conjecture to the empirical test. In this experiment respondents were asked to choose

between pairs of uncertain prospects such that the actual payout is determined by a

ball’s color drawn from an urn containing 20 red, 20 yellow and 60 blue balls whereby

these proportions were not known by the respondents. In total there were 30 questions,

organized as 15 consecutive pairs of questions, such that the answers to each consec-

utive pair of questions either violate the STP or not. After answering each question

the respondents of the test group received statistical information in the form of a ball’s

color drawn from the urn. In contrast, the respondents of the control group did not

receive any statistical information as feedback. That is, the control group was asked

the same questions in the same experimental situation with only the specific experimen-

tal treatment– an increase in statistical information– missing. Our research question

1Somewhat losely, we speak of “ambiguity” whenever a decision maker cannot comprehensivley

resolve all his uncertainty through a unique additive—either subjective or objective—probability measure.
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whether EU violations decrease through statistical learning was thus addressed by the

experiment as follows:

Compared to the control group, does the number of STP violations of the

test group decrease over the course of the experiment?

At first, we had to assess whether statistical learning, in the sense of subjective beliefs

converging to objective probabilities, did actually happen within the test group or not.

To this purpose we asked all respondents at the end of the experiment for their estimates

about the differently colored balls’ proportions. Whereas the control group– having

received no statistical information– estimated a roughly equal proportion for all colors,

the test group’s estimate was very close to the true proportions. We interpret these

answers as confirmation that converging statistical learning did indeed happen within

the test group whereas the control group remained ignorant about the true proportions.

Next, turning to our experimental results we continue to see the same prevalence

of STP violations in the test group even after multiple rounds of statistical learning.

In contrast, a moderate decrease in STP violations is significant for the control group

despite the fact that this group did not receive any statistical information. We therefore

conclude that our experimental results do not support the notion that STP violations

decrease through statistical learning.

To interpret our findings we adopt Peter Wakker’s point of view that situations of

decision making under risk should be regarded as limiting cases of situations of deci-

sion making under uncertainty (cf. Chapter 2 in Wakker 2010). Compared to decision

making under uncertainty, which refers to situations where “objective/physical”prob-

abilities of events are not known, decision making under risk refers to situations where

people (believe themselves to) know such probabilities. By decreasing ambiguity through

statistical learning, our experiment gradually transforms an uncertain into a risky deci-

sion situation for the respondents of the test group. For a risky decision situation, our

test of STP violations becomes observationally equivalent to a test for violations of von

Neumann and Morgenstern’s (1947) independence axiom (IA). To observe no decline in

violations of the STP if ambiguity gradually vanishes therefore suggests the following

relationship between the STP, on the one hand, and the IA, on the other hand:

Violations of the STP in situations under uncertainty carry over to viola-

tions of the IA when uncertain situations transform, through a decrease of

ambiguity, into risky situations.

We conclude that empirically observed STP and IA violations are related phenomena

so that a good descriptive decision theory should be able to simultaneously accommo-

date violations of the STP and the IA. This last point supports a similar conclusion by
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Peter Wakker and coauthors (cf., e.g., Wakker 2001; Abdellaoui et al. 2011) who pro-

mote a class of axiomatic decision theories, subsumed under the label prospect theory,

which encompasses Gilboa’s (1987) CEU axiomatization as well as the axiomatizations of

cumulative prospect theory in Tversky and Kahneman (1992) and in Wakker and Tver-

sky (1993). In contrast to the existing axiomatizations of ambiguity attitudes within

the Anscombe-Aumann (1963) framework by Schmeidler (1989), Gilboa and Schmeidler

(1989), and Ghirardato et al. (2004), prospect theory does not reduce to EU theory in

the absence of ambiguity. This paper identifies the technical reason for this difference:

The weakening of the Anscombe-Aumann independence axiom in Schmeidler (1989),

Gilboa and Schmeidler (1989), and Ghirardato et al. (2004), which allows for violations

of the STP, does not go far enough to additionally allow for violations of the IA. Because

prospect theory was axiomatized within the purely subjective Savage rather than within

the Anscombe-Aumann framework, it can explain our experimental findings since it re-

sembles (restricted to gains) in the risky limit Quiggin’s (1981; 1982) rank dependent

utility theory for risk which accommodates violations of the IA.

The remainder of this paper is structured as follows. Section 2 briefly reviews the de-

cision theoretic background of our paper. Section 3 discusses the experimental methodol-

ogy used and Section 4 reports the results of the experiment. In Section 5 we discuss our

findings and Section 6 concludes. An appendix contains formal arguments as well as a

caveat that applies to the interpretation of our experimental design. We provide further

details (instructions, questionnaire) of the experiment in a Supplementary Appendix.

2 Theoretical preliminaries: Ambiguity within the

Anscombe-Aumann (1963) framework

Savage’s (1954) axiomatization of EU theory considers a state space S, a set of outcomes

X, and a set of acts F which map the state into the outcome space. Savage proceeds

by providing a set of axioms which gives rise to the EU-representation of preferences �
over acts such that, for all f, g ∈ F ,

f � g ⇔
∫
s∈S

u (f (s)) dπ (s) ≥
∫
s∈S

u (g (s)) dπ (s) (1)

for some bounded function u : X → R, unique up to a positive affi ne transformation,
and a unique subjective additive probability measure π. Savage’s key axiom for deriving

the EU representation (1) is the sure-thing principle (STP) which states that for all
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f, g, h, h′ ∈ F and all events E ⊂ S,

fEh � gEh ⇒ fEh
′ � gEh

′ (2)

where fEh denotes the act that gives the outcomes of act f in event E and the outcomes

of act h else, i.e.,

fEh (s) =

{
f (s) for s ∈ E
h (s) for s ∈ S\E.

(3)

Already Ellsberg (1961) reports systematic violations of the STP in experimental

situations. To accommodate Ellsberg paradoxes Schmeidler (1989), Gilboa and Schmei-

dler (1989), and Ghirardato et al. (2004) have axiomatized generalizations of EU theory

within the Anscombe-Aumann (1963) (AA) framework, which considers decision makers

who have preferences over known probability distributions. More precisely, AA axioma-

tize EU theory by adopting Savage’s notion of preferences over acts (horse lotteries) but

consider a set of outcomes X = ∆ (Z) which is given as the set of all (finite) probability

distributions (roulette lotteries) over a set of prizes Z. As a consequence, for any two

acts f, g ∈ F , the mixture act

λf + (1− λ) g with λ ∈ (0, 1) (4)

is well-defined as the act in F that gives in any state s ∈ S the reduced compound

lottery λf (s) + (1− λ) g (s) as outcome. Key to the AA axiomatization of EU theory

is the AA-independence axiom which is defined as follows: For all f, g, h ∈ F and all

λ ∈ (0, 1),

f � g ⇔ λf + (1− λ)h � λg + (1− λ)h. (5)

For the reader’s convenience, we formally proof the following observation in Appendix

A1.2

Observation 1. Within the AA framework, the AA-independence axiom (5) implies

the STP (2).

By Observation 1, any AA axiomatization which allows for STP violations must relax

the AA-independence axiom (5). In a seminal contribution, David Schmeidler (1989)

restricts the AA-independence axiom to the domain of all (pairwise) comonotonic acts

f, g, h ∈ F whereby the acts f and g are comonotonic iff, for all s, t ∈ S, f (s) � f (t)

implies g (s) � g (t). Under this weakened version of the AA-independence axiom,

2The only published (correct) proof of Observation 1 that we are aware of is by Peter Hammond

(1998).
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Schmeidler (1989) derives the following Choquet expected utility (CEU) representation

for preferences over all acts f, g ∈ F ,

f � g ⇔
C∫

s∈S

u (f (s)) dν (s) ≥
C∫

s∈S

u (g (s)) dν (s) (6)

where ν is a unique non-additive (=not necessarily additive) probability measure sat-

isfying ν (∅) = 0, ν (S) = 1, and ν (E) ≤ ν (E ′) if E ⊂ E ′; and the integral in (6)

is the Choquet integral.3 Schmeidler (1989) proceeds to define ambiguity aversion as

quasiconcave preferences in the following sense

f � g ⇒ λf + (1− λ) g � g for all λ ∈ (0, 1) . (8)

This definition (roughly) implies that ambiguity averse decision makers like hedging

in the form of combining acts with negatively correlated outcomes. Schmeidler (1989)

proves that the CEU model (6) represents ambiguity averse preferences (8) in the AA

framework if and only if the non-additive probability measure ν is convex.4

Also within the AA framework, Gilboa and Schmeidler (1989) impose ambiguity aver-

sion (8) as an axiom. By restricting the domain of the AA-independence axiom (5) to all

f, g ∈ F and all constant h ∈ F (called certainty-independence), the authors axiomatize
the following multiple priors expected utility (MEU) representation of ambiguity averse

preferences over all f, g ∈ F :

f � g ⇔ min
π∈Π

∫
s∈S

u (f (s)) dπ (s) ≥ min
π∈Π

∫
s∈S

u (g (s)) dπ (s) (10)

for some unique (closed and convex) set of additive probability measures Π. According to

this (maxmin) MEU representation, an ambiguity averse decision maker who considers

several probability measures as possible chooses his acts under the assumption that a

malign nature always picks the worst-case scenario probability measure that minimizes

3If f only takes on finitely many, say m, values, we have

C∫
s∈S

u (f (s)) dν (s) =

m∑
i=1

u (f (si)) · [ν (E1 ∪ ... ∪ Ei)− ν (E1 ∪ ... ∪ Ei−1)] (7)

where E1, ..., Em denotes the unique partition of S with u (f (s1)) > ... > u (f (sm)) for si ∈ Ei.
4ν is convex iff it satisfies for all events E,E′

ν (E ∪ E′) + ν (E ∩ E′) ≥ ν (E) + ν (E′) . (9)
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the expected utility of his chosen act. Note that Schmeidler’s CEU representation (6)

of preferences over acts with respect to a convex non-additive probability measure is

formally equivalent to the MEU representation (10) if the set of priors is given as the

core of this non-additive probability measure.5

Like Gilboa and Schmeidler (1989), Ghirardato et al. (2004) also weaken the AA-

independence axiom by imposing certainty independence. However, in line with empir-

ical evidence according to which real-life decision makers are not exclusively ambiguity

averse (cf., e.g., Wu and Gonzalez 1999; Wakker 2010 and references therein), Ghi-

rardato et al. (2004) axiomatize the following (maxmin-maxmax) MEU representation

of preferences over acts within the AA framework (Theorem 11, p. 148):

f � g ⇔ (13)

α (f) ·min
π∈Π

∫
s∈S

u (f (s)) dπ (s) + (1− α (f)) ·max
π∈Π

∫
s∈S

u (f (s)) dπ (s)

≥ α (g) ·min
π∈Π

∫
s∈S

u (g (s)) dπ (s) + (1− α (g)) ·max
π∈Π

∫
s∈S

u (g (s)) dπ (s)

where the (unique) function α maps the set of acts into the unit interval. If α (f) = 1 for

all acts f , this representation obviously reduces to the original Gilboa and Schmeidler

(1989) MEU model (10). More generally, Ghirardato et al. (2004) argue that (13)

also encompasses any CEU representation (6) with respect to arbitrary non-additive

probability measures.

Finally, observe that the CEU representation (6) becomes the EU representation (1)

for an additive ν = π and that the MEU representations (10) and (13) become the EU

representation (1) for a Π that only contains a single additive probability measure π.

That is, all the above AA axiomatizations of ambiguity attitudes reduce to EU theory

if ambiguity vanishes from the decision situation. In the remainder of the paper, we

describe and discuss an experiment that has put this formal implication of the existing

AA models of ambiguity attitudes to the empirical test.

5More precisely, recall that Schmeidler (1986) proves for convex ν that

C∫
s∈S

u (f (s)) dv (s) = min
π∈Π

∫
s∈S

u (f (s)) dπ (s) (11)

such that

Π = core (ν) ≡ {additive π | π (s) ≥ ν (s) for all s ∈ S} . (12)
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3 Experiment

This section describes in detail the experiment that we conducted to test whether vio-

lations of the STP decline through statistical learning or not. As our point of departure

consider the following thought experiment of Marinacci (2002):

“Consider a decision maker (DM) who has to make a decision based

on the drawings of an urn of known composition. The confidence he has

in his decisions will depend on the quality of the information on the balls’

proportion, the more he knows, the more he will feel confident.

Suppose the DM can sample with replacement from this urn before mak-

ing a decision. Regardless of how poor is his a priori information about

the balls’proportions, it is natural to expect that eventually, as the number

of observations increases, he will become closer and closer to learn the true

balls’proportion and become more and more confident in his decisions.”(p.

143)

In accordance with Marinacci’s thought experiment, we generated uncertainty by

means of an ambiguous urn containing balls of red, yellow, and blue color. Whereas the

test group was given the opportunity to gradually learn the true proportions of differently

colored balls in the urn, the control group did not receive any statistical information

over the course of the experiment. The test for violations of the STP follows similar

approaches in the literature (e.g., Wu and Gonzalez 1999) whereby a caveat applies (see

Appendix A2).

3.1 Eliciting violations of the STP

Consider at first a standard (static) decision situation without statistical learning. Let

us partition the state space S into the three events R(ed ball is drawn), Y (ellow ball is

drawn), and B(lue ball is drawn). We test for violations of the STP through a choice

between prospects A and B, on the one hand, and a choice between prospects A′ and

B′, on the other hand. These pairs of prospects have the following payoff structure:

R Y B

A y x z

B y y y

R Y B

A′ x x z

B′ x y y

where z > y > x are monetary amounts. In the experiment any such pair of prospects

will correspond to a pair of observed choices whereby we interpret these choices as
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revealed (strict) preferences; that is, we interpret, e.g., the choice pair A,A′ as revealed

preferences A � B and A′� B′.
Obviously, the choice pairs

A,A′ and B,B′ (14)

are consistent with the STP, whereas the choice pairs

A,B′ and B,A′ (15)

violate the STP. To see this just reinterpret the prospects as the following acts in (2)

A = fY ∪Bh, B = gY ∪Bh; (16)

A′ = fY ∪Bh
′, B′ = gY ∪Bh

′ (17)

where h (s) = y and h′ (s) = x for s ∈ R.

3.2 Subjects

Undergraduate commerce students at the University of the Witwatersrand (Wits) were

recruited to participate in the experiment. Students were approached during economics

lectures and were given an information sheet with brief background about the study

and requesting their voluntary participation. Students agreeing to participate had to be

over 18 years of age, and had to be students at Wits. Since the study design included a

test and control group, the experiment was designed to start with a fairly homogenous

sample in terms of education, then to randomly assign participants to one of the two

groups. To avoid introducing possible biases in responses, the presence of the test and

control groups was not discussed with participants, nor was the exact nature of the

experiment. Participants were simply told that this was a study on decision making.

In total, 63 students were recruited, allowing for a minimum of 30 students in each

group (31 in the test group and 32 in the control group). The control group had 56%

male and 44% female participants, while the test group had 48% male and 52% female

participants. In line with Wits’ethical policy on experiments, participants were assured

of anonymity in the experiment whereby questionnaire responses were recorded with

numbers instead of names.

3.3 Stimuli and statistical learning

We used an actual urn that contained 20 red, 20 yellow, and 60 blue balls. Although

the participants did not know the true proportions of the colors in the urn, they were

informed that there were 100 balls in total. All respondents answered 30 questions
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about their preferred choice between two different prospects. By varying the monetary

payoffs associated with these prospects (measured in South African Rand)6, these 30

questions were organized as 15 subsequent choice pairs (A,B;A′,B′) exhibiting the

payoff structure described in Section 3.1. This design thus allowed for the observation of

up to 15 subsequent violations of the STP by any subject through revealed preferences

(15).

Following the draw of a ball after each question, respondents in the test group received

feedback on the color of the ball drawn from the urn. Respondents from the control group

did not receive such feedback. In contrast to the control group, the test group could thus

observe statistical information in the form of 30 actual drawings (with replacement) from

the urn. Technically speaking, the respondents from the test group were thus exposed to

30 successive iid multivariate Bernoulli trials such that the true proportions of differently

colored balls were (supposedly) driving the data generation process.

3.4 Procedure

The respondents sat in front of the computer where they first read participant instruc-

tions and then went through the 30 questions of the questionnaire (see the Supplementary

Appendix). Nicky was present at all times to answer questions and to assist with the

random ball selection following each question for the test group.

We used randomization of the question pair order to avoid any bias from possible

order effects due to, e.g., different magnitudes or ratios from the prospects’ possible

payoffs. More specifically, the computer programme selected a random starting question

pair, and randomized each subsequent question pair. In this way, each respondent would

see a unique order of questions, with all respondents seeing all 15 pairs of questions, but

in a random order. To avoid bias from the order of presentation within question pairs

the labelling of prospects within question pairs was varied.

Once an option had been selected, the test group respondents were allowed to draw

a ball from the urn and the computer programme would show the payout based on the

color of ball drawn and the prospect selected. The control group received no feedback.

To give incentives for the truthful revelation of preferences, subjects in both groups

were told that one of the prospect choices would be selected at random to be paid out

in real money (cf., e.g., Starmer and Sugden 1991). The possible payout could be as low

as R0 or as high as R150, since these were the minimum and maximum payouts across

the range of questions.

6While we fixed the worst payoff x at zero, the second best payoff y was in the range of R40 to

R80, and the best payoff z was in the range of R75 to R150. The Supplementary Appendix lists the

questionnnaire containing all 30 questions.
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At the end of the experiment, i.e. after answering all 30 questions and receiving

(the test group) versus not receiving (the control group) statistical information, the

respondents from both groups were asked about their estimates for the balls’proportions

in the urn.

4 Results

4.1 Statistical learning

We could confirm that statistical learning did indeed happen within the test group.

According to standard models of statistical learning, subjective estimates converge to the

true proportions of differently colored balls (=‘objective’probabilities) if the respondents

can observe large data samples from multivariate Bernoulli trials (cf., e.g., Viscusi and

O’Connor 1984; Viscusi 1985; Chapter 4 and references in Zimper 2013). Answers close

to the true proportions of 60% blue, 20% red, and 20% yellow balls in the test group

would thus suggest that statistical learning happened within the test group. In contrast,

given the absence of any statistical information, the control group was expected to report

roughly equal proportions of all colors as an expression of their ignorance.

Table 1: Average estimates for the proportions of differently colored balls

% Red % Yellow % Blue

Control group 33 31 36

Test group 25 21 54

Both patterns are indeed reflected by the reported proportions (cf. Table 1); for

example, the average estimate of the test group for the proportion of blue balls was

54% compared to 36% average estimate of the control group. We therefore conclude

that exposing the test group to the outcomes of 30 multivariate Bernoulli trials was

indeed suffi cient to distinguish the test from the control group with respect to statistical

learning.

4.2 Revealed choices

Table 2 below presents the percentage of choice pairs seen in the control and test group,

respectively. Since the question order was randomized to avoid order biases, these ques-

tion pairs refer to the first, second, etc. pair of questions seen by each respondent. That

is, each respondent from the test group had observed 28 subsequent drawings (with

replacement) of balls before he/she answered the 15th (=final) question pair.
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Table 2: Revealed choices (in %) over rounds of questions

Control Group Test Group
Question pair A,A′ B,B′ A,B′ B,A′ A,A′ B,B′ A,B′ B,A′

1 6 72 16 6 10 58 16 16

2 6 69 19 6 6 48 39 6

3 6 72 9 13 16 48 23 13

4 6 56 19 19 13 42 39 6

5 6 69 19 6 13 45 32 10

6 6 78 16 0 10 35 52 3

7 6 78 13 3 13 42 35 10

8 9 59 25 6 19 45 32 3

9 6 72 22 0 16 39 32 13

10 9 75 16 0 16 45 35 3

11 9 81 9 0 10 42 35 13

12 13 75 9 3 13 45 35 6

13 9 75 16 0 16 45 32 6

14 3 75 22 0 23 29 35 13

15 9 81 6 3 23 55 16 6

4.3 STP violations

Recall that the choice pairs A,A′ and B,B′ are consistent with the STP whereas the

choice pair A,B′ and B,A′ are not. According to Table 2, the majority of respondents

in both groups do not violate the STP; whereby we put down the higher proportion of

STP consistent responses in the control group to random preference differences. Among

the STP violating responses in both groups, the majority chooses A,B′.

Turn now to our question whether STP violations decrease through statistical learn-

ing or not. If this was the case, overall responses should show decreased STP violations

for the test group over the course of the experiment but little change in the control

group. By the chart in Figure 1, STP violations do not show any clear downward trend

for the test group whereas there is a mild downward trend for the control group (albeit

with some noise).

To obtain a more precise picture, we start by estimating the following equation for

our group of respondents as a whole:

P = β0 + β1D + β2DRound+ β3 (1−D)Round+ ε (18)
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Figure 1: Violations of the STP over the course of the experiment

where P denotes the proportion (in decimals) of respondents violating the STP, Round

stands for the number of question pairs answered, and ε ∼ N (0, σ2). We set the dummy

variable D = 1 for the test and D = 0 for the control group so that β1 measures

the difference between the test and the control group, β2 measures the impact on STP

violations of an increase in the number of question pairs for the test group, whereas β3

measures the same impact for the control group. In particular, we estimate both an

OLS regression and an iterated reweighted least squares regression (IRLS).7 The results

are reported in Table 4.

Table 4: Estimates of the OLS and IRLS regressions

β0 β1 β2 β3

ols 0.28*(0.004) 0.14* (0.057) -0.002(0.004) -0.01*(0.004)

irls 0.27*(0.004) 0.13*(0.057) 0.002(0.004) -0.009*(0.004)

Notes: standard errors in parentheses

* significant at the 5% level

The results for the OLS and IRLS regressions are very similar. The significant posi-

tive coeffi cient β1 on the test group dummy shows that there are fewer STP violations in

7Compared to the OLS regression, the IRLS regression produces ‘robust’estimates in the sense that

it accounts for and reduces the influence of extreme observations (observations with large residuals).
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the control than in the test group. For the IRLS regression, in particular, the coeffi cient

implies that the test group is violating the STP by 13 percentage points more than the

control group. The estimated β2 coeffi cient is very small and insignificant suggesting

that the number of experimental rounds for the test group has zero impact on STP

violations. In contrast, the negative coeffi cient β3, which measures changes in STP vi-

olations over rounds for the control group, is significant. In particular, the decrease in

STP violations is about 1 percentage point per round for the control group.

In addition, we conducted a maximum likelihood estimation in the form of logit

regression for our individual respondents. The coeffi cients of a logit regression represent

the change in the log of the odds associated with a unit change in the explanatory

variable. For ease of interpretation, we also report the marginal effects (me), which

show the increase in the probability, at the means of the covariates, of an individual

violating the STP. We conduct both a logit regression on the pooled sample, and a fixed

effects logit, which allows us to control for idiosyncratic characteristics of the individual

that is fixed across rounds, yet might influence his/her probability of violating the STP.

We report these results in Table 5.

Table 5: Logit Estimates

β0 β1 β2 β3

pooled logit 0.91*(0.227) 0.63*(0.299) -0.01(0.021) -0.063*(0.0044)

me pooled logit 0.131* -0.002 -0.01*

fixed effects logit -0.01(0.024) -0.082*(0.031)

me fixed effects logit -0.002 -0.02*

These regressions confirm the fact that the number of experimental rounds has a

basically zero effect on the probability of an individual in the test group violating the

STP. Again, the pooled logit confirms that the probability of an individual in the test

group violating the STP is 13 percentage points greater than that of an individual in

the control group. We also confirm that the probability of violating the STP decreases

over rounds for the control group with the effect being stronger when we control for

individual fixed effects. In particular, the fixed effects logit predicts that with every

round, the probability of an individual in the control group violating the STP decreases

by 2 percentage points.8

8Note that there is no β1 coeffi cient for the fixed effects logit since the dummy variable, D, repre-

senting whether an individual is in the test or control group, is fixed over rounds and is thus dropped

from the regression.
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Since the control group did not receive any statistical information after making their

choices, our set-up does not offer any apparent explanation for this small but significant

decrease in STP violations except for the “greater experience” that comes from more

rounds of making choices. If such “greater experience”also had any positive impact on

the test group’s STP consistency, this impact was off-set by some negative impact, which

we can only attribute to the test group’s treatment in the form of statistical learning.

To sum up: Our experimental data does not lend any support to the notion that

STP violations decrease through statistical learning.

5 Discussion

Because existing AA axiomatizations of ambiguity attitudes predict a decline in STP

violations when ambiguity vanishes from the decision situation, they cannot explain our

data. To interpret this descriptive shortcoming we first demonstrate that the axiomatic

models of Schmeidler (1989), Gilboa and Schmeidler (1989), and Ghirardato et al. (2004)

imply the validness of von Neumann and Morgenstern’s (1947) independence axiom (IA)

despite their weakening of the AA independence axiom.

In a second step, we argue that our empirical test for violations of the STP, in the

form of observed choice pairs A,B′ or B,A′, becomes a test for violations of the IA

whenever the decision maker resolves his uncertainty through a unique additive proba-

bility measure in the limit of the statistical learning process. The fact that we do not

observe a decline of STP violations in the test group can then be naturally attributed to

the well known fact that violations of the IA are a common empirical phenomenon for

decision making under risk (cf., e.g., Allais 1979; Wu and Gonzalez 1996; Starmer 2000;

Schmidt 2004; Sugden 2004).

Finally, we demonstrate that existing axiomatizations of CEU (Gilboa 1987) and

cumulative prospect theory (Tversky and Kahneman 1992; Wakker and Tversky 1993)

within the Savage (1954) framework—subsumed under the label prospect theory—can ac-

commodate our experimental findings.

5.1 The von Neumann and Morgenstern independence axiom
in an AA framework

Let us follow Peter Wakker and regard decision making under risk as the limiting case

of decision making under uncertainty:

“Probabilities can be (un)known to many degrees, all covered by the gen-

eral term uncertainty. Decision under risk is the special, limiting case where
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probabilities are objectively given, known, and commonly agreed upon.”

(Wakker 2010, p. 44)

In contrast to theories of decision making under uncertainty, theories of decision

making under risk fix some probability space (S,Σ, π∗) (with Σ denoting an σ-algebra

on S) and consider a decision maker with preferences ≥ over lotteries in ∆ (Z) where

Z ⊂ R denotes a set of deterministic prizes. Formally, these lotteries are Σ-measurable

random variables on S with finite support on Z whose distribution is governed by π∗.

Note that there exists a one-one correspondence between all constant acts in the AA

framework, i.e., all acts which give in any state of the world the same lottery in ∆ (Z)

as outcome, and all lotteries ∆ (Z) in the vNM framework. Consequently, there exists

an equivalence relation between (revealed) AA preferences � restricted to constant acts
with outcomes in ∆ (Z), on the one hand, and (revealed) vNM preferences ≥ defined
over the lotteries in ∆ (Z), on the other hand, which we formally express as follows: for

all L,L′ ∈ ∆ (Z),

L ≥ L′ ⇔ fL � fL
′

(19)

where fL is the constant act that gives in every state s ∈ S the lottery L as outcome.
EU theory had been first axiomatized within the framework of decision making un-

der risk by von Neumann and Morgenstern (vNM) (1947). Key to their celebrated

EU representation theorem is the independence axiom (IA) which implies that, for all

L,L′, L′′ ∈ ∆ (Z) and all λ ∈ (0, 1),

L ≥ L′ ⇔ λ · L+ (1− λ)L′′ ≥ λ · L′ + (1− λ)L′′ (20)

(cf., e.g., Fishburn 1988). Observe that Schmeidler’s (1989) comonotonic independence

axiom as well as Gilboa and Schmeidler’s (1989) and Ghirardato et al.’s (2004) certainty

independence axiom imply that the AA independence axiom (5) holds for all constant

acts. That is, for all L,L′, L′′ ∈ ∆ (Z) and all λ ∈ (0, 1),

fL � fL
′ ⇔ λ · fL + (1− λ) fL

′′ � λ · fL′ + (1− λ) fL
′′
, (21)

which is, by (19), equivalent to the IA (20). The following observation summarizes this

relationship which is the formal reason why the existing AA axiomatizations of ambiguity

attitudes reduce to EU theory whenever ambiguity vanishes from the decision situation.

Observation 2. All weakened versions of the AA-independence axiom (5) in the exist-
ing AA axiomatizations of ambiguity attitudes imply the vNM independence axiom

(20).
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5.2 Reinterpreting violations of STP after statistical learning

Turn now back to our experiment and observe that our experimental set-up gradually

decreases ambiguity for the test group whereby the limiting case corresponds to the

situation in which the decision maker could observe an infinite amount of drawings (with

replacement) from the urn, i.e., an infinite amount of data generated by multivariate

Bernoulli trials driven by the balls’ true proportions. According to standard models

of statistical Bayesian learning, this decision maker will then learn, by Doob’s (1949)

consistency theorem, with certainty the true probabilities of the events R, Y , and B.9

Denote this objective probability measure as π∗; e.g., in our experiment we stipulate

that π∗ (R) = π∗ (Y ) = 0.2, π∗ (B) = 0.6 in accordance with the balls’true proportions.

Recall the following pairs of prospects

R Y B

A y x z

B y y y

R Y B

A′ x x z

B′ x y y

In the limit of the statistical learning process, the uncertain decision situation is trans-

formed into a decision situation under risk such that these prospects can be interpreted

as acts in the AA framework such that

A ∼ fL, B ∼ fL
′
; (22)

A′ ∼ fL
′′
, B′ ∼ fL

′′′
(23)

where fL, fL
′
, fL

′′
, fL

′′′
are constant acts with outcomes in ∆ ({x, y, z}) such that

L = (0.2, 0.2, 0.6) , L′ = (0, 1, 0) ; (24)

L′′ = (0.4, 0, 0.6) , L′′′ = (0.2, 0.8, 0) . (25)

That is, in the limit the uncertain prospect A has become equivalent (with respect to

the decision maker’s AA preferences) to the risky lottery (i.e., random variable) which

gives prize x with 20% chance, y with 20% chance, and z with 60% chance.

Further note that the choice pairs A,B′ and B,A′, which revealed violations of the

STP under uncertainty, reveal in the risky limit situation violations of IA (20). To

see this denote by δk, k ∈ {x, y, z}, the degenerate lottery that gives amount k with
probability one. Let λ = π∗ (R) and (1− λ) · µ = π∗ (Y ) and observe that (20) implies

9For a more detailed discussion of the relationship between converging Bayesian learning and Doob’s

consistency theorem see, e.g., Diaconis and Freedman (1986), Chapter 1 in Gosh and Ramamoorthi

(2003), Lijoi, Pruenster and Walker (2004), or Chapter 4 in Zimper (2013).
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for the choice pair A,B′ that10

A � B ⇔ (26)

λ · δy + (1− λ) · [µ · δx + (1− µ) · δz] > λ · δy + (1− λ) · δy ⇔ (27)

µ · δx + (1− µ) · δz > δy. (28)

as well as

B′ � A′ ⇔ (29)

λ · δx + (1− λ) · δy > λ · δx + (1− λ) · [µ · δx + (1− µ) · δz]⇔ (30)

δy > µ · δx + (1− µ) · δz. (31)

Since (28) and (31) constitute a contradiction, the revealed preferences A,B′ violate the

IA.

Our experiment therefore suggests that existing AA axiomatizations of ambiguity

attitudes cannot accommodate the observed data because they do not account for vio-

lations of the IA whenever ambiguity vanishes from the decision situation.

5.3 Prospect theory

The above discussion shows that any decision theoretic model within the AA framework

would only be able to accommodate our experimental findings, if the AA independence

axiom does not hold for all constant acts. Such an axiomatic route within the AA frame-

work, however, appears to be conceptually diffi cult (cf., the discussions in Ghirardato

and Marinacci (2002) and in Ghirardato et al. (2004)) and we are not aware of any

successful approach.

On the other hand, existing decision theories—subsumed under the label prospect the-

ory (cf. Wakker 2010)—which axiomatize CEU theory (Gilboa 1987) as well as cumulative

prospect theory (Tversky and Kahneman 1992; Wakker and Tversky 1993) within the

purely subjective Savage framework, allow for possible violations of the IA in risky limit

situations.11 Under the assumption of probabilistically sophisticated agents, these models

resemble (restricted to gains) rank dependent utility theory for risk (=RDU) which had

been developed by John Quiggin (1981; 1982) in order to accommodate violations of the

IA.
10We assume that the standard principle of reduction of compound lotteries applies (cf., e.g., Fishburn

1988).
11Similar to the restriction of the AA independence axiom to comonotonic acts by Schmeidler (1989),

by Gilboa and Schmeidler (1989) and by Ghirardato et al. (2004), Gilboa’s (1987) CEU axiomatization

implies that Savage’s sure thing principle applies to comonotonic but not to all acts. However, because

Gilboa (1987) does not consider lotteries as outcomes, the IA can be violated.
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More specifically, let us consider the risky limit case of our experiment such that

the agents have become probabilistically sophisticated in the sense that they only care

about probability distributions of payoffs generated by the objective probability measure

π∗ of Subsection 5.2. Then Gilboa’s (1987) CEU model with respect to a capacity ν

becomes equivalent to the RDU model with respect to a probability weighting function

w : [0, 1]→ [0, 1] if, for all events E ∈ Σ,

ν (E) = w (π∗ (E)) . (32)

To see that an appropriate choice of the probability weighting function w can indeed

accommodate the choice pair A,B′ of the previous subsection in the risky limit, observe

that we have, by the RDU model,

A � B ⇔ (33)

w (π∗ (B)) >
u (y)

(1− u (y))
· (1− w (π∗ (B ∪R))) ; (34)

B′ � A′ ⇔ (35)

u (y) · w (π∗ (B ∪ Y )) > w (π∗ (B)) (36)

whereby we set (without loss of generality) u (x) = 0 and u (z) = 1. Combining the

inequalities (33) and (35) and substituting the according probabilities gives

u (y) · w (0.8) > w (0.2) >
u (y)

(1− u (y))
· (1− w (0.8)) (37)

as a necessary and suffi cient condition for RDU to accommodate the choice pair A,B′.

If, for example, u (y) = 0.5, a probability weighting function w such that, e.g.,

w (0.8) = 0.91 and 0.45 > w (0.2) > 0.09 (38)

would satisfy (37).

To conclude this discussion: In contrast to existing axiomatizations of ambiguity

attitudes within the AA-framework, prospect theory can accommodate our experimental

findings because (restricted to gains) it becomes in the risky limit Quiggin’s (1981; 1982)

RDU theory which allows for violations of the IA.

6 Concluding remarks and outlook

Existing axiomatizations of ambiguity attitudes within the Anscombe-Aumann frame-

work reduce to EU theory whenever ambiguity vanishes from the model. We have
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conducted an experiment which gradually transforms a situation of decision making un-

der uncertainty into a situation of decision making under risk. For our experimental

environment, the existing AA models of ambiguity attitudes predict a decline of STP

violations to the effect that the respondents of the test group should ever closer resem-

ble an EU decision maker because ambiguity decreases through statistical learning over

the course of the experiment. The findings of our experimental study, however, do not

support the notion that such a decline occurs.

Somewhat surprisingly, we did not observe, compared to the control group, any

significant decline in STP violating choice patterns (15) for the test group because our

experimental design seemed to be biased towards such a comparative decline for two

reasons. First, according to our caveat (cf. Appendix A2) we could not have rule out

that a decline in STP violating choice patterns (15) for the test group—hat it occurred—

was not exclusively caused by a decrease in STP violations but in addition by the update

dynamics of EU consistent decision making for which our experiment did not control.

That is, in contrast to the control group, converging statistical learning of EU decision

makers in the test group could also have caused a decline in choice patterns (15).

Second, van de Kuilen and Wakker (2006) observe within a framework of decision

making under risk a decrease in violations of the independence axiom if respondents

repeatedly experience the consequences of their decisions in terms of played out lotter-

ies. Again, in our experiment the respondents of the test but not of the control group

were exposed to such experiences in terms of drawn balls. Suppose that some test group

respondents became already very confident after a few rounds of statistical learning so

that the observed violations of the STP can be interpreted as violations of the inde-

pendence axiom. Then the findings of van de Kuilen and Wakker (2006) suggest that

violations of the independence axiom should eventually decrease if these respondents

go in subsequent rounds through the (non-statistical) learning experience documented

by these authors. That is, we might have observed a decline in revealed choices (15)

which would not have been caused by statistical learning but rather by the increased

experience in the risky environment in the sense of van de Kuilen and Wakker (2006).

The fact that neither the possible caveat nor the van de Kuilen and Wakker (2006)

experience effect caused a stronger decline in STP violating choice patterns (15) in the

test than in the control group can be interpreted as support for the notion that statistical

learning does not reduce STP violations. That is, our main finding that statistical

learning does not reduce STP violations appears to be robust. In future research we

would like to run a similar but more sophisticated experiment which is able to control

for the caveat and the van de Kuilen and Wakker (2006) experience effect. In such an

experiment, we would also try to better assess the subjects’probability assessments as
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well as their confidence in these assessments over the course of the experiment.
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Appendix

A1. Proof of Observation 1

Observe at first that the AA axiom reversal of order in compound lotteries implies, for

all f, g, h, h′ ∈ F and all E ⊂ S,

1

2
fEh+

1

2
gEh

′ ∼
(

1

2
f +

1

2
g

)
E

(
1

2
h+

1

2
h′
)
∼ 1

2
fEh

′ +
1

2
gEh. (39)

Now suppose to the contrary that fEh � gEh but gEh
′ � fEh

′. Because of

1

2
fEh+

1

2
fEh

′ � 1

2
gEh+

1

2
fEh

′ (40)

∼
(

1

2
g +

1

2
f

)
E

(
1

2
h+

1

2
h′
)

(41)

∼ 1

2
fEh+

1

2
gEh

′ (42)

(5) implies fEh′ � gEh
′, a contradiction.�

A2. Caveat

Whereas the choice pairs (15) unambiguously reveal a violation of the STP for the control

group, the situation is slightly different for the test group whose members observe after

each choice the drawing of one ball. To see this consider a decision maker of the test

group and denote by In the information he has received by observing n drawings. If

this decision maker chooses, e.g., A after n and B′ after n+ 1 drawings, these revealed

choices could be rationalized as EU consistent choices as follows:

A� B ⇔ (43)

u (x) · π (Y | In) + u (z) · π (B | In) > u (y) · (1− π (R | In)) (44)

and

B′ � A′ ⇔ (45)

u (y) · (1− π (R | In+1)) > u (x) · π (Y | In+1) + u (z) · π (B | In+1) . (46)

Whereas the two inequalities (44) and (46) cannot simultaneously hold if π (· | In) and

π (· | In+1) are suffi ciently similar probability measures, it is possible that (44) and (46)

are satisfied for appropiately chosen values of π (· | In) and π (· | In+1). In that case, the

choices A,B′ would not reveal a violation of the STP but rather the different perception
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of the urn’s uncertainty by an EU decision maker before versus after he updates his

additive belief on the n+ 1th observation.

We could have easily avoided this ambiguity in the interpretation of choice pairs (15)

for the test group, if we had allowed for statistical learning not within but only after

each question pair was answered. However, when designing the experiment, our concern

was to give the subjects no hint that they were actually answering 15 well-structured

question pairs rather than 30 similar questions. Whereas we feared that a detection of

this question pair structure might eventually result in some answering bias, we assumed

that any difference between π (· | In) and π (· | In+1) would be negligibly small (in the

sense of: How great can the impact of a single observation be?).

In the subsequent interpretation of the data, we therefore assume that π (· | In) and

π (· | In+1) are indeed suffi ciently close so that choice pairs (15) cannot be explained

by EU consistent decision making but rather by revealed violations of the STP. If this

assumption was violated, however, we would observe, by Doob’s (1949) consistency

theorem, that π (· | In) and π (· | In+1) become more and more similar with increasing n.

Applied to the experiment, this means that although revealed choices (15) in the first

rounds of the experiment (small n) might be EU consistent, revealed choices (15) in the

later rounds of the experiment (large n) would rather indicate a violation of the STP.

Consequently, an EU consistent decision maker who expressed choice pairs (15) in the

beginning of the experiment, would eventually switch to choice pairs (14) in the later

rounds of the experiment when his conditional probability measures converge through

statistical learning in accordance with Doob’s (1949) consistency theorem.

To summarize the caveat: If our maintained assumption that choice pairs (15) always

reveal violations of the STP for the test group was not correct, we might observe a decline

in the number of choice pairs (15) which is not caused by a decline of violations of the

STP.
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