Unemployment in South Africa is exceptionally high, irrespective of the definition used to measure the size of the labour force as well as the number of unemployed. Combating unemployment is one of the corner stones upon which the government’s Accelerated and Shared Growth Initiative – South Africa (ASGISA) is built. The ASGISA objectives are to halve poverty and unemployment (rates) by 2014 and to achieve these objectives, government posits that the average annual GDP growth rate between 2004 and 2014 should be 5%. Okun’s law states that an inverse relationship exists between cyclical output and cyclical unemployment. Given the importance attached to sustained, increased economic growth in addressing unemployment in policy circles, this paper estimates the relationship between economic activity (cyclical GDP) and changes in the unemployment rate (cyclical unemployment) for South Africa. A variety of detrending methods are used to decompose output and unemployment series into their trend and cyclical components and the paper also addresses the question of asymmetries in Okun’s coefficient. The results indicate the presence of an Okun’s law relationship in South Africa over the period 1970-2005 with some evidence of asymmetries.

1. INTRODUCTION

Unemployment in South Africa is exceptionally high, irrespective of the definition used to measure the size of the labour force as well as the number of unemployed (26.7% and 38.8% in September 2005, according to the strict and expanded definitions of unemployment, respectively (Statistics South Africa, 2005:iii)). Furthermore, unemployment has increased substantially since the 1970s (Terreblanche, 2002:31; UNDP, 2003). Therefore, the concern of policymakers in South Africa about high and increasing unemployment is justified (The Presidency, 2006:2), and especially due to the associations that exist between unemployment and poverty; human capital erosion; social exclusion; crime; and social instability (Kingdon and Knight, 2004:391, 2005:2; UNDP, 2003:144; Terreblanche, 2002:31, 42, 383, 390, 401).

Combating unemployment is one of the corner stones upon which the government’s Accelerated and Shared Growth Initiative – South Africa (ASGISA) is built. The ASGISA objectives are to halve poverty and unemployment (rates) by 2014 (The Presidency, 2006:2). To achieve these objectives, government posits that the average annual GDP growth rate between 2004 and 2014 should be 5% (4.5% for the period 2010-2014) (The Presidency, 2006:2).
2005 to 2009; 6% for the period 2010 to 2014 (The Presidency, 2006:2)). However, the
United Association of South Africa (UASA) (2006:30) estimates that average annual GDP
growth rates of 6.5% to 7% and 9.3% to 10% are required to halve the strict and
expanded unemployment rates respectively. Given the importance attached to sustained,
increased economic growth in addressing unemployment in policy circles, this paper
estimates the relationship between economic activity (cyclical GDP) and changes in the
unemployment rate (cyclical unemployment).

Economic growth is one of the determinants of the change in the unemployment rate.
Changes in the unemployment rate can be decomposed as follows (Dickson and
Thompson, 2000:3):

\[\Delta UR_j = \% \Delta LF_j - \% \Delta E_j \]

(1)

where \(UR \) denotes the unemployment rate, \(LF \) denotes the labour force and \(E \) denotes
employment (note that \(\% \Delta \) indicates percentage change). Equation (1) can then be
further decomposed as (Dickson and Thompson, 2000:7):

\[\Delta UR_j = \{ \% \Delta LFPR_j + \% \Delta POP_j \} - \{ \% \Delta Y_j - \% \Delta APL_j \} \]

(2)

where \(LFPR \) denotes the labour force participation rate, \(POP \) denotes the working age
(15-65 years) population, \(Y \) denotes real GDP and \(APL \) denotes the average product of
labour (defined as \(Y/E \)). Several authors argue that this has been the case in South Africa (Terreblanche, 2002:31, 374; UNDP, 2003; Bhorat, 2004:946-7; Casale \textit{et al}, 2004:989; Kingdon and Knight, 2005:4). From equation (2) above, the
unemployment rate would only remain constant if real GDP growth were equal to the
sum of the growth rates of labour force participation, the economically active population
and the average product of labour.

Figure 1 below shows the relationship between changes in the unemployment rate,
(actual) real GDP growth and “required” GDP growth (which is defined as the sum of
labour force growth and growth in the average product of labour (Blanchard, 2006:186)).
The South African unemployment rate increased in each successive year for the period
1983-2003 (from 9.46% to 30.14% (Quantec, 2006)). The most rapid increases occurred
in the mid- and late 1990s, due to large deviations between the actual and required real
GDP growth rates. Actual average annual real GDP growth was equal to 2.38% and
1.89% for the periods 1970-2005 and 1983-2003, respectively, whilst average annual
“required” real GDP growth equalled 2.98% and 3.14% for the periods 1970-2005 and
1983-2003, respectively (SARB, 2006; Quantec, 2006; authors’ own calculations). One
explanation for the large deviations between actual and “required” growth is the rapid
growth of the labour force since the 1970s, and especially the rapid growth of the African
population during this period (Terreblanche, 2002:31, 374; Kingdon and Knight, 2005:5-
6). Furthermore, the average productivity of labour also increased markedly over this
period, largely due to increases in the capital-labour ratio (Terreblanche, 2002:374-382;
UNDP, 2003:151, 183-185; Bhorat, 2004:944-5; Kingdon and Knight, 2005:13). In
addition, real GDP growth was sluggish over this period, due to the two successive oil
crises of the 1970s, and the intensification of the liberation struggle during the 1970s and
1980s (Terreblanche, 2002: 375).
In addition to sluggish economic growth, structural shifts in output have led to structural shifts in the demand for certain categories of labour. These structural shifts, together with the increasing capital intensity of production, have led to a decrease (over time) in the elasticity of employment growth with respect to output growth (Terreblanche, 2002:432; UNDP, 2003:151; Bhorat, 2004:949). Table 1 below presents the “cumulative” elasticities between employment growth, economic growth and changes in the unemployment rate for seven five year periods from 1971-2005.

2 Structural shifts refer to the decreasing contribution of the primary sector to GDP accompanied by the increasing contribution of the tertiary sector to GDP. This has led to the demand for skilled workers increasing relative to the demand for unskilled workers (Terreblanche, 2002:374; Bhorat, 2004:944-5).

3 The cumulative elasticities in Table 1 were calculated as follows: the cumulative percentage change in employment over a specific five year period was divided by the cumulative change in real GDP over the same five year period to obtain the elasticity of employment growth with respect to economic growth (the employment coefficient (Barker, 1999:82)). The cumulative change in the unemployment rate was divided by the cumulative change in employment over a specific five-year period to obtain the elasticity of change in the unemployment rate with respect to employment growth. Finally, the elasticity of change in the unemployment rate with respect to economic growth was calculated as the cumulative change in the unemployment rate divided by the cumulative change in real GDP over a specific five-year period.
Table 1. “Cumulative” Elasticities between Employment, Unemployment and Economic Growth, 1971-2005

<table>
<thead>
<tr>
<th>Period</th>
<th>Employment-growth</th>
<th>"Cumulative" elasticities</th>
<th>Unemployment-employment</th>
<th>Unemployment-growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971-75</td>
<td>1.05</td>
<td>0.23</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>1976-80</td>
<td>0.54</td>
<td>0.29</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>1981-85</td>
<td>3.33</td>
<td>0.75</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>1986-90</td>
<td>0.82</td>
<td>0.32</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>1991-95</td>
<td>0.71</td>
<td>1.40</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>1996-2000</td>
<td>0.06</td>
<td>9.02</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>2001-05</td>
<td>0.45</td>
<td>0.25</td>
<td>-0.11</td>
<td></td>
</tr>
</tbody>
</table>

Sources: SARB, 2006; Quantec, 2006; authors' own calculations.

Employment growth has become less responsive to economic growth since the mid-1980s (Table 1), possibly due to the structural shifts in production and employment identified above. For the period 2001-05, a one percent increase in real GDP was associated with a 0.45% increase in employment (which represents a substantial improvement over the previous period). The employment coefficients calculated in Table 1 further indicate that during only one of the five year periods considered (1996-2000) was there any notion of “jobless growth”

4. The reader is also referred to Bhorat (2004:946) for a further exposition. The employment coefficients calculated in Table 1 further indicate that during only one of the five year periods considered (1996-2000) was there any notion of “jobless growth”. The elasticities of unemployment with respect to employment growth and GDP growth were negative (as one would expect) for only two of the seven five-year periods, namely the first (1971-75) and the last (2001-05). In all the other five-year periods, increased economic activity and employment were associated with increased unemployment. Although disconcerting, the aforementioned observation is by no means surprising, especially in the light of equations (1) and (2), as well as Figure 1, above: the unemployment rate will only decrease if employment growth exceeds labour force growth and if actual GDP growth exceeds “required” GDP growth. The type of shock(s) affecting the economy further complicates the relationship between the unemployment rate and economic growth, as pointed out by Weber (1995:435). The expected negative relationship between unemployment and growth will only hold if the economy is affected by demand shocks; in the presence of supply shocks (stagflation) this expected negative relationship breaks down. Therefore, it is quite probable that the South African economy could have been affected by successive supply shocks during the period 1976-2000 (cf. Terreblanche, 2002:375-376).

Table 1 further indicates that even though the relationship between GDP growth and the unemployment rate became negative during 2001-2005, changes in unemployment were relatively unresponsive to changes in the real GDP (a 1% increase in real GDP was associated with a 0.11 percentage point decrease in the unemployment rate). This observation could have serious policy implications. ASGISA’s objective is to halve unemployment by 2014 (i.e. to reduce the strict /official unemployment rate by about 14 percentage points) (The Presidency, 2006:2). To achieve this objective, real GDP will have to increase by 5% per annum for the period 2005-2014, which implies that real GDP will have to increase by 63% during 2005-2014. The implicit assumption made here is that the elasticity of unemployment with respect to economic growth (as defined above) will equal -0.22 (which is more than double the elasticity obtained for the period 2001-2005). On the other hand, UASA (2006:30) estimates that real GDP growth of between 6.5-7% p.a. will be required to halve the strict /official unemployment rate.
Therefore, their estimates imply that real GDP will have to increase by between 88% and 97% to reduce the unemployment rate by 14 percentage points. This, in turn, implies that the elasticity of unemployment with respect to growth (as defined above) lies between -0.16 and -0.14, which is more or less in line with the actual elasticity that prevailed in 2001-2005. Assuming (rather restrictively) that the elasticity of unemployment with respect to the real GDP remains -0.11 over 2005-2014, the South African economy will need a cumulative real GDP increase of roughly 127% (more or less equal to the total increase in the real GDP over the last 30 years (SARB, 2006; authors’ calculations)). This suggests that real GDP will have to increase by 8.55% p.a. (compared to 5% p.a. as per ASGISA).

In light of the preceding discussion, it becomes imperative to establish to what extent economic growth influences the unemployment rate in South Africa. Observed unemployment can be decomposed into structural and cyclical unemployment and economic growth is more likely to affect the latter. Okun’s (1962) law posits an inverse relationship between (cyclical) unemployment and (cyclical) output. This paper sets out to investigate the link between cyclical unemployment and cyclical output by applying Okun’s law to South Africa. More specifically, it sets out to obtain robust estimates of Okun’s coefficient by employing different detrending methods. The authors also considered using cointegration analysis to estimate the long run relationship between real GDP and unemployment in South Africa. However, the two series were not cointegrated for the period under consideration (1970-2005).

2. RESEARCH METHOD

According to Grant (2002:97-8) and Attfield and Silverstone (1998:625), the relationship between unemployment and output as put forward by Okun (1962) is a gap equation. Thus, the method used to estimate Okun’s relation is based on the notion of the gap between observed and potential output as well as the gap between observed and potential (natural) unemployment – hence, the “gap” model (Lee, 2000:334). The “gap” model takes the following bivariate specification:

$$yc_t = \gamma y_t^c + \xi_t$$

where γ denotes Okun’s coefficient ($\gamma < 0$); y denotes the logarithm of cyclical output (i.e. the output gap); y^c denotes the logarithm of potential output; ξ is a stochastic error term (Weber, 1995:438; Moosa, 1997:337; 1999:296). Several authors also employ the gap specification to estimate Okun’s coefficient (cf. Lee, 2000:334; Harris and Silverstone, 2001:2). However, these authors specify the Okun’s law equation the other way around with the output gap as the dependent variable. Nonetheless, conclusions
reached from this specification are qualitatively the same as those of the specification in equation (5) (Lee, 2000:333, footnote 2). Following Moosa (1997:337, 1999:296) and Weber (1995:438), some dynamics are added to equation (5) since equation (5) assumes a contemporaneous (static) relationship which may not be theoretically plausible. This yields equation (6):

\[u_i = \sum_{j=0}^{m_0} \beta_i u_{i-j} + \sum_{j=1}^{m_1} \gamma_i u_{i-j} + \xi_i \]

(6)

where \(y_0 \) denotes the contemporaneous effect of output on unemployment. The specification in equation (6) can also be used to calculate the “medium” run effect of cyclical output on cyclical unemployment (Moosa, 1997:337; 1999:296). This “medium” run effect is obtained by calculating a function of the coefficients obtained from equation (6), i.e. \(\omega \):

\[\omega = \frac{\sum_{j=0}^{\gamma_j}}{1 - \sum_{j=1}^{\beta_j}} \]

(7)

Given that empirical results for equation (6) might be sensitive to the choice of detrending technique (Grant, 2002:98; Moosa, 1997:336; 1999:293-4), this paper uses eight methods to obtain estimates of potential output (i.e. \(y_p \)) and five methods to obtain the estimates for potential unemployment (i.e. \(u_p \)). This results in the estimation of eight versions of equation (6) summarised in Table 2 below.

<table>
<thead>
<tr>
<th>Equation</th>
<th>(u_p)</th>
<th>(y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6.1) First difference method</td>
<td>First difference method</td>
<td>(u_p)</td>
</tr>
<tr>
<td>(6.2) Linear trend representation</td>
<td>Linear trend representation</td>
<td>(y_p)</td>
</tr>
<tr>
<td>(6.3) Hodrick-Prescott (HP) Filter</td>
<td>Hodrick-Prescott (HP) Filter</td>
<td>(u_p)</td>
</tr>
<tr>
<td>(6.4) Band-Pass (BP) Filter</td>
<td>Band-Pass (BP) Filter</td>
<td>(y_p)</td>
</tr>
<tr>
<td>(6.5) Beveridge-Nelson (BN) decomposition</td>
<td>Beveridge-Nelson (BN) decomposition</td>
<td>(u_p)</td>
</tr>
<tr>
<td>(6.6) Hodrick-Prescott (HP) Filter</td>
<td>Production Function Approach with HP</td>
<td>(y_p)</td>
</tr>
<tr>
<td>(6.7) Band-Pass (BP) Filter</td>
<td>Production Function Approach with BP</td>
<td>(u_p)</td>
</tr>
<tr>
<td>(6.8) Beveridge-Nelson (BN) decomposition</td>
<td>Production Function Approach with BN</td>
<td>(y_p)</td>
</tr>
</tbody>
</table>

The first difference method does not involve an estimation of the permanent components of the unemployment and output series. Instead, the cyclical components in equation 6 (i.e. \(u \) and \(y \)) are merely taken to be the first differences of the \(y \) and \(u \) series (cf. Lee, 2000:333). The linear trend representation, on the other hand, assumes that an economic series contains a deterministic trend that grows at a constant rate. Given a time series \(\gamma \) and a linear trend variable \(t \), the detrended (cycle) series \((\epsilon) \) can be obtained by estimating the following regression (cf. Grant, 2002:98):

\[\gamma_t = a_0 + a_1 t + \epsilon_t \]

(8)

\(^5\) This is one of the major drawbacks of this approach as there is an increased interest in the stochastic nature of the long run trends in economic time series (Grant, 2002:99).
The Hodrick-Prescott (HP) Filter, the Baxter-King Band-Pass (BP) Filter and the Beveridge-Nelson (BN) decomposition are other statistical techniques used to distinguish between permanent and transitory changes in the output and unemployment time series. The Hodrick-Prescott (HP) filter is a generalisation of a linear trend method that allows the slope of the trend to change gradually over time (Hodrick and Prescott, 1997). Suppose that the observed series is denoted by x_t which can be decomposed into a trend (μ_t) and a stationary component ($x_t-\mu_t$). The HP filter minimizes the sum of the squared deviations between the trend and the actual series, with a penalty for the curvature that keeps the trend smooth (λ). Thus, the HP function is given by:

$$\text{Minimise: } \frac{1}{T} \sum_{t=1}^{T} (x_t - \mu_t)^2 + \lambda \frac{1}{T} \sum_{t=2}^{T} \left[(\mu_{t+1} - \mu_t) - (\mu_{t+1} - \mu_t) \right]^2$$

where T denotes the number of observations. According to convention, λ takes on a value of 100 for annual data, 1600 for quarterly data and 44,000 for monthly data. If $\lambda = 0$, the HP filter would yield the original series and if $\lambda \to \infty$, the HP filter would result in a linear time trend (Enders, 2004:224). Given the use of annual data in this study, λ is set to 100. One of the criticisms of the HP Filter is that it can generate cycles that do not exist in the original series. Therefore, the paper also employs a frequency filter, the band-pass filter, proposed by Baxter and King (1995). This filter is used to isolate the cyclical component of a time series by specifying a range for its duration. Roughly speaking, the band-pass filter is a linear filter that takes a two-sided weighted moving average of the data where cycles in a "band" (given by a specified lower and upper bound) are "passed" through, or extracted, and the remaining cycles are "filtered" out. When applied to annual data, the band-pass filter proposed by Baxter and King (1995) takes the form of a 3-year moving average:

$$x_t^f = \sum_{k=-1}^{l} a_k x_{t-k} = a(L)x_t$$

where L is the lag operator. The weights a_k can be derived from the inverse Fourier transformation of the frequency response function. Baxter and King (1995) adjust the band-pass (BP) filter with a constraint that the gain is zero on the zero frequency. This constraint implies that the sum of the moving average coefficients must be zero. In addition, when using the BP filter, one year is sacrificed at the beginning and the end of the time series. The advantage of the band-pass filter is that because the decompositions are based on moving averages they are easy to apply. However, much like the HP filter, the band-pass filter also smoothes the long term component.

Beveridge and Nelson (1981) propose a different method of extracting a cycle form a series. A time series x_t can be represented as the k-period ahead forecast of output at time t by adding all forecastable future changes to the current observation (Grant 2002:100-2), i.e.:

\[E_x(x_{1+k}) = x_t + E_x(\sum_{i=1}^{k} \Delta x_{t+i}) \] (11)

If \(x_t \) series is I(1), \(\Delta x_t \) is I(0) and hence has an estimable moving average representation through Wold decomposition:

\[\Delta x_t = \mu + \varepsilon_t + \lambda_1 \varepsilon_{t-1} + \lambda_2 \varepsilon_{t-2} + ... + \lambda_i \varepsilon_{t-i} \] (12)

where \(\mu \) is the mean forecastable change in \(x_t \) and \(\varepsilon_t \sim N(0,\sigma^2) \). Combining (10) and (11) and extending the forecast function over a long period of time, the expected value of \(x \) (\(k \) periods into the future) is given by:

\[E_x(x_{1+k}) = x_t + k\mu + \sum_{i=1}^{\infty} \lambda_i \varepsilon_t + \sum_{i=2}^{\infty} \lambda_i \varepsilon_{t-i} + ... \] (13)

The expected innovations (i.e. the \(\varepsilon \) series) are obtained by fitting an ARIMA model to the first difference of the \(x_t \) series and using the estimated parameters to forecast future changes in the \(x_t \) series over a very long horizon. Assuming that future expected innovations have a mean of zero, equation (12) can be written as:

\[E_x(x_{1+k}) = x_t^p + k\mu \] (14)

Thus, by rearranging equation (13) the current permanent component can be obtained as a long run forecast from equation (12):

\[x_t^p = E_x(x_{1+k}) - k\mu \] (15)

The cyclical component of \(x_t \) is then obtained as follows:

\[x_t^c = x_t - x_t^p \] (16)

The BN decomposition method is thus a straightforward procedure to decompose any non-stationary series into a temporary and a permanent component – however, this method is not unique since it forces perfectly correlation between the innovation in the trend and stationary component (see Enders, 2004).

Given that the abovementioned detrending techniques are purely statistical in nature, the production function approach is also used to extract the cyclical component of the output series. The production function method entails the estimation of a production function to obtain the \(y^p \) series, hence a more economic approach (c.f. Smit and Burrows, 2002; Arora and Bhundia, 2003). Following Arora and Bhundia (2003:5-6), the study uses a constant returns-to-scale Cobb-Douglas production function:

\[Y = AL^a K^{1-a} \] (17)
where the weights of labour and capital (i.e. \(a \) and \(1-a \)) are taken to be the average shares of labour and capital in national income for the period under consideration. Next, the total factor productivity is calculated as follows (Smit and Burrows, 2002:5; Arora and Bhundia, 2003:6):

\[
A = \frac{Y}{L^a K^{1-a}}
\]

(18)

The Hodrick-Prescott (HP), Beveridge-Nelson (BN) and Band-pass (BP) filters are then applied to both labour and total factor productivity (it is assumed that capital is always utilised at full capacity) (Burger and Marinkov, 2006:180). The smoothed values of labour and total factor productivity are then substituted into equation (18) to calculate the potential output:

\[
Y_{HP}^p = A_{HP} L_{HP}^a K^{1-a}
\]

(19)

\[
Y_{BP}^p = A_{BP} L_{BP}^a K^{1-a}
\]

(20)

\[
Y_{BN}^p = A_{BN} L_{BN}^a K^{1-a}
\]

(21)

The output gaps are then calculated as the difference between the natural logs of actual and potential outputs as calculated by the HP, BN and BP methods (Burger and Marinkov, 2006:180).

Annual data for the period 1970 to 2005 is used for estimation purposes. Data on real GDP was obtained from the SARB (2006). The unemployment series was obtained from Quantec (2006) and is constructed by taking the difference between the total labour force and the total number of employed persons (the latter includes both formal and informal sector employees). Employment data (total employment) is based on surveys adopted by Statistics South Africa, the Department of Manpower and the Central Statistical Service (Quantec, 2006).

3. RESULTS

Figure 2 contains the estimates of the unemployment and output gaps obtained by using the methods listed in Table 2. A negative relationship between the unemployment gap and the output gap is apparent from all the figures. It is also interesting to note the chronology as well as the amplitude of the different estimates of the gaps. The Band-Pass Filter and the Beveridge-Nelson gaps have a much lower amplitude and a higher frequency than the other gaps. Furthermore, at the end of the sample, cyclical output exceeds cyclical unemployment for the BP and the BN estimations (other estimations indicate the opposite). Grant (2002:104) has similar findings where different methods of detrending yield gaps (cycles) that differ both qualitatively and quantitatively. Specifically, he finds wide disparities between the Hodrick-Prescott estimate of the output gap (cycle duration of about 4-6 years), linear trend measure of the output gap (long cycles with a high degree of variability) and the Beveridge-Nelson estimate of the output gap (cycles of high frequency and low amplitude) (Grant, 2002:104).
Figure 2. Cyclical GDP and Cyclical Unemployment Estimates

Figure 3 shows the total unemployment rate, as well as the different estimates of the cyclical unemployment rate, for the period 1972-2004. The contribution of cyclical unemployment to total unemployment becomes smaller towards the end of the sample period. Furthermore, from 1991 onwards, the cyclical component of unemployment
does not exceed 15% (based on authors’ calculations) of total unemployment, irrespective of the detrending method used. Given the aforementioned and that economic growth is more likely to affect cyclical unemployment, this finding could explain why total unemployment is quite unresponsive to output growth in South Africa, especially from 1994 onwards (also refer to Table 1). Needless to say, low cyclical unemployment relative to total unemployment would also have implications for the unemployment and growth targets that were set out by the South African government in its ASGISA strategy.

Figure 3. Total Unemployment and Estimates of Cyclical Unemployment, 1972-2004

Next, the results from the estimation of equation (6) using the different measures of the gaps are summarised in Table 3 below. Equations (6.2), (6.3) and (6.6) suffered from serial correlation problems and will thus be excluded from further discussion. For the remaining equations (i.e. (6.1), (6.4), (6.5), (6.7) and (6.8)) estimates of the contemporaneous Okun’s coefficient (γ_0) are all statistically significant at the 5% significance level. Furthermore, they are all negative; though there are large differences in the magnitudes of these coefficients (this can be attributed to the different techniques used to estimate the gaps (cf. Lee, 2000:341)). The estimates of the “medium” run Okun’s coefficient (ω) are on average double the contemporaneous Okun’s coefficient (γ_0), indicating that the Okun’s relationship for South Africa is stronger in the medium run. Furthermore, the lags of the output gaps are only significant in equations (6.4) and (6.7) providing limited evidence of the persistence of output gap effect. It also seems that cyclical unemployment has some inertia effects as indicated by the β_1 coefficient in equations (6.1) and (6.5). β_1 coefficient is positive and statistically significant in both cases indicating that the one period lag of cyclical unemployment is associated with an increase in the contemporaneous cyclical unemployment rate (as expected on a priori grounds).

Table 3. Estimation Results for Equation (6)

<table>
<thead>
<tr>
<th>Equation</th>
<th>(6.1)</th>
<th>(6.2)</th>
<th>(6.3)</th>
<th>(6.4)</th>
<th>(6.5)</th>
<th>(6.6)</th>
<th>(6.7)</th>
<th>(6.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.817***</td>
<td>0.839***</td>
<td>0.635***</td>
<td>-0.131</td>
<td>0.329*</td>
<td>0.654***</td>
<td>-0.107</td>
<td>0.195</td>
</tr>
<tr>
<td>(6.305)</td>
<td>(13.330)</td>
<td>(3.960)</td>
<td>(-0.731)</td>
<td>(1.930)</td>
<td>(4.061)</td>
<td>(-0.597)</td>
<td>(1.128)</td>
<td></td>
</tr>
<tr>
<td>γ_0</td>
<td>-0.164**</td>
<td>-0.276***</td>
<td>-0.308***</td>
<td>-0.297***</td>
<td>-0.732***</td>
<td>-0.295***</td>
<td>-0.173***</td>
<td>-0.772***</td>
</tr>
<tr>
<td>(2.620)</td>
<td>(-4.233)</td>
<td>(-4.377)</td>
<td>(-2.987)</td>
<td>(-3.689)</td>
<td>(-3.904)</td>
<td>(-2.870)</td>
<td>(-9.278)</td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td>0.105*</td>
<td>0.120</td>
<td>0.053</td>
<td>-0.157</td>
<td>-0.311</td>
<td>0.023</td>
<td>-0.092</td>
<td>-0.085</td>
</tr>
<tr>
<td>(1.175)</td>
<td>(1.539)</td>
<td>(0.604)</td>
<td>(-1.445)</td>
<td>(-1.352)</td>
<td>(0.257)</td>
<td>(-1.381)</td>
<td>(-4.543)</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>-0.322</td>
<td>-0.969</td>
<td>-0.693</td>
<td>-0.404</td>
<td>-1.554</td>
<td>-0.786</td>
<td>-0.241</td>
<td>-1.065</td>
</tr>
</tbody>
</table>

Adj. R^2 0.439 0.919 0.588 0.182 0.427 0.560 0.166 0.778
Serial correlation 0.034 0.715*** 10.519*** 7.016 1.982 11.916*** 7.209 1.499
LM test (0.983) (0.828) (0.001) (0.135) (0.159) (0.038) (0.123) (0.827)
Homoscedasticity test (0.153) (0.360) (0.680) (0.183) (0.457) (0.798) (0.171) (0.158)
Normality test 0.646 0.025 2.075 1.913 0.515 5.638* 1.605 1.427
JB (0.724) (0.987) (0.354) (0.384) (0.773) (0.060) (0.448) (0.490)
Ramsey’s RESET 1.493 0.768 2.093 1.524 1.809 4.117 1.317 1.312
test (0.474) (0.681) (0.351) (0.467) (0.405) (0.128) (0.338) (0.252)
Note: 1. For the estimated coefficients t-statistics are included in parentheses
2. For serial correlation, heteroscedasticity test, normality as well as the Ramsey’s RESET tests p-values are included in parentheses.
3. ***, ** and * denote significance at 1%, 5% and 10% levels, respectively.

The magnitude of the contemporaneous Okun’s coefficient for equation (6.1) (i.e. first difference estimation) implies that a 1% increase in real GDP is associated with a 0.164 percentage point reduction of the change in the unemployment rate (ΔUR and %ΔY in equation 2). This estimate is roughly in line with the -0.11 “cumulative” elasticity of the change in the unemployment rate with respect to output growth for the period 2001 to 2005 (see Table 1). On the other hand, the magnitudes of the contemporaneous Okun’s coefficients for equations (6.4), (6.5), (6.7) and (6.8) imply that, holding other factors constant, a 1 percent increase in the output gap is associated with a decrease in South African cyclical unemployment of between 0.164 and 0.732 percentage points. As noted above, cyclical unemployment accounts for a relatively small percentage of total unemployment (less than 15% from 1991 onwards), implying that although the results confirm the presence of an Okun’s law relation in South Africa, the effects thereof are practically negligible.

Figure 1A (Appendix I) presents the recursive coefficient estimates of the β0 coefficients estimated in equations (6.1), (6.4), (6.5), (6.7) and (6.8). It should be noted that all of the estimated recursive coefficients remained within the two standard error confidence bands for the entire period under consideration. Furthermore, all of the plots (except perhaps equations (6.5) and (6.8)) indicate stability, with the estimated coefficients ranging between -0.17 and -0.78.

4. ASYMMETRIES IN OKUN’S LAW

According to various authors (cf. Lee, 2000; Harris and Silverstone, 2001; Cuaresma, 2003; Silvapulle et al., 2004; Holmes and Silverstone, 2005) the (symmetric) specification presented above represents a misspecification of Okun’s law if cyclical unemployment responds differently to changes in cyclical output, depending on whether the economy is experiencing an upswing or a downswing. In essence, asymmetry would imply that unemployment is either more responsive to changes in output during upswings or more responsive to changes in output during downswings. This section investigates whether or not there are any asymmetries present in the South African Okun’s law relationship.

An asymmetric specification of Okun’s law is motivated on the following grounds (Silvapulle et al., 2004:356; Harris and Silverstone, 2001): first, it helps to discriminate between competing theories of joint behaviour in labour and goods markets. Second, it strengthens the case for an asymmetric (convex) Phillips curve, where unemployment decreasing below the NAIRU ultimately leads to explosive inflation whilst unemployment increasing above the NAIRU has a waning effect. Third, the extent of asymmetries is useful for policymakers formulating structural and stabilisation policies. Fourth, forecasting errors would arise if an asymmetric relationship is specified and estimated as a symmetric relationship. More generally, this would lead to model misspecification.

Asymmetries in Okun’s law are attributed to factor substitution over the course of the business cycle, fluctuations in multi-factor productivity, and changes in the distribution of sectoral growth (source). The relationship will be stronger during a downswing if responses by heterogeneous plants in terms of job creation and job destruction were asymmetric; if there were substantial geographic and sectoral mismatches between the unemployed and available job opportunities; and if employers are more likely to lay off workers during downswings than hire new workers during upswings. Conversely, the relationship will be stronger during an upswing in the presence of labour market rigidities (if firing costs/restrictions exceed hiring costs/restrictions), and if employers invest substantially in the training of their workers.

Thus, to account for asymmetries, equations (6) and (7) become

\[u^*_t = \beta_1 u^*_{t-1} + \gamma_0 y_{t-1}^* + \gamma_1 y_{t-1}^* + \gamma_0 y_{t-1}^* + \gamma_1 y_{t-1}^* + \xi_t \]

\[(22) \]

\[\omega^* = \frac{\gamma_{\omega}^* + \gamma_{\omega}^*}{1 - \beta_1} \]

\[(23) \]

\[(24) \]

7 Although the long run Okun’s coefficients were found to be on average double the contemporaneous coefficients, these coefficients are still associated with low responsiveness of unemployment to changes output.
where \(y_i^+ \) and \(y_{i,t}^- \) denote the cyclical output values below the threshold value (with the long run coefficient given by \(\omega^- \)), and \(y_i^+ \) and \(y_{i,t}^- \) denote the cyclical output values above the threshold value (with the long run coefficient by \(\omega^+ \)). The threshold value was first assumed to be zero (equation (22)) (cf. Lee, 2000; Silvapulle et al., 2004; Holmes and Silverstone, 2005), and was subsequently estimated with a grid search\(^8\) (equation (23)) to find the optimal threshold value for each case (cf. Harris and Silverstone, 2001; Cuaresma, 2003). Eight versions of equations (22) and (23) were estimated (refer to Table 2 above).

Table 4. Estimation Results (threshold value=0)

<table>
<thead>
<tr>
<th>Equation</th>
<th>(y_i^+)</th>
<th>(y_i^-)</th>
<th>(y_{i,t}^-)</th>
<th>(y_{i,t}^+)</th>
<th>(\gamma)</th>
<th>(\gamma_0)</th>
<th>(\gamma_1)</th>
<th>(\gamma_3)</th>
<th>(\gamma_6)</th>
<th>(\gamma_7)</th>
<th>(\gamma_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6.1a)</td>
<td>0.707**</td>
<td>-0.081***</td>
<td>0.628***</td>
<td>-0.134</td>
<td>0.322</td>
<td>0.648***</td>
<td>-0.105</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.2a)</td>
<td>-0.535*</td>
<td>-0.249**</td>
<td>-0.210</td>
<td>-0.297**</td>
<td>-0.728*</td>
<td>-0.215</td>
<td>-0.180*</td>
<td>-0.841***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.3a)</td>
<td>-1.857</td>
<td>-2.052</td>
<td>-1.683</td>
<td>-1.781</td>
<td>-1.954</td>
<td>-1.612</td>
<td>-1.779</td>
<td>-5.239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.4a)</td>
<td>-0.020</td>
<td>0.129</td>
<td>-0.088</td>
<td>-0.184</td>
<td>-0.376</td>
<td>-0.015</td>
<td>-0.090</td>
<td>-0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.5a)</td>
<td>-0.064</td>
<td>1.362</td>
<td>-0.004</td>
<td>-0.923</td>
<td>-0.876</td>
<td>-0.107</td>
<td>-0.750</td>
<td>-6.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.6a)</td>
<td>-0.125</td>
<td>-0.279***</td>
<td>-0.302</td>
<td>-0.748***</td>
<td>-0.361**</td>
<td>-0.169</td>
<td>-0.727**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.7a)</td>
<td>-1.650</td>
<td>-3.563</td>
<td>-3.587</td>
<td>-1.669</td>
<td>-2.142</td>
<td>-3.044</td>
<td>-1.485</td>
<td>-5.466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.8a)</td>
<td>0.076</td>
<td>0.081</td>
<td>0.084</td>
<td>-0.136</td>
<td>-0.262</td>
<td>0.048</td>
<td>-0.092</td>
<td>-0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.9a)</td>
<td>0.107</td>
<td>-1.661</td>
<td>-0.704</td>
<td>-0.580</td>
<td>-0.424</td>
<td>-1.653</td>
<td>-0.653</td>
<td>-0.244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.10a)</td>
<td>-0.167</td>
<td>-1.172</td>
<td>-0.782</td>
<td>-0.386</td>
<td>-1.512</td>
<td>-1.162</td>
<td>-0.236</td>
<td>-1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. For the estimated coefficients t-statistics are included in parentheses.
2. For serial correlation, heteroscedasticity test, normality as well as the Ramsey’s RESET tests p-values are included in parentheses.
3. ***, ** and * denote significance at 1%, 5% and 10% levels, respectively.

Table 4 above presents the estimation results for equation (6a) when a threshold value of zero is assumed. Due to serial correlation problems, results from equations (6.2a), (6.3a) and (6.6a) will not be discussed below. For equations (6.1a), (6.4a) and (6.7a), only the negative contemporaneous output gap is found to be significant with the estimated values ranging from -0.18 to -0.535. This would seemingly indicate that Okun’s relationship is present only during recessions in South Africa where a 1 percent increase in the “negative” output gap is associated with a decrease in South African cyclical unemployment of between 0.18 and 0.535 percentage points. However, equations (6.5a) and (6.8a) imply that Okun’s relationship is equally strong during recessions and upswings as both the positive and negative contemporaneous output gaps are found to be statistically significant. The coefficient magnitudes for both the positive as well as the negative contemporaneous coefficients do not differ significantly in equations (6.5a) and (6.8a) – for the negative output gap, between -0.728 and -0.841; and for the positive output gap between -0.727 and -0.748. This implies that irrespective of whether the South African economy is in an upswing or a recession, a 1 percent increase in the output gap is associated with a decrease in South African cyclical unemployment of just over 0.7 percentage points. Similar to the medium run coefficients from equation 6 (Table 3), the medium run \(\omega \) coefficient for equations (6.1a), (6.4a) and (6.7a) is on average double the contemporaneous \(\gamma_0 \) coefficient. This is also true for the medium run estimates \(\omega \) and \(\omega^+ \) for equation (6.5a), whereas the medium run coefficient estimates for equation (6.8a) are less than double the contemporaneous coefficient estimates \(\gamma_0 \) and \(\gamma_0^+ \). Equations (6.1a) and (6.5a) indicate the presence of some inertia effects – the \(\beta_t \) coefficient is positive and statistically significant in both cases.

Figure IB (Appendix I) presents the recursive estimates for the \(\gamma_0 \) and \(\gamma_0^+ \) coefficients in equations (6.1), (6.4), (6.5), (6.7) and (6.8) that were found to be statistically significant. Once again, all of the estimated recursive values are significant.

\(^8\) For more on the grid search see Enders and Silko (2001).
coefficients remained within the two standard error confidence bands for the entire period under consideration. Most of the plots indicate some instability towards the end of the sample (except perhaps equations (6.5) and (6.8)), with the estimated coefficients ranging between -0.55 and -0.85.

Table 5. Estimation Results (threshold values obtained with a grid search)

<table>
<thead>
<tr>
<th>Equation</th>
<th>(\omega)</th>
<th>(\gamma_0)</th>
<th>(\gamma_1)</th>
<th>(\gamma_0^+)</th>
<th>(\gamma_1^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6.4a)</td>
<td>(6.2a)</td>
<td>(6.3a)</td>
<td>(6.4a)</td>
<td>(6.5a)</td>
<td>(6.6a)</td>
</tr>
<tr>
<td>0.705**</td>
<td>0.831***</td>
<td>0.628***</td>
<td>0.904**</td>
<td>0.671**</td>
<td>0.007</td>
</tr>
<tr>
<td>-0.060</td>
<td>-0.255**</td>
<td>-0.237**</td>
<td>-0.247</td>
<td>-0.066**</td>
<td>-0.102**</td>
</tr>
<tr>
<td>(0.922)</td>
<td>(13.146)</td>
<td>(3.891)</td>
<td>(2.030)</td>
<td>(2.429)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>(0.100)</td>
<td>0.189</td>
<td>0.112</td>
<td>0.261*</td>
<td>-0.224</td>
<td>0.149</td>
</tr>
<tr>
<td>(1.516)</td>
<td>(1.515)</td>
<td>0.896</td>
<td>(1.758)</td>
<td>(1.687)</td>
<td>(0.285)</td>
</tr>
<tr>
<td>(0.080)</td>
<td>-0.476**</td>
<td>-0.347**</td>
<td>-0.361</td>
<td>-0.266**</td>
<td>-0.210**</td>
</tr>
<tr>
<td>(1.860)</td>
<td>(3.796)</td>
<td>(3.826)</td>
<td>(1.179)</td>
<td>(2.924)</td>
<td>(0.819)</td>
</tr>
<tr>
<td>(0.026)</td>
<td>0.058</td>
<td>-0.105</td>
<td>-0.371**</td>
<td>-0.313</td>
<td>-0.102</td>
</tr>
<tr>
<td>(0.183)</td>
<td>(0.679)</td>
<td>(0.052)</td>
<td>(0.725)</td>
<td>(0.903)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>(0.156)</td>
<td>-0.627</td>
<td>-0.483</td>
<td>0.016</td>
<td>-0.204</td>
<td>0.047</td>
</tr>
<tr>
<td>(0.032)</td>
<td>-1.254</td>
<td>0.092</td>
<td>0.005</td>
<td>0.508</td>
<td>0.402</td>
</tr>
<tr>
<td>(0.445)</td>
<td>0.922</td>
<td>0.856</td>
<td>0.404</td>
<td>0.438</td>
<td>0.581</td>
</tr>
<tr>
<td>(0.002)</td>
<td>0.049</td>
<td>0.909</td>
<td>(0.125)</td>
<td>(0.020)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>(18.139)</td>
<td>8.494</td>
<td>26.871***</td>
<td>9.185</td>
<td>11.521</td>
<td>31.167***</td>
</tr>
<tr>
<td>(0.199)</td>
<td>0.581</td>
<td>0.001</td>
<td>0.318</td>
<td>0.538</td>
<td>0.538</td>
</tr>
<tr>
<td>(0.334)</td>
<td>0.847</td>
<td>0.207</td>
<td>(0.479)</td>
<td>(0.206)</td>
<td>(0.334)</td>
</tr>
<tr>
<td>4.702</td>
<td>0.091</td>
<td>11.652***</td>
<td>0.234</td>
<td>15.745***</td>
<td>2.621</td>
</tr>
<tr>
<td>(0.319)</td>
<td>(0.956)</td>
<td>(0.003)</td>
<td>(0.786)</td>
<td>(0.000)</td>
<td>(0.998)</td>
</tr>
</tbody>
</table>

Note: 1. For the estimated coefficients t-statistics are included in parentheses
2. For serial correlation, heteroscedasticity test, normality as well as the Ramsey’s RESET tests p-values are included in parentheses.
3. ***, ** and * denote significance at 1%, 5% and 10% levels, respectively.

Next, the results from Table 5 (above) are discussed. Due to the presence of serial correlation in most of the regressions, only the results for equations (6.4a), (6.7a) and (6.8a) will be discussed. The estimated threshold value for the three equations varies between -0.23 and -0.96. However, splitting of the output gaps according to the different thresholds produces mixed results. The contemporaneous output gaps both above and below the estimated threshold value are statistically significant for all three equations – however, the magnitudes of these coefficients differ. For the output gaps below the threshold, the Okun’s coefficient varies from -0.149 to -0.904, whereas the Okun’s coefficient estimates for output gaps above the threshold vary from -0.210 and -0.711. The implication here is that Okun’s relationship is present during both upswings and recessions in South Africa. This implies that irrespective of whether the South African economy is in an upswing or a recession, a 1 percent increase in the output gap is associated with a decrease in South African cyclical unemployment of up to 0.7-0.9 percentage points. The medium run coefficients give mixed results – double for “positive” output gap estimates in equations (6.4a) and (6.7a), and considerably less than double otherwise (even positive, but close to 0, for the “negative” output gap estimates in equations (6.4a) and (6.7a)). No inertia effects were present in equations (6.4a), (6.7a) and (6.8a) – the \(\beta_1 \) coefficient is statistically insignificant in all cases. Furthermore, the lagged split gaps are significant in equations (6.4a) and (6.7a) – however, the signs of the lagged output gaps below the threshold are incorrect on a priori grounds.

Figure IC (Appendix I) presents the recursive estimates for the \(\gamma_0 \) and \(\gamma_0^+ \) coefficients in equations (6.4a), (6.7a) and (6.8a) that were found to be statistically significant. All of the estimated recursive coefficients remained within the two standard error confidence bands for the entire period under consideration. As with the results from Table 4, most of the plots indicate some instability towards the end of the sample, with the estimated coefficients ranging between -0.7 and -0.95.

5. CONCLUSION

This paper estimated the relationship between cyclical unemployment and cyclical output by using a variety of detrending methods to decompose output and unemployment series into their trend and cyclical components. The detrending methods used yielded unemployment and output cycles that differed substantially in terms of the chronology of the phases of the cycles as well as the amplitudes and frequencies of the cycles. However, irrespective of the detrending method used to estimate the dynamic relationship between cyclical output and cyclical unemployment, the contemporaneous relationship between these two variables was always found to be
Estimates of the contemporaneous Okun's coefficient ranged between -0.17 and -0.78, while estimates of the “long-run” Okun's coefficient ranged between -0.24 and -1.09. In all estimations, the long run coefficient was found to be larger (often substantially) than the short run coefficient. These results seemingly indicate the presence of an Okun's law relationship in South Africa over the period 1970-2005. Recursive estimates of the contemporaneous Okun coefficient further revealed that this relationship remained relatively stable over the sample period. In addition, the paper finds evidence of asymmetries in Okun’s law, although the size of Okun’s coefficient does not vary considerably whether the economy is in an upswing or a recession.

Although the presence of an Okun’s law relationship in South Africa is encouraging, specifically with regard to the growth and unemployment targets set out by the government in its ASGISA strategy, it should be noted that unemployment and output can be decomposed into cyclical and structural components. Changes in cyclical GDP will only affect cyclical unemployment. Policymakers should take care not to confuse changes in cyclical GDP and cyclical unemployment with changes in the trend (“structural”) components of GDP and unemployment.

Higher economic growth might not necessarily lead to a reduction in the unemployment rate (as illustrated in Table 1 and Figure 1) (cf. Terreblanche, 2002:432; Bhorat, 2004:951; UNDP, 2003:152). Moreover, cyclical unemployment was found to represent only a small fraction of total unemployment, irrespective of the detrending method. A comprehensive unemployment strategy for South Africa should take the abovementioned findings into consideration and should recognise the difference between changes in cyclical output and cyclical unemployment on the one hand (and, therefore, factors leading to changes in the cyclical variables) and changes in structural (trend) output and structural unemployment on the other (and, therefore, factors leading to changes in the structural variables).

Two limitations of this study that also provide scope for future research, are that a single equation model could present a misspecification of the Okun’s relation and that a simultaneous equation model might be more appropriate. Furthermore, the specification used in this study involves a symmetric response of cyclical unemployment to cyclical output, which might also be inappropriate, given that authors have found that the the Okun’s coefficient is regime-dependent (i.e. the magnitude differs in upswings and downswings).

APPENDIX I: Recursive Coefficient Estimates

Figure IA. Recursive Coefficient Estimates for Equation (6).

Results not reported in this paper, available on request.
Figure IB. Recursive Coefficient Estimates for Equation (6a) – Threshold Value = 0.10

Figure IC. Recursive Coefficient Estimates for Equation (6a) – Threshold Value Obtained Through Grid Search.

REFERENCES

10 Negative and positive refer to γ_0 and γ_0^+
11 Below and above refer to γ_0 and γ_0^+

Quantec. 2006. Easy Data. RSA Standardised Industry Indicators. Electronic Database.
