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Abstract

This paper assesses the ability of the Rotterdam model and of three versions

of the almost ideal demand system (AIDS) to recover the time-varying elastici-

ties of a true demand system and to satisfy theoretical regularity. Using Monte

Carlo simulations, we �nd that the Rotterdam model performs better than the

linear-approximate AIDS at recovering the signs of all the time-varying elastici-

ties. More importantly, the Rotterdam model has the ability to track the paths

of time-varying income elasticities, even when the true values are very high. The

linear-approximate AIDS, not only performs poorly at recovering the time-varying

elasticities but also badly approximates the nonlinear AIDS.
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1 Introduction

The almost ideal demand system of Deaton and Muellbauer (1980) and the Rotter-

dam model (Barten 1964, 1968, 1977; Theil 1965,Theil 1975a,Theil 1975b) have been

widely adopted in applied demand research. Their attractiveness is explained by the

fact that both demand speci�cations share desirable properties that are not possessed

by other local �exible functional forms such as the Generalized Leontief (Diewert, 1971)

and the Translog (Christensen et al., 1975): local �exibility, consistency with demand

theory, linearity and parsimony with respect to the parameters. They also have identi-

cal data requirement so that no additional variable is needed in order to estimate one

speci�cation whenever the estimation of the other is possible.

However, the two speci�cations lead to di�erent results in some applications (Alston

and Chalfant, 1991), prompting the question of the appropriateness of either speci�ca-

tion for a given dataset. Nevertheless, the adoption of one of the models for empirical

demand analysis has been purely arbitrary and possibly motivated by the personal ac-

quaintance of the researcher with each of them. This is understandable since economic

theory does not provide a basis for ex ante discriminating among the �exible functional

forms in general, and between the AIDS and the Rotterdam model (RM) in particular.

The observed discrepancies between the outcomes of the two speci�cations require

adopting a research strategy that allows to discriminate between them not only based on

the demand properties contained in the speci�c dataset, but also on their consistency

with the particular maximization problem that has produced or that is believed to

have produced the data. Thus, choosing the best approximating structure for the true

underlying model should be the result of a well-de�ned methodology that establishes the

true properties contained in the data as a benchmark. This applies whether consumer

preferences are postulated to be �xed as in the neoclassical demand theory, or otherwise

subject to shifts of a speci�c nature.
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Alston and Chalfant (1993) developed a statistical test of the linear-approximate

AIDS against the RM and then applied it to the meat demand in the United States.

The test concluded in favor of the acceptance of the RM, rejecting the AIDS. The same

conclusion obtained with Barten (1993)'s test. However, the authors warned that their

�nding could not be interpreted as an evidence of the superiority of the RM over the

AIDS in a general way. Furthermore, their test may lead to a di�erent conclusion if

applied to a di�erent dataset. Not surprisingly, while Dameus et al. (2002) found that

the Rotterdam model was preferred to the linear-approximate AIDS, Taljaard et al.

(2006) found that the linear approximate AIDS outperformed the Rotterdam model.

It clearly appears that the di�erence in the performance of the AIDS and the RM from

one dataset to another may mainly result from the fact that the datasets are produced

by di�erent data generating processes.

On the other hand, Barnett and Seck (2008) conducted a Monte Carlo comparison

of the nonlinear AIDS, the linear-approximate AIDS and the RM. They sought to

determine which of the three speci�cations could perform better in terms of the ability

to recover the elasticities of the true demand system. Their �nding was that both

the nonlinear AIDS and the RM performed well when substitution among goods was

low or moderately high. However, the nonlinear AIDS model performed better when

the substitution among goods was very high. Finally, the RM performed better at

recovering the true elasticities within separable branches of a utility function. In this

experiment, the linear-approximate AIDS performed badly and was found to be a poor

approximation to the nonlinear AIDS.

It is noteworthy that both papers postulated constant parameters in the demand

functions and the underlying utility functions. However, when using real data, the

consistency of the estimated coe�cients of the demand system can be compromised

if one wrongly assumes the constancy of the parameters while they are actually ran-
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dom or varying over time. In this case the constant-coe�cient model will not only fail

to capture the possible long-run dynamics in the data but also will produce a poor

approximation to the underlying data generating process (Leybourne, 1993). For ex-

ample, empirical analyses using the linear AIDS have shown that including a simple

error correction mechanism or time-varying parameters outperform the static version

of the model (Leybourne, 1993; Iootty et al., 2009; Nzuma and Sarker, 2010). However,

Li et al. (2006) have pointed out that both the time-varying parameter long run linear

AIDS and the time-varying parameters error-correction linear AIDS outperform their

�xed parameters counterparts in terms of forecasting demand levels. In addition, given

the conclusions on the performance of the static versions of the linear AIDS and the

Rotterdam model (Alston and Chalfant, 1993; Dameus et al., 2002; Taljaard et al.,

2006; Barnett and Seck, 2008), it is important that further investigation be conducted

in order to determine whether or not the advantages of one demand speci�cation on

the other can be preserved when the constant-parameters assumption is abandoned in

a Monte Carlo study.

This paper evaluates the performance of the nonlinear AIDS, the linear-approximate

AIDS and the Rotterdam model when the parameters of the model of consumer prefer-

ences and that of the resulting demand system are permitted to vary over time. To the

best of our knowledge, such an assessment has not been attempted yet. The present

paper shall contribute to the literature by �lling this gap.

The motivation for undertaking this study can be put forth into a threefold ar-

gument. First, the real world economic system is constantly subject to shocks that

translate into technological and institutional changes as well as shifts in consumer pref-

erences. The interaction of these shocks leads to more or less permanent changes in

economic behavioral relationships. Therefore, assuming time-varying parameters helps

to capture the dynamics of speci�c nature in these economic relationships. Second,
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accounting for shifting consumer preferences allows to deepen our understanding of

consumer behavior outside the neoclassical framework of �xed tastes. Moreover, such

an approach helps break with the old tradition of considering the subject as pertain-

ing to social disciplines other than economics. Third, both the RM and the AIDS are

local �rst-order Taylor series approximations that are intended to approximate a true

demand system derived from any utility maximization problem. When �tting the data

to any of these �exible functional forms, an implicit assumption is that there exists an

unknown true function of the variables of interest that has generated the observed data

given a set of parameters. Since the approximation provided by each functional form

is only locally valid, assuming a single value for the parameter vector is more unlikely

to provide an adequate approximation of the true demand system that underlies the

observed data. This idea has been expressed for the RM by Barnett (1979) and Bryon

(1984), and for the AIDS by Leybourne (1993).

It is customary to assume that consumer preferences are a�ected by taste-changing

factors. These factors can be captured in the consumer's behavioral model by postu-

lating, on the one hand, the interdependence of consumer preferences in terms of my-

opic habit formation (Gaertner, 1974; Pollak, 1976, 1978; Alessie and Kapteyn, 1991;

Kapteyn et al., 1997). On the other hand, one can make the assumption of simulta-

neous consumption decisions (Karni and Schmeidler, 1990) or of intrinsic reciprocity

or consumer altruism (Sobel, 2005). Finally, the parameters in the functional form

of the consumer model may be assumed as functions of the exogenous taste changing

factors or depending on stochastic variables (Ichimura, 1950; Tintner, 1952; Basmann,

1954�1955, 1956, 1972; Barnett, 1979; Basmann et al., 2009; Barten, 1977; Brown and

Lee, 2002). In this paper's analytical framework, stochastic factors are considered to

a�ect the marginal utilities and to induce preference changes over time through the

parameters of the utility function.
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The treatment of varying marginal utilities in this paper di�ers from Basmann

(1985) in that we will not consider multiplicative functional forms for the marginal

utilities. In contrast, we shall assume that the stochastic shocks to consumer preferences

a�ect parameters of the marginal rates of substitution over time. In addition, we

shall explicitly specify the time-varying process for the stochastic chocks to consumer

preferences and estimate the implied time-varying parameters in the demand functions.

The analysis shall be conducted in the framework of Harvey (1989)'s structural

time series models. We �rst assume a pure random walk process for the parameters

in the demand systems and compute the time-varying elasticities accordingly. Second,

we assume a local trend model speci�cation where the time-varying intercept in each

demand equation is speci�ed as a random walk with drift, with the drift itself being a

random walk. The two approaches have been respectively used by Leybourne (1993)

and Mazzocchi (2003) to estimate time-varying parameters in the linear-approximate

AIDS. However, none of the papers attempted to compare the performance of the

linear-approximate AIDS neither to that of the nonlinear AIDS nor to that of the RM.

The scope of the results in this paper will be limited to the approximating time-

varying elasticities (elasticities of substitution, income and compensated price elastic-

ities) that have a counterpart in the set of relevant elasticities derived from the true

model. The approximating time-varying elasticities will be calculated using the esti-

mated time-varying coe�cients in each demand speci�cation. Time-varying parameters

shall be estimated in each demand system by the Kalman �lter and passed through the

Kalman smoother for their revision, after appropriately representing each demand spec-

i�cation in a state space form.

The paper is organized in 8 sections, including this introduction. The true model

is described in section 2 and the time-varying parameter versions of the AIDS and the

Rotterdam model are speci�ed in section 3. Section 4 provides the state space represen-
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tation of the time-varying parameter AIDS and RM. The Monte Carlo experiment and

the data generation procedure are described in section 5, while the estimation method

and results are presented in sections 6 and 7 respectively. Section 8 summarizes the

�ndings and concludes with their empirical implications.

2 The true model

The consumer's problem is speci�ed as that of maximizing the time-varying param-

eter utility function

ut = u (xt; Θt) ,

subject to

p′txt = mt

Θt = Θt−1 + εΘ,t.

(1)

where Θt = (θ1t, θ2t, · · · , θnt) is the vector of the parameters that describe the form of

the ordinal utility function at each time period t = 1, 2, ..., T ; pt = (p1t, p2t, · · · , pnt)

is the price vector and mt is the consumer's expenditure. The speci�cation in equation

(1) implies that only the parameters of the utility function are time-varying and that

the functional form of the utility function is time-invariant.

It is assumed that the speci�cation of the time-varying structure of the parameter

vector is such that the utility function ut possesses nice properties at each time period

t, that is ut is assumed to be a well-behaved function that satis�es all the regularity

conditions of consumer demand theory(increasingness, quasiconcavity, continuity, etc.).

In addition, the shocks to the parameter vector a�ect the marginal rates of substitution

and hence translate into demand functions with time-varying parameters. An important

assumption that underlies the model in equation (1) is that the parameters of the utility
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function are a�ected only by the stochastic process that govern the preference shifting

factors. More speci�cally, the parameters of the utility function and the shocks to

consumers' preferences follow exactly the same stochastic process (Kalonda-Kanyama,

2012).

2.1 Illustration: The WS-Branch Utility Tree

To illustrate the above considerations, we shall use a known functional form of the

utility function that will serve as the benchmark. The weak separable(WS-) branch

utility function shall be used to serve this purpose. It was �rst introduced by Barnett

(1977) and subsequently used by Barnett and Choi (1989) as the underlying true utility

function in testing weak separability in four demand speci�cations. This utility func-

tion, which is a macroutility function over quantity aggregator functions, is a �exible

blockwise weakly separable utility function when de�ned over no more than two blocks

with a total of two goods in each block. The constant-parameter homothetic form of

the WS-branch utility function with two blocks q1 and q2 is de�ned as follows:

U = U(q1(x1, x2), q2(x3)) = A
[
A11q

2ρ
1 + 2A12q

ρ
1q
ρ
2 + A22q

2ρ
2

](1/2ρ)
(2)

where ρ < 0.5, the constants Aij > 0 are elements of a symmetric matrix such that Aij =

Aji and
∑

i

∑
j Aij = 1. The constant A > 0 produces a monotonic transformation of

the utility function and thus can be normalized to 1 without loss of generality. Assume

that there are only three goods and that the �rst block consists of the two �rst goods x1

and x2 while the second block consists only of the third good, x3. Then the sub-utility

functions q1 and q2 are de�ned as follows in terms of the vector of supernumerary

quantities y = x − α, where x = (x1, x2, x3), and α = (α1, α2, α3) is a vector of

translation parameters:
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q1 = q1(x1, x2) = B
[
B11y

2δ
1 + 2B12y

δ
1y

δ
2 +B22y

2δ
2

](1/2δ)
(3)

q2 = q2(x3) = y3 + α3 (4)

where δ < 0.5, Bkl > 0 for k,l = 1,2 ; Bkl = Blk for k 6=l and
∑

k

∑
lBkl = 1. Notice

that the speci�cation of the aggregator function q1 in equation (3) is the same as

the speci�cation of the macroutility function (2). Therefore, both functions share the

same properties. For example, both functions are monotone and quasi-concave as a

result of the restrictions on their parameters. These restrictions insure their theoretical

regularity as well.

2.2 True time-varying elasticities

Barnett and Choi (1989) have derived the properties of the WS-branch utility func-

tion(income elasticities and elasticities of substitution). When the parameters of the

WS-branch utility function are assumed to vary over time as in problem (1), the income

elasticity of the elementary good xj (j = 1,2,3) is, for every time period t, given by

ηjt =

(
1

1− p
′
tαy

)
xjt − αjt
xjt

. (5)

On the other hand, the elasticity of substitution between two elementary quantities xi

and xj is given by

σij,t = ξij,t

(
1

1− p′α

)
(xit − αit)(xjt − αjt)

xjtxit
(6)

where pt = (p1t, p2t, p3t) is the income normalized price vector, pt/mt, with mt = p
′
txt

being the total consumer expenditure at time t. In equation (6), ξij,t represents the
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elasticity of substitution between the ith and the jth (j=1,2 ) aggregator function in the

WS-branch utility function, and is de�ned as follows, ∀t:

ξij,t =
1

(1− ρt +Rt)
(7)

where

Rt = −ρt
A11,tA22,t − A2

12,t

(A11,t(
q2t
q1t

)−ρt + A12,t)(A12,t + A22,t(
q2t
q1t

)ρt)
(8)

However this formula applies only when α1 = α2 = 0 or when the aggregate function

is de�ned in terms of the supernumerary quantities as in equations (3) and (4)[ See

Theorem 2.2 in Barnett and Choi (1989)].

The time-varying compensated elasticity of the demand for the elementary good

xi with respect to the price, pj, of the elementary good xj obtains from the relation

between the Allen-Uzawa elasticity of substitution and the compensated price elasticity,

that is

η∗ij,t = σij,twjt (9)

where wjt = pjtxjt/
∑

k pktxkt is the expenditure share for the elementary good xjt.

3 Structural time-varying coe�cients AIDS and RM

This section introduces the AIDS and the Rotterdam model in the framework of

Harvey (1989)'s structural time series models. The resulting demand speci�cations are

respectively referred to as the structural time-varying coe�cients (TVC-) AIDS and

RM. This framework allows the time-varying speci�cation of the parameters in each

demand function and their estimation by means of the Kalman �lter, after appropriately
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representing the demand systems in a state space form.

3.1 The structural TVC-AIDS

In the n-goods unrestricted model, the demand equation for the ith good in the TVC

linear-approximate AIDS is speci�ed as follows (see for example Mazzocchi (2003)):

wit = µit +
n∑
j=1

γijtlogpjt + βitlog

(
xt
P ∗t

)
+ φit + uit (10)

where wit is the budget share of good i at time t, xt is the aggregate consumer expen-

diture on the n goods and P ∗t is the Stone price index de�ned as P ∗ =
∏n

i=1 p
wi
i ; µit

and the φit are respectively the time-varying intercept and the seasonal components.

Finally, uit is an error term that is assumed to be a random noise process. Following

Harvey (1989), the time-varying intercept is speci�ed as a random walk with drift, with

the drift itself following a pure random walk process. On the other hand, the seasonal

dummies φit are constrained to sum to zero over a year. All the price and income

coe�cients in equation (10) are assumed to follow a pure random walk process.

Given the similarity between the nonlinear AIDS and the linear-approximate AIDS,

the structural TVC speci�cation for the nonlinear AIDS obtains by using the appropri-

ate price index in equation (10) to obtain:

wit = αit +
n∑
j=1

γ∗ijtlogpjt + βitlog

(
xt
Pt

)
+ φit + uit, (11)

where Pt is the translog price aggregator de�ned by

logP = α0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γkjlogpklogpj. (12)

The following constraints are imposed on the parameters of both the nonlinear and
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the linear-approximate AIDS models to respectively satisfy linear homogeneity, adding-

up and Slutsky symmetry at every time period t :

n∑
i=1

γ∗ij,t = 0 =
n∑
i=1

βit (13)

n∑
i=1

αit = 1 (14)

γ∗ij,t = γ∗ji,t (15)

3.2 The Structural TVC-RM

One important feature of the Rotterdam model is that the constancy of its pa-

rameters obtains by assuming constant mean functions involved in the formulas of its

marocoe�cients. However, Barnett (1979) has shown that the macrocoe�cients in the

Rotterdam model are not necessarily constant. In contrast they vary over time and

are income-proportional-weighted theoretical population averages of microcoe�cients.

By admitting time-varying microparameters and macroparameters in the Rotterdam

model, the implicit assumption is that the coe�cients of the utility function that the

Rotterdam is approximating are also time-varying. However, the neoclassical theory

leaves open the question of how consumer preferences are a�ected by exogenous factors

over time.

We assume that shocks to preferences re�ect into the utility function in the form

of time-varying parameters. Hence the Rotterdam model is theoretically well suited to

incorporate the analysis of change in preferences over time. The speci�cation of the ith

equation in the structural TVC-RM is given in equation (16) as follows:
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witDqit = $it + θitDQt +
n∑
j=1

πij,tDPjt + ψit + νit (16)

where wit = (1/2)(wi,t−1 + wi,t) is an arithmetic average of the ith good income share

over two successive time periods t and t−1; πij,t is the Slustky coe�cient that gives the

total substitution e�ect of the change in the price of good j on the demand for good i;

νit is the error term; DQt and DPt are the �nite change versions of the Divisia quantity

and price indexes1. The income e�ect of the n price changes on the demand for good i at

time t is given by θit. The time-varying coe�cients $it and ψit's have the same meaning

and follow the same stochastic processes as µit and the φit's in equation (10). Each of

the time-varying coe�cients θit and πijt's follows a pure random walk process. For more

details on the derivation of the Rotterdam model in its constant-parameters version,

see Barten (1964), Theil (1965, 1971),Theil (1975a),Theil (1975b),Theil (1980a),Theil

(1980b), Barnett (1979), and Barnett and Serlertis (2008).

The following restrictions are imposed on the coe�cients in order for the Rotterdam

model to satisfy Engel aggregation, linear homogeneity and symmetry respectively, at

each time period:

n∑
i=1

θit = 1;
∑
i

πij,t = 0 (17)

n∑
i=1

πij,t = 0 (18)

πij,t = πji,t (19)

The next section discusses the state space representation of the AIDS and the Rot-

1The formulas for the Divisia quantity and price indexes are respectively dlogQ = dlogm−dlogP =∑n
j=1 wjdlogxj and dlogP =

∑n
j=1 wjdlogpj , where m is total consumer expenditure.
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terdam model, a framework that allows estimating the time-varying parameters, using

the Kalman �lter. We shall consider two speci�cations of the time-varying parameters

in the demand system: the random walk model (RWM) where all the parameters are

assumed to follow a random walk process, and the local trend model (LTM) where the

intercept in each demand equation is assumed to follow a random walk with drift while

all the other parameters follow a pure random walk process.

4 State space Representation of the AIDS and the

RM

Consider the following state space representation of the demand system:

yt = Ztαt + wt

αt+1 = Stαt + vt

(20)

For an n-goods demand system, the n × 1 vector yt is the vector of the dependent

variables in the demand system, the m vector αt is the state vector of the m unknown

parameters for t =1, . . . , T. The above state space representation has two matrices.

The n×m matrix Zt contains all the exogenous variables of the system while the m×m

matrix St is the transition matrix that links the state vector at time period t+1 to its

current value, and the entries of which are supposed to be known. Finally, the n × 1

vector wt and the m× 1 vector vt are the serially uncorrelated and independent error

vectors in the measurement equation and the transition equation respectively, with zero

means and respective nonnegative de�nite covariance matrices Ht and Qt, that is

E(wt) = 0 and V ar(wt) = Ht; E(vt) = 0 and V ar(vt) = Qt; t = 1, . . . , T, (21)
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where Ht and Qt are respectively of order n × n and m × m. In addition, the error

vectors in the state space model are assumed to be independent of each other at all

time points, that is

E(wtv
′

t) = 0,∀t (22)

An explicit formulation of di�erent matrices in the state space model of the demand

system, as they relate to the AIDS and the Rotterdam model2, is provided in the

next subsection. The homogeneity and symmetry restriction are imposed, following

Mazzocchi (2003), by modifying the measurement equation and the transition equation

accordingly rather than by augmenting the measurement equation prior to estimation

as suggested by Doran (1992) and Doran and Rambaldi (1997). We shall underline the

fact that the restriction on the coe�cients in each demand speci�cation are assumed

to hold at every time point.

4.1 The Random Walk Model

The state-space representation matrices for each demand speci�cation incorporate

the restrictions that are imposed on its parameters. However, When linear homogeneity

is imposed the disturbances become linearly dependent and their covariance matrix be-

comes singular. In order to circumvent this problem, one equation must be deleted from

the demand system prior to estimation as advocated by Barten (1969). The parameters

of the deleted equation will then be recovered by using the imposed restrictions or by

estimating the system with a di�erent equation dropped.

2Although we shall only consider two speci�cations of the parameters' time varying structure, other
stochastic processes can be speci�ed for the time-varying coe�cients as well, such as the autoregressive
structure suggested by Chavas (1983).
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4.1.1 State-space representation of the structural TVC-AIDS

In the 3-goods case, the measurement equation, with homogeneity and symmetry

imposed on the coe�cients and the third equation deleted is as follows, for every t =

1, 2, . . . , T :

 w1t

w2t

 =

 1 log
(
p1t
p3t

)
log
(
p2t
p3t

)
log
(
mt

Pt

)
0 0 0

0 0 log
(
p1t
p3t

)
0 1 log

(
p2t
p3t

)
log
(
mt

Pt

)
×



α1,t

γ11,t

γ12,t

β1,t

α2,t

γ22,t

β2,t



+

 ε1,t

ε2,t



When the state vector is assumed to follow a pure random walk process, the tran-

sition equation at every time period is given by
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α1,t

γ11,t

γ12,t

β1,t

α2,t

γ22,t

β2,t



=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





α1,t−1

γ11,t−1

γ12,t−1

β1,t−1

α2,t−1

γ22,t−1

β2,t−1



+



eα1
t

eγ11t

eγ12t

eβ1t

eα2
t

eγ22t

eβ2t


4.1.2 State-space representation of the structural TVC-RM

When linear homogeneity is imposed the ith equation in the n-goods Rotterdam

model (16) becomes:

witDqit = $it + θitDQt +
n−1∑
j=1

πijt(Dpjt −Dpn,t) + ψit + νit (23)

With the constant and the seasonal dummies dropped from equation (23), the mea-

surement equation of the state space representation of the Rotterdam model can be

expressed explicitly as follows, in the 3-goods case when symmetry is imposed and the

third equation deleted:

 w1,tDq1,t

w2,tDq2,t

 =

 DQt (Dp1 −Dp3) (Dp2 −Dp3) 0 0

0 0 (Dp1 −Dp3) DQt (Dp3 −Dp3)

×
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θ1,t

π11,t

π12,t

θ2,t

π22,t


+

 ν1,t

ν2,t



The transition equation in matrix form is given ∀t by



θ1,t

π11,t

π12,t

θ2,t

π22,t


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





θ1,t−1

π11,t−1

π12,t−1

θ2,t−1

π22,t−1


+



eθ1t

eπ11t

eπ12t

eθ2t

eπ22t


4.2 The Local Trend Model

The local trend model assumes that the intercept in each equation of both the AIDS

and the Rotterdam model follows a random walk process with a drift, that is

µit = µi,t−1 + λi,t−1 + eµit

λit = λi,t−1 + eλit

(24)

for the ith equation in the AIDS, and

$it = $i,t−1 + ωi,t−1 + e$it

ωit = ωi,t−1 + eωit

(25)

for the ith equation in the Rotterdam model. All the other parameters of the demand

systems follow the random walk process as in the random walk model. The measurement
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and transition equations are modi�ed accordingly.

5 Data generation procedure

This section explains the steps used to generate the data for the Monte Carlo sim-

ulations. In this process, all the parameters in the utility functions in equations (2)

and (3), except ρ and δ, are assumed to be time varying. The constancy of δ and ρ is

assumed for convenience, since these parameters can be considered as time-varying as

well. The data generation procedure proceeds as follows:

Step 1 : Set the value of the elasticity of substitution between the supernumerary

quantities y1 and y2 in the microutility function in equation (3) for each time

period, t = 1, 2, ...,T, where T = 60.

Step 2 : Generate the stochastic process for the time-varying parameters in the mi-

croutility function q1. The parameters B11,t,B12,t,B21,t and B22,t are assumed to

follow a random walk process and are constrained so that they satisfy the condi-

tion
∑

k

∑
lBkl,t = 1, with B12,t = B21,t, ∀t.

Step 3 : Obtain the ratio between y1t and y2t from the formula of the elasticity of

substitution between the two supernumerary quantities, using the values set in

Step 1.

Step 4 : Generate the �rst order autoregressive time series for the two supernumerary

quantities y1t and y2t and the supernumerary income m1t
3; then adjust the time

series of the two supernumerary quantities so that the ratio y2t/y1t corresponds

to the one obtained in Step 3.

3The autoregressive models for the supernumerary quantities and income are the following: y1t =
2 + 0.75y1,t−1 + e1t; y2t = 1 + 0.739y2,t−1 + e2t; m1t = 125 + 0.98m1,t−1 + e3t where e1t, e2t and e3t
are zero mean and serially uncorrelated normal error terms with variance 1.
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Step 5: Use the �rst order conditions for maximizing q1
4 and the supernumerary

budget constraint to solve for the price system (p1t, p2t) at every time period.

Step 6 : Calculate the aggregate quantity q1t and the corresponding price index using

the Fisher factor reversal test.

Step 7 : Set the value of the elasticity of substitution between the two aggregate

quantities q1t and q2t in the macroutility function (2) and solve for the ratio

q2t/q1t from equation (7) for each time period t = 1,2,...,T.

Step 8 : Generate the time path of the time-varying parameters in the macroutility

function, such that
∑

i

∑
j Aijt = 1 and A12t = A21t. The parameter vector in

the macroutility function is assumed to follow a random walk process. The only

constant parameter in the macroutility function is ρ.

Step 9 : Generate the supernumerary quantity y3t = q2t according a �rst order au-

toregressive process5 and adjust the resulting time series so that the ratio q2t/q1t

corresponds to the ratio obtained in Step 7.

Step 10 : Solve for p3t from the �rst order conditions for the maximization of the

macroutility function6.

Step 11 : Set the value of α1,α2 and α3 and obtain the elementary quantities x1, x2 and

x3 from their relationships with the supernumerary quantities, that is xi = yi+αi
7,

i=1,2,3 and calculate total expenditure on the elementary quantities.

4See Barnett and Choi (1989)
5y3t = 3 + 0.69y3,t−1 + e4t
6See Barnett and Choi (1989) for the speci�cation of this utility maximization problem.
7The values used to generate the data are: α1 = 1, α2 = 10 and α3 = 4. This speci�cation is used

for the random walk model. For the local trend model, each of the αi's is speci�ed as a random walk
plus a shift, where the shift itself follows a random walk process.
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Step 12 : Add noises to the elementary quantities x1t, x2t and x3t that constitute

the reference dataset and estimate the time varying parameters of the resulting

demand system, bootstrapping the model 2000 times while recalculating the total

expenditure on x1t, x2t and x3t.

For the bootstrap procedure we have generated three vectors of 2000 seeds each, to

use in generating the normally distributed random numbers that are added as shocks to

the reference dataset. Relevant elasticities are calculated and stored at each replication

from the estimated time-varying parameters. Finally, the income and compensated

price elasticities as well as the elasticities of substitution at each time period are cal-

culated as the averages of the values stored during the bootstrap procedure. The true

time-varying cross-price elasticities are obtained from the WS-branch utility model by

using the relationship between the Allen-Uzawa elasticity of substitution, the income

shares, and the Hicksian demand elasticities.

6 Estimation method

The time-varying parameters in the AIDS and RM are estimated by Kalman �lter-

ing. The exact Kalman �lter (Koopman, 1997) is used for initial states and variances

and implemented in the RATS software (Doan 2010b, Doan 2010a, Doan 2011, Estima

2007a, Estima 2007b). Under the normality assumption for the disturbance vectors wt

and vt in equations (20), the distribution generated by the Kalman �lter is given by

yt|y1, y2, . . . , yt−1 ∼ N(Z
′

tαt,Λt) (26)

where Λt = Z
′
tPt|t−1Zt + Qt. The essential part of the likelihood function for the full

sample, which is the objective function of the Kalman �lter(smoother) is therefore
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−1

2

∑
t

log|Λt| −
1

2

∑
t

(yt − Z
′

tαt|t−1)
′
Λ−1t (yt − Z

′

tαt). (27)

The AIDS models have been estimated in �rst-di�erenced form by assuming time-

varying coe�cients rather than constant coe�cients like, for example, in Deaton and

Muellbauer (1980), Eales and Unnevehr (1988), Moschini and Meilke (1989), Brester

and Wohlgenant (1991) and Alston and Chalfant (1993). An intercept is included in

each demand equation. Leybourne (1993) and Mazzocchi (2003) have estimated time-

varying parameters in the AIDS model. However, we have found no journal article that

has attempted to estimate time-varying parameters in the Rotterdam model.

6.1 Calculation of the time-varying elasticities

The Kalman �ltered and Kalman smoothed time-varying parameters in the AIDS

and RM are used to calculate the demand elasticities using the formulas in Table 1.

The elasticity formulas in the linear-approximate AIDS are the corrected elasticity

formulas from Green and Alston (1990, 1991). However, Alston et al. (1994) have

shown, in a Monte Carlo study, that if the nonlinear AIDS is viewed as the underlying

demand system and that the linear-approximate AIDS is indeed an approximation of

it, the simple formulas of elasticities can be used. We shall consider both versions of

the formulas in calculating the income and price elasticities in the linear approximate

AIDS.

On the other hand, we shall use the Morishima formulas (Morishima, 1967; Blacko-

rby and Russell, 1975) in calculating the elasticities of substitution. In contrast to the

Allen-Uzawa elasticity of substitution (AUES), this measure of the elasticity of substi-

tution is both quantitatively meaningful and qualitatively informative. Moreover, it is

a measure of curvature or ease of substitution and a logarithmic derivative of a quantity
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ratio with respect to marginal rate of substitution (Blackorby and Russell, 1981, 1989;

Blackorby et al., 2007).

The Morishma elasticity of substitution (MES) between goods i and j is calculated

as follows:

σMij =
piCij(p, u)

Cj(p, u
)− piCii(p, u)

Ci(p, u)
= εij(p, u)− εii(p, u), (28)

where C(p, u) is the cost function and the subscripts on C(p, u) are the partial deriva-

tives with respect to the relevant prices; εij(p, u) is the Hicksian compensated elasticity

of good i with respect to the price of good j. The cost function in equation (28) de-

pends on the price vector p and the utility level u; and it is assumed to satisfy all the

regularity conditions 8.

It is important to mention that both the MES and the AUES are used to classify

inputs/goods as substitutes or complements. However, they yield di�erent strati�cation

sets in general (Barnett and Serlertis, 2008). In fact, two Allen substitutes goods must

be Morishima substitutes while two Allen complements may be Morishima substitutes.

The goods that we have constructed in our experiments are all substitutes to each other

so that the AUES and the MES will produce an identical strati�cation.

7 Results

In introducing the results of this paper, we shall underline the fact that the linear-

approximate AIDS with corrected elasticity formulas (LA-AIDS/CF) and the Rotter-

dam model are the most used demand speci�cations in empirical demand analysis,

among all the local �exible functional forms. Therefore, the importance of the �ndings

8A regular cost function is continuous, nondecreasing, linearly homogeneous and concave in p,
increasing in u and twice continuously di�erentiable.
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in this paper help to share the light on the performance of these two demand speci�-

cations when the parameters of the demand functions are assumed to be time-varying.

We also include, for comparison purpose, the nonlinear AIDS model (NL-AIDS) and

the linear-approximate AIDS model where simple elasticity formulas are used (LA-

AIDS/SF).

Tables 2, 3 and 4 provide the true and approximating elasticities of substitution,

income elasticities and cross-price elasticities. At each time period, these elasticities

are averages of the values obtained while bootsrapping the estimated demand systems.

Average standard deviations are provided in Tables 2, 3 and 4 as well. As mentioned

earlier, only the elasticities that have counterparts in the true model are presented. All

elasticities in the true model are positive at every single time period. This means that

all the goods are substitutes based on the elasticities of substitution. In addition, they

are normal goods based on the income elasticities. The result are presented for both

speci�cations of the time-varying parameters (the random walk model and the local

trend model).

7.1 Performance of the RM and the LA-AIDS/CF

Both the RM and the LA-AIDS/CF approximated the true time-varying elasticities

of substitution with positive values at every time point under the RWM. In addition,

the approximating values are close to the true ones within the same utility branch for

both demand speci�cations. On the other hand, while the RM approximated all the

three time-varying elasticities of substitution with the correct positive signs at every

time period under the LTM, the LA-AIDS/CF approximated 2 of them with the wrong

negative sign (Table 2). The LA-AIDS/CF thus identi�ed goods as complements while

they are actually substitutes at every single time period. By comparing the values of

the time-varying coe�cient elasticities of substitution in Table 2, one realizes that the
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LA-AIDS/CF produces a poor approximation of the NL-AIDS at every time point.

On the other hand, it appears from Table 3 that the RM correctly classi�ed x1,x2

and x3 as normal goods under both the RWM and the LTM at every time period. In

addition, this speci�cation produced a correct classi�cation of the three goods in terms

of them being normal necessities and/or luxuries. A notable fact from Table 3 is that

the RM produced approximating time-varying income elasticities the values of which

are close to the true ones. In contrast, the LA-AIDS/CF performed poorly in recovering

the true time-varying income elasticities. Whenever the values of its approximations

were positive, they underestimated the true ones. Otherwise, the approximating values

of the time-varying income elasticities from this model were negative while the true ones

are positive. Finally, the time-varying income elasticities produced by the LA-AIDS/CF

are poor approximations of the NL-AIDS.

The RM correctly recovered the signs of the compensated cross-price elasticities

(Table 4). The approximating values of the time-varying compensated cross-price elas-

ticities are close to the true ones under both the RWM and the LTM within the same

utility branch. The results in Table 4 also show that the LA-AIDS/CF produced ap-

proximations of the true time-varying elasticities with negative values, except for η∗13,t

under the LTM. Even worse, the LA-AIDS/CF produced an approximation of η∗23,t with

both negative and positive values.

7.2 Performance of the NL-AIDS and the LA-AIDS/SF

The NL-AIDS approximated the true time-varying elasticities of substitution with

positive values under the RWM and the LTM. However, the approximating values were

not close to the true ones. On the other hand, the model produced approximations

of the time-varying income elasticities the values of which tended to be constant over

time. Under the LTM, the approximating values of the time-varying income elasticities
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produced by this speci�cation are very close to one, regardless of the magnitude of the

true values. Finally, this model produced compensated cross-price elasticities with the

correct sign, except for η∗13,t under the RWM and η∗23,t under the LTM for which both

negative and positive values were produced.

The LA-AIDS/SF tended to produce negative values for the time-varying elasticities

of substitution, except for σ23,t under the RWM, and σ13,t under the LTM. Furthermore,

this model tended to produce constant values of η1t and fails to capture very high vari-

ations in the values of true time-varying income elasticities. Finally, this speci�cation

produced time-varying compensated cross-price elasticities with the wrong sign in most

of the cases.

The above results also show that the Rotterdam model tended to produce an approx-

imation of the time-varying elasticities with lower standard deviations than the other

three versions of the AIDS speci�cation. The only exception is for the time-varying

elasticity of x3 under the local trend model. In this case, the values of the time-varying

income elasticity are also very high.

7.3 Robustness of the �ndings

Table 5 shows the time-varying elasticities obtained by using di�erent values of the

time-varying parameters in the WS-branch utility function. This new Monte Carlo

experiment shows that the previous �ndings are robust to di�erent values of the time-

varying parameters in the true model. For example, the RM model produced approx-

imating time-varying income elasticities the values of which are very close to the true

ones. In addition, the model was able to capture the very high values of the time-varying

income elasticities. The LA-AIDS/CF produced time-varying income and cross-price

elasticities with negative values as in the initial experiment. The NL-AIDS, on the

other hand, tended to produce constant values for the time-varying income elasticities.
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7.4 Theoretical Regularity

The regularity condition is de�ned as the non-violation of the negative semi-de�niteness

of the Slutsky matrix. Rather than being imposed during the estimation procedure,

this condition is usually just checked after estimation. In the case of a three-goods

demand system, the regularity condition is de�ned below for both the AIDS and the

Rotterdam model. In the AIDS, the Slutsky matrix is negative semi-de�nite at each

time period t if

η∗11t < 0 and

∣∣∣∣∣∣∣
η∗11t η∗12t

η∗21t η∗22t

∣∣∣∣∣∣∣ = η∗11tη
∗
22t − η∗21tη∗12t > 0. (29)

However, for the Rotterdam model one must have

π11t < 0 and

∣∣∣∣∣∣∣
π11t π12t

π21t π22t

∣∣∣∣∣∣∣ = π11tπ22t − π21tπ12t > 0. (30)

Table 6 reports, at selected time periods, the percentage of replications producing non-

violation of the negative semi-de�niteness as an index of regularity for the four models.

The Rotterdam model satis�ed the regularity condition under the random walk

speci�cation in every single replication and at every single time period. The regularity

index is thus equal to 100. Under the local trend model speci�cation, the regularity

index ranged from 91 to 98 by time period, meaning that a minimum of 91% of the

replications per time period satis�ed the negative semi-de�niteness condition of the

Slutsky matrix. On the other hand, the LA-AIDS/CF model achieved a minimum

regularity index as low as 9.8 under the local trend model, compared to 60.6 under

the random walk model. The maximum proportion of replications per time period

that satis�ed the regularity condition was also higher under the random walk model

(76.0%) than under the local trend model speci�cation (60.3%). In general, the NL-
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AIDS achieved higher regularity scores compared to the LA-AIDS/CF at each time

point.

8 Conclusion

The aim of this paper was to evaluate the ability of the AIDS and the RM to recover

true time-varying elasticities derived from the WS-branch utility function. A structural

time series model was speci�ed for each demand speci�cation and the time-varying

parameters estimated using the Kalman �lter. Next, time varying elasticities were

computed from the estimated time-varying parameters obtained during the bootstrap

procedure. We found that the RM performed better than the LA-AIDS/CF in that it

correctly recovered the positive signs of the time-varying elasticities.

The �ndings in this paper lead to two important implications for the demand anal-

ysis with time-varying coe�cients. First, with regard to the performance of the LA-

AIDS/CF, this model should not be considered as an approximation of the NL-AIDS.

It should, in contrast, be considered as a model on its own. This is important since its

outcomes may substantially di�er from those of the NL-AIDS with regard to the signs

and the magnitude of the estimated time-varying parameters and elasticities.

The second implication relates to the choice between an AIDS-type model and the

Rotterdam model in empirical demand analysis. An important recommendation is

that such a choice be made with respect to the performance of each model to better

approximate the properties of an hypothesized true model. However, the results in

this paper may be dependent on the structure of the true model and the particular

Monte Carlo experiment that was implemented. Therefore, caution should be used in

selecting the correct structure to approximate the properties that are contained in a

given dataset.
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It is noteworthy that the comparison of the performance of models included in this

paper mainly focused on how they can approximate the quantitative properties of the

true model. However, a broader range of aspects can be considered as well. For exam-

ple, future research e�orts to assess the performance of an AIDS-type model and the

Rotterdam model may focus on their forecasting abilities. In the speci�c case of time-

varying parameters, the two models can also be assessed in terms of their performance

in producing time series of elasticities that recover the time series properties of the true

time-varying elasticities.
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Table 5: Time-varying elasticities: Robustness checks

Random Walk Model Local Trend Model

t = 1 12 24 36 60 1 12 24 36 60

σ12,t True 0.246 0.248 0.205 0.230 0.263 0.116 0.054 0.112 0.044 0.055
RM 0.534 0.517 0.510 0.485 0.536 0.629 0.648 0.681 0.742 1.041
NL-AIDS 0.943 0.946 0.948 0.946 0.946 1.109 0.830 0.758 0.755 0.650
LA-AIDS/SF 0.596 0.615 0.638 0.662 0.604 -0.283 -1.311 -0.643 -0.898 -1.721
LA-AIDS/CF 1.036 1.035 1.032 1.030 1.035 0.481 0.421 0.254 0.233 -0.098

σ13,t True 3.006 3.035 2.770 3.025 2.878 2.992 2.872 2.875 2.900 2.911
RM 1.300 1.153 1.316 1.204 1.542 0.389 0.603 0.996 1.472 2.016
NL-AIDS 0.430 0.478 0.418 0.465 0.313 1.210 1.141 1.138 1.220 1.361
LA-AIDS/SF 0.303 0.366 0.291 0.352 0.155 1.515 1.818 1.977 2.594 3.627
LA-AIDS/CF 0.905 0.913 0.902 0.910 0.885 1.342 1.552 1.653 2.053 2.720

σ23,t True 0.883 0.853 0.619 0.736 0.870 1.113 1.110 1.442 1.472 2.521
RM 0.476 0.455 0.451 0.422 0.484 0.674 0.699 0.730 0.817 1.149
NL-AIDS 2.175 2.105 2.103 2.018 2.249 1.133 0.975 0.925 0.971 0.981
LA-AIDS/SF 1.941 1.887 1.873 1.808 1.987 0.380 0.276 0.080 -0.046 -0.565
LA-AIDS/CF 1.925 1.870 1.864 1.799 1.974 0.336 0.225 0.022 -0.277 -0.634

η1t True 1.031 1.033 1.041 1.042 1.032 0.981 0.963 0.967 0.952 0.955
RM 1.057 1.070 1.059 1.070 1.044 0.989 0.977 0.965 0.960 0.952
NL-AIDS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LA-AIDS/SF 1.060 1.061 1.061 1.061 1.060 1.021 1.020 1.020 1.020 1.020
LA-AIDS/CF 0.058 0.059 0.059 0.059 0.057 0.021 0.021 0.020 0.020 0.020

η2t True 0.303 0.290 0.232 0.253 0.312 0.365 0.372 0.485 0.483 0.827
RM 0.296 0.284 0.280 0.262 0.299 0.478 0.548 0.689 0.736 1.040
NL-AIDS 0.998 0.998 0.998 0.998 0.998 0.985 0.987 0.982 0.981 0.973
LA-AIDS/SF 0.571 0.590 0.621 0.646 0.585 0.186 0.138 -0.162 -0.185 -0.694
LA-AIDS/CF -0.412 -0.396 -0.370 -0.342 -0.396 -0.834 -0.883 -1.194 -1.213 -1.728

η3t True 0.965 0.973 0.930 0.946 0.943 2.506 4.489 4.375 8.314 10.64
RM 0.621 0.544 0.629 0.571 0.747 2.021 3.043 5.058 7.474 10.30
NL-AIDS 0.998 0.998 0.998 0.998 0.998 1.015 1.046 1.061 1.100 1.163
LA-AIDS/SF 0.393 0.449 0.381 0.434 0.260 1.210 1.308 1.368 1.596 1.976
LA-AIDS/CF -0.581 -0.529 -0.604 -0.547 -0.704 0.220 0.317 0.381 0.613 1.001

η∗12,t True 0.009 0.010 0.009 0.010 0.010 0.004 0.002 0.002 0.001 0.001

RM 0.019 0.019 0.019 0.019 0.018 0.020 0.018 0.015 0.015 0.015
NL-AIDS 0.036 0.038 0.041 0.044 0.038 0.034 0.023 0.016 0.015 0.009
LA-AIDS/SF 0.041 0.043 0.046 0.049 0.042 0.015 0.013 0.006 0.006 0.000
LA-AIDS/CF 0.019 0.019 0.019 0.019 0.018 -0.016 -0.0160 -0.015 -0.015 -0.015

η∗13,t True 0.191 0.212 0.172 0.206 0.150 0.074 0.043 0.036 0.023 0.014

RM 0.084 0.085 0.084 0.085 0.083 0.010 0.010 0.010 0.010 0.010
NL-AIDS 0.026 0.032 0.025 0.030 0.015 0.030 0.017 0.014 0.009 0.006
LA-AIDS/SF 0.061 0.067 0.059 0.065 0.049 0.034 0.024 0.021 0.016 0.013
LA-AIDS/CF -0.008 -0.008 -0.008 -0.008 -0.008 0.009 0.008 0.008 0.008 0.008

η∗23,t True 0.056 0.060 0.038 0.050 0.045 0.027 0.017 0.018 0.012 0.012

RM 0.028 0.027 0.027 0.025 0.028 0.034 0.030 0.024 0.025 0.034
NL-AIDS 0.818 0.792 0.730 0.691 0.782 0.034 0.060 0.067 0.061 0.080
LA-AIDS/SF 0.602 0.582 0.540 0.511 0.577 -0.069 -0.074 -0.101 -0.104 -0.150
LA-AIDS/CF 0.573 0.548 0.507 0.473 0.553 -0.058 -0.059 -0.072 -0.077 -0.105
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Table 6: Regularity index by model and TVC speci�cation

NL-AIDS LA-AIDS/SF LA-AIDS/CF RM

Period RWM LTM RWM LTM RWM LTM RWM LTM

1 84.3 72.5 47.8 53.3 66.9 51.7 100.0 98.0
2 86.1 71.9 50.0 62.4 64.8 60.3 100.0 98.1
3 87.6 71.9 49.1 40.8 66.6 34.8 100.0 96.1
4 95.3 71.3 56.1 39.5 71.7 32.8 100.0 95.9
6 85.0 95.9 48.7 35.5 66.7 28.6 100.0 95.3
12 91.7 94.8 52.3 33.3 68.0 24.1 100.0 95.5
18 91.8 95.8 60.7 47.8 64.6 30.7 100.0 94.3
24 94.2 95.6 61.4 45.9 61.1 28.2 100.0 93.2
30 92.6 93.3 55.5 37.6 67.6 21.4 100.0 90.9
36 90.9 91.5 48.6 35.8 71.2 18.3 100.0 91.2
42 86.6 90.4 48.1 25.1 68.3 14.1 100.0 91.9
48 88.5 88.2 53.2 27.0 65.3 12.3 100.0 91.8
54 83.0 87.2 46.3 26.6 68.1 11.0 100.0 92.0
60 64.7 85.8 42.8 28.3 67.2 9.8 100.0 92.1
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