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Abstract

Parametric regression models of hedonic price functions suffer from
two main specification issues: the identification of appropriate dependent
and independent variables, and the choice of functional form. Although
the first issue remains relevant with the use of nonparametric regression
models, the second issue becomes irrelevant since these models do not pre-
sume functional forms a priori. We estimate a linear parametric model via
OLS, which fails a common specification test, before showing that recently
developed nonparametric regression methods outperform it significantly.
In addition to estimating the models, we compare the out-of-sample pre-
diction performance of the OLS and nonparametric models. Our data
reveals that the nonparametric models provide more accurate predictions
than the parametric model.

1 Introduction

Hedonic pricing theory is not new (see Rosen, 1974) and has been used for some
time now to investigate how the attributes of a good influence its price, espe-
cially in the housing market (Haab and McConnell, 2002; Palmquist, 2005). In
most of these cases, parametric techniques were used to estimate the hedonic
price functions. The use of these techniques (such as the ordinary least squares
(OLS) method) requires the analyst to select appropriate dependent and inde-
pendent variables and to determine the appropriate functional form governing
the variables and the associated parameters (Pace, 1993; 1995).

In terms of variable selection, previous research does provide some guidance
on the selection of appropriate dependent and independent covariates (see for
example, Sirmans, Macphearson and Zietz, 2005), but economic theory provides
very little guidance on functional form selection (Cropper, Deck and McConnell,
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1988; Haab and McConnell, 2002; Palmquist, 2005). To a limited extent, Box-
Cox transformations1 of the functional form provide guidance on the form that
best fits the data (Williams, 2008). However, specification errors associated
with parametric estimation techniques may still adversely affect estimator per-
formance (Pace, 1993; 1995).

A possible solution to the problems associated with specification error can
be found in nonparametric estimation techniques (Pace, 1993; 1995; Anglin and
Gencay, 1996; Bin, 2004; Palmquist, 2005). Nonparametric estimation tech-
niques still require the analyst to select the appropriate variables but they do
not impose an a priori parametric specification (Pace, 1993; 1995). In other
words, “nonparametric estimators produce their inferences free from a partic-
ular functional form (Pace, 1995)”. Popular nonparametric techniques include
kernel density estimation, spline smoothing, series approximators and nearest
neighbours (Anglin and Gencay, 1996).

A number of international hedonic studies have employed semiparametric
and/or nonparametric estimation techniques. The nonparametric methods em-
ployed in these studies show nonlinear relationships that conventional paramet-
ric methods are unable to capture. In addition, the nonparametric methods pro-
duce much smaller prediction errors compared to their parametric counterparts.
Meese and Wallace (1991) employed several different parametric specifications
of a hedonic function and compared these to a regression model specified non-
parametrically. The results of the study show that strong assumptions regarding
functional form selection can be avoided through the use of a nonparametric re-
gression model. In addition, the latter model provides robustness to the impacts
associated with unusual observations. Coulson (1992) employed a nonparamet-
ric technique, known as spline smoothing, to investigate the relationship between
housing price and floorspace size. The results of this study support the use of
nonparametric models instead of parametric ones since the former are able to
avoid misspecification issues. Pace (1993, 1995) applied the kernel nonparamet-
ric regression estimator to two different residential housing data sets. The study
found that the nonparametric estimator outperformed the parametric estima-
tor (OLS estimator) based on comparisons of the R2, root mean squared error,
and the mean absolute error (Pace, 1993; 1995). Anglin and Gencay (1996)
estimated a benchmark parametric model (which passed several common speci-
fication tests) and compared the results to a semiparametric model. The study
concluded that the semiparametric model outperformed the parametric model
since it provided more accurate mean predictions (Anglin and Gencay, 1996).
Bin (2004) compared the predictive powers of a conventional parametric model
with a semiparametric model. In terms of predictive capability, the study found
that the parametric regression was inferior to the semiparametric regression for
both in-sample and out-of-sample price predictions (Bin, 2004). Racine and
Parmeter (2012), however, argue that the use of one sample in the Bin (2004)
study is entirely incorrect when assessing the out-of-sample prediction perfor-

1For Yˆ((λ)), a basic Box — Cox transformation on a single variable, the transformation
can be defined as: Yˆ((λ)) = (Yˆ((λ))-1)λ for λ �=0 or Yˆ((λ)) = lnY for λ=0’.
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mance of two models. Anglin and Gencay’s (1996) partially linear specification
was recently challenged by Parmeter, Henderson and Kumbhakar (2007) who
proposed the use of a nonparametric approach instead. The Parmeter et al.
(2007) study found the following: compared to its nonparametric counterpart,
the partially linear model failed a correct specification test; the within-sample
fit measure applied to the partially linear model, as estimated by Anglin and
Gencay (1996), was overstated; a loss of efficiency may have been caused by the
inclusion of discrete variables as continuous ones into the unknown function.
Racine and Parmeter (2012) examined the revealed performance of Anglin and
Gencay’s (1996) parametric and partially linear specifications and Parmeter et
al.’s (2007) fully nonparametric specification. In contrast to Anglin and Gen-
cay’s (1996) study, Racine and Parmeter’s (2012) test results show that the
linear model outperforms both the semiparametric (Anglin and Gencay, 1996)
and fully nonparametric specifications (Parmeter et al., 2007), while the non-
parametric and semiparametric models perform equally well.

There is, however, a paucity of South African studies that have employed
nonparametric estimation in a hedonic price context. This study aims to fill this
gap. More specifically, this study uses a unique dataset (the Du Preez and Sale
(forthcoming) one) to investigate whether recently developed nonparametric
(kernel) methods provide any additional insight into hedonic pricing parametric
analysis. The Du Preez and Sale (forthcoming) study was conducted in order
to determine whether social housing development projects lead to the deterio-
ration of surrounding residential property values. The locus of the study is a
single neighbourhood (the Walmer one in Port Elizabeth, South Africa) and the
adjacent Gqebera Township2 (a proxy for a social housing development).

In what follows, Section 2 presents the methodology for the OLS (para-
metric) and kernel density (nonparametric) estimators as well as the data used
for analysis, Section 3 applies the OLS and nonparametric estimators to the
Du Preez and Sale (forthcoming) dataset, and finally, Section 4 concludes the
paper.

2 Methodology

2.1 Parametric regression

In terms of regression analysis, the dependent variable, y, comprises a systematic
component, E(y|x), which varies with the covariates, x, a random component,
and an error term, ε:

y = E(y|x) + ε (1)

Parametrically, E(y|x) is estimated by applying a two-stage procedure: first,
E(y|x) is modelled as a function of the parameters, β, and second, β is estimated
(Pace, 1993; Cameron and Trivedi, 2005). A linear interpretation3 of Equation

2The Gqebera Township is also known as the Walmer Township.
3Traditionally, researchers have favoured a linear specification of the hedonic price model.
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(1), for example, assumes the conditional expectation of y is modelled to depend
on the parameters, β, in a linear fashion:

E(y|x) = x0β0 + x1β1 + x2β2 + . . .+ xpβp (2)

where: p = the number of non-constant variables
x0 = a constant vector which acts as the intercept variable (Pace, 1993).
The estimation of Equation (1), assuming the dependency of y on x is linear,

via the OLS estimator is very popular because the estimator involves very lit-
tle computational work and it has all the desired properties under the classical
linear regression model assumptions. Parametric regression, regardless of the
estimator selected4 , demands the researcher carefully considers both the spec-
ification of Equation (1) and its estimation. Specification issues relate to the
identification of the appropriate dependent variable and explanatory covariates,
as well as the relevant functional form.

One of the main concerns regarding the specification of a hedonic price func-
tion revolves around omitted variable bias5 . Hedonic price functions specified in
the traditional manner do not address the issue of omitted variable bias (Bras-
ington & Hite, 2005). This can limit the ability of the hedonic regression to
accurately measure the implicit prices for housing characteristics. Neighbour-
hood characteristics that matter to households but have not been observed by
the researcher may well be correlated with the variables of interest (or other
independent variables). Examples of potential omitted variables include air
pollution, the presence of shopping centres, the crime rate, the quality of land-
scaping and the presence of highways.

Evaluating the implications of omitted variables in hedonic price studies
is challenging because the market clearing process determines housing values
and consumer welfare simultaneously (Rosen, 1974). In order to meet this
challenge, Cropper et al. (1988) developed a theoretically consistent framework
for imitating hedonic equilibria. It was found that traditional functional forms
(linear, semi-log and double-log) performed best in the presence of omitted
variables. More flexible functional forms were preferred when all variables were
included in the model. This is one of the reasons why the vast majority of
hedonic price studies use traditional functional form specification (to avoid the
risk of omitted variable bias).

Possible remedies to overcome omitted variable bias include zoning in on
small geographical areas and collecting as much data as possible (Brasington &
Hite, 2005). An alternative method for addressing this issue is to incorporate
a spatial autoregressive term in the traditional hedonic price function, as this
term captures the influence of omitted variables (Brasington & Hite, 2005) — this
study employed this method. These unmeasured influences help to determine
the value of neighbouring houses which, in turn, are related to the subject house.

4A popular alternative to OLS estimation is maximum likelihood estimation.
5We would like to thank an anonymous referee for pointing this out.
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2.2 Nonparametric regression

2.2.1 Kernel density estimation

Although the identification of the appropriate dependent variable and explana-
tory covariates remains relevant in the case of nonparametric regression, the
distribution for the unobserved random element and the functional form of
Equation (1) becomes less important (Pace, 1993; Haab and McConnell, 2002;
Cameron and Trivedi, 2005). Since nonparametric regression estimators esti-
mate E(y|x) directly, the specification of variable interactions are circumvented
(Pace, 1993). Integrating y times its conditional probability density function
(pdf ) produces E(y|x), where the pdf is the result of dividing pdf (y, x) by
pdf (x):

E(y|x) =

∫
y .pdf (y, x)/pdf (x)dy (3)

where: pdf (y, x) = the joint density of y and x
pdf (x) = the marginal density of x (Pace, 1993; Cameron and Trivedi, 2005).
Thus, a nonparametric estimate of E(y|x) can be derived if nonparametric

estimates of pdf (y, x) and pdf (x) can be estimated. Traditionally, nonparamet-
ric estimates of densities can be obtained by using histograms6 (Pace, 1993;
Cameron and Trivedi, 2005; Racine, 2008). The latter, however, produce dis-
continuities. To avoid these, the kernel method7 of nonparametric density es-
timation can be employed (Pace, 1993; Racine, 2008). This method employs a
function, K(·), called a kernel, whose value fluctuates inversely and smoothly
with ui:

g(xs0) = [1/(hn)][
∑n

i=1
K(ui)] (4)

where: n = the number of observations
h = the window width for a variable8

u1 = (x0j −−xij)/hj
A direct estimate of E(y|x) can, thus, be produced by employing a ker-

nel function to produce a smooth estimate of the appropriate densities (Pace,
1993; Racine, 2008). If the function is extended to include multiple variables
then the Nadaraya-Watson estimator9 (also called the local constant estimator)

6The construction of a histogram is relatively simple. The first step is to construct a series
of bins (Racine, 2008). For positive and negative integers m, the bins are intervals [x0 + mh,
x0 + (m + 1)h). Formally, the histogram is defined as:

f̂x = 1/n.(# of Xi in the same bin as x)/(width of bin containing x)

= 1/nh
∑n

i=1
1(Xi is in the same bin as x)

where: 1(A) = an indicator function which takes on the value of 1 if A is true, zero otherwise
(Racine, 2008). The researcher usually selects an origin x0 and bin width h by employing
rules-of-thumb. Both these choices have an impact on the resulting estimate (Racine, 2008).

7Rosenblatt (1956) introduced this method.
8Hedonic price theory, as applied to the housing market, provides a logical explanation for

h: it controls how many houses actually affect yi.
9This estimator was first formulated by Nadaraya (1964) and Watson (1964).
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results (Pace, 1993; Cameron and Trivedi, 2005; Racine, 2008). Given a spe-
cific instance of x, x0, this estimator produces the dependent variable’s (yi’s)
predicted value, y0, by linearly weighting10 it:

′g(x0) = E(y|x) =
∑n

i=1
yiwi (5)

where: wi = K(ui)/
∑n
i=1K(ui)

The multivariate kernel function is obtained by multiplying the kernel func-
tion of each variable together:

K(ui) =
∏p

j=1
K(uij) (6)

The Nadaraya-Watson estimator11 is a local constant estimator since it
assumes E(y|x) is equivalent to a constant in the local neighbourhood of x0
(Cameron and Trivedi, 2005; Racine, 2008). Alternatively, if one assumes g(x)
is linear in the x0 neighbourhood, then x0 = a0 + b0(x−−x0) in the x0 neigh-
bourhood. In order to obtain ĝ(x0) under these circumstances,

∑
iK((xi −

x0)/h)(yi − g0)2 must be minimized with respect to g0 (Cameron and Trivedi,
2005; Racine, 2008). The local linear regression12 minimizes

∑n

i
K((xi − x0)/h)(yi − a0 − b0(xi − x0))

2 (7)

with respect to a0 and b0 (Cameron and Trivedi, 2005; Racine, 2008). This
means that ĝ(x) is equal to â0 +b0(x − x0) in the x0 neighbourhood, and at

exactly x0, the estimate is given by ĝ’(x) = â0, and b̂0 can be interpreted as
an estimate of the first derivative ĝ’(x0) (Cameron and Trivedi, 2005; Racine,
2008). A major difference between the local constant estimator and the local
linear estimator is that the former has the property that irrelevant variables
can be smoothed out totally, whereas the latter does not, which may lead to
excessive variability (Racine, 2008).

2.2.2 Kernel coefficient estimation

Implicit price and welfare estimation in hedonic price studies rely on the use
of coefficient estimates for the covariates of interest. With a parametric model,
the coefficient, β, for a specific variable, xj , can be estimated by differentiating
the regression function, E(y|x), with respect to xj :

βj0 = ∂E(y|x)/∂xj (8)

The analogue to β in Equation (8), in the case of the Nadaraya-Watson esti-

mator, is the amorphous partial derivative, β̂j0. It is defined as “the numerical

10Positive kernels, such as the normal pdf, have weights that vary between 0 and 1.
11Regression based on joint densities only holds for the Nadaraya-Watson estimator.
12This is also known as the local polynomial method.
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derivative of the kernel estimator predictions with respect to the independent
variable” (Ullah, 1988; Pace, 1993), and depends upon ∂wi/∂xj :

∂E(y|x)/∂xj =
∑n

i=1
yi(∂wi/∂xj) (9)

Note, ∂wi/∂xj in Equation (9) can be separated into the sum of two quan-
tities if the product rule is invoked:

∂wi/∂xj = K1i +K2i (10)

where: K1i = K′(ui)/
∑n

i=1K(ui)
K2i = K′(ui)/[

∑n
i=1K(ui)]

2.[
∑n
i=1K(ui)]

K′(ui) = the partial derivative of the kernel function with respect to xj
(Ullah, 1988; Pace, 1993).

Substituting Equation (10) into Equation (8) produces the amorphous par-
tial derivative estimator:

β̃j0 =
∑n

i=1
yi(K1i +K2i) (11)

As was mentioned in Section 3.3.1, b̂0 can be interpreted as the local linear
model’s partial derivative estimate.

2.2.3 Kernel density estimation with discrete and continuous data13

Conventional hedonic price models very often contain both discrete and contin-
uous variables as predictors of house value. This does not pose a problem in
parametric models, but does require special treatment in the case of nonpara-
metric ones14 . Traditionally, estimation of frequency nonparametric models,
which include qualitative covariates, necessitated splitting the data into subsets
containing only the continuous covariates of interest. Smooth nonparametric
regression models, which smooth only the continuous data, would then be con-
structed for each of these subsets. This procedure may, however, lead to a
loss of efficiency. The most popular modern approach15 to dealing with a mix
of discrete and continuous data entails the use of the concept of “generalised
product kernels” (Racine and Li, 2004; Racine, 2008). This approach avoids
sample splitting, which means that sound nonparametric estimation can take
place using the full sample of observations. In the case of continuous variables,
standard continuous kernels (denoted by W (·)) are employed, whereas in the

13A very thorough discussion of nonparametric estimation of regression functions with both
categorical and continuous data is provided by Racine and Li (2004).

14 In earlier times, the presence of categorical regressors necessitated the use of semipara-
metric models (see Robinson, 1988; Stock, 1989). This was before Li and Racine (2004)
and Racine and Li (2004) developed a nonparametric kernel regression technique which could
smooth out both ordered and unordered categorical data.

15Traditionally, the “frequency approach” was adopted by researchers to deal with mixed
data (Racine, 2008). According to this approach, the continuous data were broken up “into
subsets according to the realizations of the discrete data (“cells”)” (Racine, 2008).
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case of an unordered discrete variable, x̃d, Aitchison and Aitken’s (1976) kernel
is employed:

l̄(X̄d
i , x̄

d) = {
1− λ, if X̄d

t , x̄
d,

λ
c−1

, otherwise.,
(12)

Wang and Van Ryzin’s (1981) kernel can be employed for an ordered discrete
variable, x̃d:

ı̃(X̃d
i , x̃

d) = {
1− λ, if X̃d

i ,= x̃d
λ−1
2
, λ|X̃d

i − x̃d|, ifX̃d
i �= x̃d.

(13)

One can define a generalised product kernel for one continuous, one un-
ordered, and one ordered variable as follows:

K(·) =W (·) ∗ ı̃(·) ∗ ı̃(·) (14)

The product kernel employed above is the same kernel used in the Nadaraya-
Watson and local linear estimators (though for the local linear estimator only
the continuous predictors appear in the polynomial component). A joint prob-
ability/density function defined over mixed data can now be estimated by em-
ploying the generalised product kernels (Racine, 2008). The kernel estimator of
the pdf for one unordered discrete variable, x̃d, and one continuous variable, xc,
is as follows:

ĝ(x̄d, xc) = 1/nhxc
∑n

i=1
l̄(X̄d

i , x̄d)(
xci − xc

W (hxc)
) (15)

2.2.4 Parametric versus nonparametric specifications16

Three measures are frequently employed to assess the performance of parametric
models compared to their nonparametric counterparts, namely goodness-of-fit
values, out-of-sample prediction performance, and revealed performance tests.
Goodness-of-fit comparison

Conventionally, the within-sample goodness-of-fit measure for the parametric
model is compared to the one for the nonparametric model. To carry out this
comparison a nonparametric R2 measure comparable to the parametric R2 is
required. This measure can be formally defined as follows by letting Yi represent
the outcome and Ŷi the fitted value for observation i:

R2 = [
∑n

i=1
(Yi − ȳ)(Ŷi − ȳ)]2/

∑n

i=1
(Yi − ȳ)2

∑n

i=1
(Ŷi − ȳ)2 (16)

The R2 defined above will always lie in the range [0,1] where 1 implies a
perfect fit and 0 implies no predictive power above that provided by the uncon-
ditional mean of the target (Racine, 2008). If, for example, the nonparametric

16The quality of the data impacts heavily on the performance of conventional estimators,
such as OLS (Pace, 1993). Not unlike a nonparametric estimator, the OLS’s predicted value
of the dependent variable is a weighted mean of the observations. But unlike the nonpara-
metric estimator, the OLS weights can fall below zero and exceed one. Thus, the quality of
the data and the presence of outlying observations affect the OLS estimator more than the
nonparametric one (Pace, 1993).
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model has a better goodness-of-fit compared to the parametric one then it is
appropriate to investigate whether the improvement is due to overfitting or
whether it reflects the fact that the nonparametric model is more faithful to the
underlying data generating process (DGP).
Out-of-sample prediction performance

The primary aim of statistical valuation models, such as the hedonic price
one, is out-of-sample prediction. In order for a nonparametric estimator to
outperform the standard OLS estimator, it must show superior out-of-sample
prediction capabilities (see Racine and Parmeter, 2012). OLS and nonpara-
metric estimators could compete on the basis of out-of-sample errors, which
are estimated via cross-validation (see Li and Racine, 2004). More specifically,
the original sample is split into two independent training/evaluation samples,
namely n1 and n2. Each model is then fitted on the n1 training observations
and evaluated on the n2 hold-out observations via the predicted squared error
(PSE) criterion, namely n−1

2

∑n2

i=1(yi − ŷ
i
)2, where the yis are the house price

values for the hold-out observations and the ŷis are the predicted values (Li and
Racine, 2004). This process is repeated M times after which the distribution of
the PSEs for the models are compared.
Revealed performance tests

In addition to the goodness-of-fit comparison and cross-validation exercise,
Racine and Parmeter’s (2012) revealed performance (‘RP’) test could be per-
formed to test whether there is any significant difference among the parametric
and nonparametric models in terms of their expected performance on unseen
data. More specifically, a simple (paired) test of differences in means for the
distributions of the models’ PSEs is carried out.

The test of revealed performance carried out in this study tests two distinct
null hypotheses. First, we test if the local constant nonparametric and linear
parametric models have equal PSEs, and second, we test if the local linear
nonparametric and linear parametric models have equal PSEs. For both tests
our alternative hypothesis is that the less general model has a greater PSE.

2.3 Data collection

The housing market data in this study comes from the suburb of Walmer, Port
Elizabeth. Walmer comprises of a total of 2625 properties and a total of 1326
transactions took place from 1995 — 2009 (excluding repeat sales) (South African
Property Transfer Guide, 2011). The dependent variable of the empirical model
is the actual recorded sales price of a house. The Absa house price index was
used to inflate the sales price of each individual house to constant 2009 rands.
Data on 170 houses that have been traded at least once during the past 15
years in Walmer were collected, resulting in a sample size of 13%. Data on the
following variables17 were collected, namely sales price, number of bathrooms,
number of bedrooms, the presence of a swimming pool, the presence of air con-
ditioning, the presence of a garage, the presence of an electric fence, the number

17Research by Sirmans et al. (2005) was consulted in order to select appropriate structural
and neighbourhood characteristics.
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of stories, the size of the erf, age, distance to a social housing development
(Walmer Township), and distance to a school (Clarendon primary school). In
addition, an autoregressive term18 was also estimated to accommodate the fact
that the transaction price of a house is determined not only by its structural
and neighbourhood characteristics, but also by transaction prices of prior sales
within its vicinity (Can and Megbolugbe, 1997).

3 Results and Discussion

3.1 Parametric Hedonic Model Summary

We first estimate a linear hedonic model using OLS, and then subject the model
to some specification analysis. The hedonic price model used in this study is
assumed to be separable in the unobservables, which implies that the effects
of the different observables on the price are homogenous.19 Summary results
(parameter estimates) are summarized in Table 1.

The results from the linear hedonic regression generally conform to a priori
expectations - the number of stories, the size of the erf, the presence of a pool
and the presence of an electric fence all have significant, positive effects on
property values in the sample. In addition, a significant positive relationship
exists between house prices and the variable of interest, namely distance from
the Gqebera Township (i.e. DISTWAL)20 . The coefficient of the latter covariate
can be interpreted as its implicit price (or marginal value): the average price
of a house in the Walmer neighbourhood increases by R228.85 for every metre
further away from the low-cost housing development. According to Table 1,
the model estimated explains approximately 59 percent of the variation in the
dependent variable (actual sales price).

We test whether the parametric model is consistent with the data being
analyzed using Ramsey’s (1969) test. According to this test, the parametric
model is rejected by the data (the p-value for the null of correct specification

18This spatial relationship is appropriate because an individual will often base his/her offer
bid after having researched the prior transaction prices in the surrounding area (Brasington
and Hite, 2005). This practice, known as “comparable sales” is often employed by real estate
experts when trying to estimate the market value of a specific property (Can and Megbolugbe,
1997). The presence of spatial autocorrelation may lead to unsatisfactory estimate of the
coefficients. In order to address this issue in this study, a spatial autoregressive term was
included in order to determine the impact of prior transactions on the sale price of the selected
house.

19We would like to thank an anonymous referee for pointing this out.
20An anonymous referee pointed out that the geographical distance from the township may

have remained the same throughout the 15 years covered by the data, but the perceived nui-
sance of the proximity to the township would likely be a dynamic factor, which cannot be
captured by a simple geographical measure. The referee suggested that a possible solution to
this problem would be to weight the latter by, for example, a crime perception measure. The
authors acknowledge that this may be a complication with the use of a simple geographical
measure. They were, however, forced to use data spanning 15 years simply because of insuf-
ficient house sales data. Unfortunately, no data is available to compile a crime perception
measure for that period.
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is 0.006119). Hence, we investigate recently developed nonparametric methods
(i.e. kernel methods) capable of handling the mix of categorical and continuous
data types.

3.2 Nonparametric Hedonic Models

Having rejected the parametric hedonic model, we next turn to the estimation
of two nonparametric hedonic price models, namely a local constant one and a
local linear one. The bandwidths for both models were selected via least-squares
cross-validation21 . Since the hedonic price model contains a mix of continuous
and categorical predictors (see Section 2.3), we adopt the nonparametric ap-
proaches described in Li and Racine (2004) and Racine and Li (2004). For our
analysis, we begin with a local constant specification having the capability to
automatically remove irrelevant regressors, both continuous and categorical (see
Appendix A, Table 2). A local linear model, which also contains all the regres-
sors, is estimated for comparative purposes (see Appendix A, Table 3). We then
retain the variables that were not smoothed out by the local constant estimator,
and estimate both the local constant and local linear22 models on the subset of
regressors (see Appendix A, Tables 4 and 5) — these reduced models are deemed
the preferred ones since irrelevant regressors have been eliminated.

We display partial regression plots in Figures 1 and 2 for the local constant
and local linear nonparametric models, respectively. These plots represent a 2D
plot of the outcome y versus one explanatory variable xj when all other variables
are held constant at their respective medians/modes (Racine, 2008). In addi-
tion, we also plot bootstrapped variability bounds — these are frequently more
desirable compared to those obtained through the asymptotic approximations
(Racine, 2008) — Figures 3 and 4 present the partial response plots along with
their bootstrapped error bounds for the local constant and local linear models,
respectively.

Figure 1 reveals that (holding other regressors constant at their median/mode),
houses with more than two bedrooms sell for higher prices than those that only
have two. Houses also sell for more if they have a swimming pool, one or two
air conditioners instead of none, and two stories instead of one. Houses with an
electric fence, however, sell for less than ones that have no fence. Figure 2 shows
very similar plots for the discrete variables, except for the electric fence variable
- houses with an electric fence sell for more than ones that have no fence. In
terms of the continuous variable plots, house prices fall the further away a house
from a primary school (DistClarendon), house prices rise the greater the size
of the erf, and house prices rise the further away houses are located from the
Gqebera Township (see Figure 1). The plots of continuous variables in Figure
2 are generally similar to those in Figure 1. Figures 3 and 4 below show the
first derivative of each of the plots in Figures 1 and 2 above with respect to

21Four other general bandwidth selection methods exist, namely reference rules-of-thumb,
plug-in methods, likelihood cross-validation and bootstrap methods.

22The local linear specification has improved finite-sample properties though it lacks the
ability to automatically remove continuous variables.
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the x-axis variable (i.e. marginal effects, the rate of change) while those for the
categorical are finite differences (all holding of x-axis variables constant at their
median/modes).

According to the local constant estimation (see Appendix A, Table 2), the
following regressors are irrelevant, namely Bath, GARAGEDUMMY and Age —
the bandwidth, h, for the continuous regressor is very large and the bandwidth,
λ, for the discrete regressors is equal to unity (the upper bound value of λ
is one)23 . The nonparametric models explain substantially more variation in
the dependent variable compared to the parametric model, viz. the parametric
model has an R-squared of 0.5906 (see Table 1 above), the local linear (on the
restricted subset) has an R-squared of 0.874, and the local constant (on the
restricted subset) an R-squared of 0.9842 (see Appendix A, Tables 4 and 5).

In addition, the performance of the parametric model versus that of the lo-
cal linear model is judged by looking into the relative size of the coefficient on
DISTWAL, the variable of interest in this study (the local linear estimator au-
tomatically provides smooth estimates of the first-order partial derivatives while
the local constant does not — see Section 2.2.2). For the parametric model it is
228.8465, while the derivative associated with DISTWAL for the non-parametric
local linear model, evaluated at the median value of DISTWAL (median=1800)
holding all other regressors constant at their median/mode, is 235.1758 — see
Figures 3 and 4, DISTWAL panel. As mentioned above, these coefficients repre-
sent the amount by which the price of an average house in the sample increases
by for every additional meter in distance away from the Gqebera Township
(R228.85 and R235.18, respectively, for the parametric and local linear mod-
els). The difference between the coefficient estimates (i.e. implicit prices) is
slight and as a result the models are also judged in terms of their out-of-sample
predictions (see Racine and Parmeter, 2012).

We split the original sample into independent training/evaluation samples,
fit each model on the training and then evaluate on the hold-out sample via pre-
dicted squared error (PSE) (Figure 5 shows that the PSE for the local constant
nonparametric model is the lowest followed by the local linear nonparametric
model and then the linear parametric model).

We repeat these M=10,000 times and then compare the distribution of the
PSEs. The relative local linear median PSE is 0.892 (local linear nonparamet-
ric/parametric), and the relative mean PSE is 0.9612. In other words, the local
linear nonparametric model is approximately 11% more efficient (taking the me-
dian PSE) compared to the linear parametric model as measured in terms of
performance on independent data. The relative local constant median PSE is
0.7712 (local constant nonparametric/parametric), and the relative mean PSE
is 0.7919. Thus, the local constant nonparametric model is approximately 23%
more efficient (taking the median PSE) compared to the linear parametric model
as measured in terms of performance on independent data.

23To obtain consistent estimators when employing kernel methods with continuous and
discrete variables, two sets of conditions, namely h→ 0 and λ → 0, must be met (Racine and
Li, 2004).
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Next, we test whether there is any significant difference among the mod-
els in terms of their expected performance on unseen data using Racine and
Parmeter’s (2012) revealed performance (‘RP’) test. The test of Racine and
Parmeter (2012) rejects the null that the parametric model has out-of-sample
performance better than to or equal to the nonparametric local linear model
at all conventional levels (P-value =1.2635 × 10−11), and also rejects the null
that parametric model has out-of-sample performance better than to or equal
to the nonparametric local constant model at all conventional levels (P-value =
5.1824 × 10−285). We therefore conclude that the improvement in in-sample fit
revealed by the nonparametric specifications is not simply an artifact of ‘over-
fitting’, rather, it reflects a genuine improvement in the model’s fidelity to the
underlying data generating process (DGP) since they also outperform the para-
metric model on independent data drawn from the same DGP as witnessed by
the results of Racine and Parmeter’s (2012) RP test.

4 Conclusion

This study has considered parametric and non-parametric estimation of a he-
donic price model to determine the impact of social cost housing on nearby
residential property prices of a neighbourhood located in Port Elizabeth, South
Africa. This paper finds that the Gqebera Township (a proxy for a social hous-
ing development) has a statistically significant negative impact on the Walmer
neighbourhood’s property prices, regardless of which regression technique is
employed. Not unlike other international studies (see for example Pace (1993),
Anglin and Gencay (1996) and Bin (2004)), the study found that the parametric
regression was inferior to the nonparametric regression based on out-of-sample
price predictions and Racine and Parmeter’s (2012) revealed performance test.
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Table1: Summary table for linear regression parameter estimates 

 

(Intercept) 

 

Estimate 

-87293.6097 

 

Std.  Error 

359650.8403 

 

t value 

-0.24 

 

Pr(>|t|) 

0.8086 
Bath.L 408322.3894 416112.5574 0.98 0.3281 

Bath.Q -100421.7858 351462.8087 -0.29 0.7755 

Bath.C 279126.0358 404325.2250 0.69 0.4911 
Bath^4 194021.3003 347375.4407 0.56 0.5774 

Bath^5 -92973.8715 347413.0600 -0.27 0.7894 

Bath^6 -270698.2779 348347.3308 -0.78 0.4384 

Bath^7 -496861.6509 382333.5972 -1.30 0.1959 

Bath^8 -555537.3474 392735.2436 -1.41 0.1594 

Bath^9 -494281.3030 333877.7317 -1.48 0.1410 

Bath^10 -299517.9008 387141.6192 -0.77 0.4404 

Bath^11 101728.3256 378272.5798 0.27 0.7884 

Bath^12 562428.7237 256995.4739 2.19 0.0303 

Bed.L -146195.6483 430422.4872 -0.34 0.7346 

Bed.Q -248109.5167 380571.6554 -0.65 0.5155 

Bed.C 457196.9928 315237.2782 1.45 0.1492 
Bed^4 265145.0986 244150.4456 1.09 0.2793 

Bed^5 -36806.6807 162899.5151 -0.23 0.8216 

Swim.L 235260.7668 82136.0953 2.86 0.0048 

Aircon.L 50802.1781 410431.0117 0.12 0.9017 

Aircon.Q -62180.3331 239982.0027 -0.26 0.7959 

GARAGEDUMMY.L 14342.9991 84190.3596 0.17 0.8650 

ElecFence.L 170664.1376 73879.2691 2.31 0.0223 

Stories.L 183955.9863 88875.2734 2.07 0.0403 

DISTWAL 228.8465 86.8565 2.63 0.0094 

DistClaredon -28.8512 76.0022 -0.38 0.7048 

Size.Erf 637.0159 80.7348 7.89 0.0000 

Age 1430.1180 2105.1905 0.68 0.4980 

AUTO.REGRESSIVE.TERM 0.0386 0.0690 0.56 0.5769 

Adjusted R
2 

0.5906 
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Figure 1: Partial local constant model plots 
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Figure 2: Partial local linear model plots 
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Figure 3: Local constant model first derivative plots 
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Figure 4: Local linear model first derivative plots 

 

 
 
 
 

Figure 5: Box plot of PSEs 
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Appendix A:  Model Summaries 
 

Table 2: Local Constant Model Summary 

 

 

Regression  Data  (170  observations,  12  variable(s)): 

 

Regression  Type:  Local-Constant 

Bandwidth  Selection  Method:  Least  Squares  Cross-Validation 

Formula:  Price09  ~  Bath  + Bed  + Swim  + Aircon  + GARAGEDUMMY  +  ElecFence  + 

Stories  + DISTWAL  + DistClaredon  + Size.Erf  +  Age  + AUTO.REGRESSIVE.TERM 

Bandwidth  Type:  Fixed 

Objective  Function  Value:  2.765e+11  (achieved  on  multistart  9992) 

 

Exp.  Var.  Name:  Bath Bandwidth:  1  Lambda  Max:  1 

Exp.  Var.  Name:  Bed Bandwidth:  0.05726 Lambda  Max:  1 

Exp.  Var.  Name:  Swim Bandwidth:  0.2749 Lambda  Max:  1 

Exp.  Var.  Name:  Aircon Bandwidth:  0.0009241 Lambda  Max:  1 

Exp.  Var.  Name:  GARAGEDUMMY Bandwidth:  1  Lambda  Max:  1 

Exp.  Var.  Name:  ElecFence Bandwidth:  0.03791 Lambda  Max:  1 

Exp.  Var.  Name:  Stories Bandwidth:  0.004072 Lambda  Max:  1 

Exp.  Var.  Name:  DISTWAL Bandwidth:  223  Scale  Factor:  0.6586 

Exp.  Var.  Name:  DistClaredon Bandwidth:  209.3 Scale  Factor:  0.5551 

Exp.  Var.  Name:  Size.Erf Bandwidth:  107.8 Scale  Factor:  0.3516 

Exp.  Var.  Name:  Age Bandwidth:  44844766    Scale  Factor:  7135978 

Exp.  Var.  Name:  AUTO.REGRESSIVE.TERM  Bandwidth:  480685 Scale  Factor:  1.351 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  5 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  7 

 

Regression  Data:  170  training  points,  in  12  variable(s) 

Bath Bed Swim Aircon  GARAGEDUMMY  ElecFence    Stories 

Bandwidth(s): 1  0.05726  0.2749  0.0009241 1  0.03791  0.004072 

DISTWAL  DistClaredon  Size.Erf Age  AUTO.REGRESSIVE.TERM Bandwidth(s):

 223  209.3 107.8  44844766  480685 

 

Kernel  Regression  Estimator:  Local-Constant 

Bandwidth  Type:  Fixed 

Residual  standard  error:  63837 

R-squared:  0.9932 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  5 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  7 
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Table 3: Local Linear Model Summary 

 

 

Regression  Data  (170  observations,  12  variable(s)): 

 

Regression  Type:  Local-Linear 

Bandwidth  Selection  Method:  Least  Squares  Cross-Validation 

Formula:  Price09  ~  Bath  + Bed  + Swim  + Aircon  + GARAGEDUMMY  +  ElecFence  + 

Stories  + DISTWAL  + DistClaredon  + Size.Erf  +  Age  + AUTO.REGRESSIVE.TERM 

Bandwidth  Type:  Fixed 

Objective  Function  Value:  2.984e+11  (achieved  on  multistart  6110) 

 

Exp.  Var.  Name:  Bath Bandwidth:  0.5042 Lambda  Max:  1 

Exp.  Var.  Name:  Bed Bandwidth:  1 Lambda  Max:  1 
Exp.  Var.  Name:  Swim Bandwidth:  

0.007697 

Lambda  Max:  1 
Exp.  Var.  Name:  Aircon Bandwidth:  0.4159 Lambda  Max:  1 
Exp.  Var.  Name:  

GARAGEDUMMY 

Bandwidth:  0.04359 Lambda  Max:  1 
Exp.  Var.  Name:  

ElecFence 

Bandwidth:  1 Lambda  Max:  1 
Exp.  Var.  Name:  Stories Bandwidth:  1 Lambda  Max:  1 
Exp.  Var.  Name:  DISTWAL Bandwidth:  745.2 Scale  Factor:  

2.201 Exp.  Var.  Name:  

DistClaredon 

Bandwidth:  550.3 Scale  Factor:  

1.459 Exp.  Var.  Name:  Size.Erf Bandwidth:  523.3 Scale  Factor:  

1.707 Exp.  Var.  Name:  Age Bandwidth:  

14115267 

Scale  Factor:  

2246109 Exp.  Var.  Name:  AUTO.REGRESSIVE.TERM  Bandwidth:  6.534e+12  Scale  Factor:  18369680 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  5 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  7 

 

Regression  Data:  170  training  points,  in  12  variable(s) 

Bath  Bed Swim  Aircon  GARAGEDUMMY  ElecFence  Stories 

Bandwidth(s):  0.5042 1  0.007697  0.4159 0.04359 1 1 

DISTWAL  DistClaredon  Size.Erf Age  AUTO.REGRESSIVE.TERM Bandwidth(s):

 745.2 550.3 523.3  14115267  6.534e+12 

 

Kernel  Regression  Estimator:  Local-Linear 

Bandwidth  Type:  Fixed 

Residual  standard  error:  176909 

R-squared:  0.9558 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  5 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  7 
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Table 4: Local Constant Model (Subset) Summary 

 

 

Regression  Data  (170  observations,  9  variable(s)): 

 

Regression  Type:  Local-Constant 

Bandwidth  Selection  Method:  Least  Squares  Cross-Validation 

Formula:  Price09  ~  Bed  + Swim  + Aircon  + ElecFence  +  Stories  + 

DISTWAL  + DistClaredon  + Size.Erf  +  AUTO.REGRESSIVE.TERM 

Bandwidth  Type:  Fixed 

Objective  Function  Value:  2.741e+11  (achieved  on  multistart  5553) 

 

Exp.  Var.  Name:  Bed Bandwidth:  0.09719 Lambda  Max:  1 

Exp.  Var.  Name:  Swim Bandwidth:  0.3697 Lambda  Max:  1 

Exp.  Var.  Name:  Aircon Bandwidth:  0.004051 Lambda  Max:  1 

Exp.  Var.  Name:  ElecFence Bandwidth:  0.05954 Lambda  Max:  1 

Exp.  Var.  Name:  Stories Bandwidth:  0.012 Lambda  Max:  1 

Exp.  Var.  Name:  DISTWAL Bandwidth:  240  Scale  Factor:  0.7613 

Exp.  Var.  Name:  DistClaredon Bandwidth:  234.8 Scale  Factor:  0.6688 

Exp.  Var.  Name:  Size.Erf Bandwidth:  118  Scale  Factor:  0.4134 

Exp.  Var.  Name:  AUTO.REGRESSIVE.TERM  Bandwidth:  538209 Scale  Factor:  1.625 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  4 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  5 

 

Regression  Data:  170  training  points,  in  9  variable(s) 

Bed Swim Aircon  ElecFence  Stories  DISTWAL 

Bandwidth(s):  0.09719  0.3697  0.004051 0.05954 0.012 240 

DistClaredon  Size.Erf  AUTO.REGRESSIVE.TERM 

Bandwidth(s): 234.8 118  538209 

 

Kernel  Regression  Estimator:  Local-Constant 

Bandwidth  Type:  Fixed 

Residual  standard  error:  97542 

R-squared:  0.9842 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  4 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  5 
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Table 5: Local Linear  Model (Subset) Summary 

 

 

Regression  Data  (170  observations,  9  variable(s)): 

 

Regression  Type:  Local-Linear 

Bandwidth  Selection  Method:  Least  Squares  Cross-Validation 

Formula:  Price09  ~  Bed  + Swim  + Aircon  + ElecFence  +  Stories  + 

DISTWAL  + DistClaredon  + Size.Erf  +  AUTO.REGRESSIVE.TERM 

Bandwidth  Type:  Fixed 

Objective  Function  Value:  3.351e+11  (achieved  on  multistart  8820) 

 

Exp.  Var.  Name:  Bed Bandwidth:  

0.5552 

Lambda  Max:  1 

Exp.  Var.  Name:  Swim Bandwidth:  

0.4361 

Lambda  Max:  1 
Exp.  Var.  Name:  Aircon Bandwidth:  

0.3808 

Lambda  Max:  1 
Exp.  Var.  Name:  

ElecFence 

Bandwidth:  0.82 Lambda  Max:  1 
Exp.  Var.  Name:  Stories Bandwidth:  

0.4245 

Lambda  Max:  1 
Exp.  Var.  Name:  DISTWAL Bandwidth:  1958 Scale  Factor:  

6.211 Exp.  Var.  Name:  

DistClaredon 

Bandwidth:  563 Scale  Factor:  

1.604 Exp.  Var.  Name:  Size.Erf Bandwidth:  474 Scale  Factor:  

1.661  Exp.  Var.  Name:  AUTO.REGRESSIVE.TERM  Bandwidth:  1.1e+10  Scale  Factor:  

 33220 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  4 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  5 

 

Regression  Data:  170  training  points,  in  9  variable(s) 

Bed Swim  Aircon  ElecFence  Stories  DISTWAL  DistClaredon 

Bandwidth(s):  0.5552  0.4361  0.3808 0.82    0.4245 1958 563 

Size.Erf  AUTO.REGRESSIVE.TERM Bandwidth(s): 474 

 1.1e+10 

 

Kernel  Regression  Estimator:  Local-Linear 

Bandwidth  Type:  Fixed 

Residual  standard  error:  297367 

R-squared:  0.874 

 

 

Continuous  Kernel  Type:  Second-Order  Gaussian 

No.  Continuous  Explanatory  Vars.:  4 

 

Ordered  Categorical  Kernel  Type:  Wang  and  Van  Ryzin 

No.  Ordered  Categorical  Explanatory  Vars.:  5 
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