Trade barriers to growth in South Africa:
Endogenous investment-productivity-trade interaction*

Jørn Rattsø and Hildegunn E. Stokke**,
Department of Economics, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway; jorn.rattso@svt.ntnu.no, hildegunnes@svt.ntnu.no

Abstract
The changing openness of South Africa over time invites an analysis of the trade – growth relationship. A large empirical literature addresses the effects of trade barriers to growth, but the endogeneity of foreign trade, investment and productivity is a challenge for the econometric studies. We address the endogenous adjustments of investment and productivity based on a calibrated Ramsey growth model extended to include barriers to technology adoption. The model reproduces the economic development in South Africa during 1960-2005 and offers quantification of the responses under counterfactual scenarios. Reduced barriers allow for imports of less expensive investment goods and better catching up to the world technology frontier. International sanctions and protectionism are represented by calibrated tariff equivalent, and the counterfactual elimination of the tariff equivalent shows large potential for GDP growth in this setting. According to our quantification GDP 2005 could have been 35% higher. Separating the effects of openness between investment and productivity we find that about 2/3 of the increase in GDP is due to increased productivity. International technology spillovers feeding productivity are important to raise investment and growth.

JEL: O33, O41, O55; keywords: Growth constraints; productivity growth; trade barrier; world technology frontier; South Africa.
Date: December 10, 2007.

* We appreciate discussions at the TIPS/NTNU 2004 workshop in Cape Town, the 27th National Economist Meeting in Oslo, staff seminar at the University of Nottingham, the 2005 ESRC workshop in Nottingham, the 2006 CSAE conference in Oxford, the 1st 2006 PEGNet Workshop in Kiel, the 5th 2006 INFER Workshop on International Economics in London, and at the 2006 TIPS/DPRU Forum in Johannesburg, and comments without implications from Alice Amsden, Rob Davies, Xinshen Diao, Lawrence Edwards, Johannes Fedderke, Stephen Gelb, David Greenaway, Torfinn Harding, Ravi Kanbur, Oliver Morrissey, Terry Roe, Francis Teal and Dirk van Seventer. The project is financed by the Norwegian Research Council.
** Corresponding author: Hildegunn E. Stokke, Department of Economics, Norwegian University of Science and Technology, N-7491 Trondheim. Tel: (+47) 73591665; fax: (+47) 73596954; E-mail: hildegunnes@svt.ntnu.no.
1. Introduction

South Africa is an interesting case study of openness. The economic growth was promising post WWII and the country was named ‘the Japan of Africa’. The growth period has been understood as catching up growth based on openness and industrial diversification, but ended in the 1970s and was turned into a long period of stagnation. Pritchett (2000) describes South Africa as a ‘mountain’, where per capita growth above 1.5% per year is turned into negative numbers. The changing relationship to the world market is the motivation for this study to clarify and quantify the relationship between trade and growth, a key issue in development research.

Economic growth is on the policy agenda with the government’s Accelerated and Shared Growth Initiative (ASGI-SA). The policy program discusses binding constraints on growth including infrastructure, skilled labor, barriers to entry and limited competition, regulatory environment, and deficiencies in state organization. The government has invited a group of experts to do a growth diagnostic, and input to this process has been produced by Aghion, Braun and Fedderke (2006), Edwards and Lawrence (2006), Hausmann and Klinger (2006), and Rodrik (2006), among others. The background growth diagnostic approach is outlined by Hausmann, Rodrik and Velasco (2007). We leave the domestic constraints for others to analyze and concentrate on trade barriers as constraints for growth in a general equilibrium model.

The background literature relevant for this analysis includes econometric analyses of the trade-growth relationship and the debate about investment versus productivity as source of Asian growth. The trade-growth analyses critically surveyed by Rodriguez and Rodrik (2001) struggle with the endogeneity of trade and trade policy and are unclear about the channels of effects. The two main vehicles of growth generation, investment and productivity, are obviously endogenous and influence each other. The debate about the East Asia experience has constructed a horserace between capital accumulation and productivity growth. Hulten (2001) argues that productivity improvements contribute to higher capital accumulation and shows how this induced capital accumulation effect can be calculated. We link openness to investment and productivity and analyze how they interact in order to quantify the effects. Calibration of growth models represents an alternative to econometric analysis and the
strength of the calibration approach is a clear understanding of the adjustment mechanisms involved and the explicit handling of endogeneity.

The model approach is to add technology adoption productivity dynamics as suggested by Benhabib and Spiegel (1994, 2005), expanded to take into account trade barriers, to a standard Ramsey growth model with a representative consumer-investor. The productivity growth is related to the gap to the world technology frontier, the degree of interaction with the rest of the world through international trade, and the level of human capital. The model assumes positive effects of reduced tariffs via cheaper imported investment goods and increased international technology spillover. The parameters of the growth model are set according to South Africa and middle income country evidence. The quantification attempts at capturing the investment and productivity responses to openness in this setting. A full evaluation of openness in South Africa needs to address imperfections at the domestic markets and possible negative effects of openness such as deindustrialization. The analysis concentrates on a tariff equivalent set to reproduce the actual foreign trade and growth path during 1960-2005.

The effects of openness are analyzed by gradual elimination of the rise in the tariff equivalent and this raises the 2005 end of period GDP by 35%. A more open economy implies higher degree of technological catch-up, and given the productivity mechanism assumed the 2005 productivity level relative to the world technology frontier increases from 33% to 41%. Separating the effects of openness between investment and productivity we find that about 2/3 of the increase in GDP is due to increased productivity. International technology spillovers feeding productivity are important to raise investment and growth. Robustness tests show how the quantitative results depend on parameter values, in particular trade and productivity elasticities. The broad conclusion holds over a wide range of parameter values.

The paper presents the modeling of the productivity dynamics (section 2) and the integration into a growth model with full general equilibrium effects (section 3). Section 4 calibrates a reference growth path that is close to the growth observed during 1960-2005. An important element of the South African experience is the changing trade conditions over time, and in particular the sanctions and protectionism from the mid 1970s to the early 1990s. Based on the model, we calibrate a tariff equivalent level that reproduces the actual trade path (section 5). Section 6 quantifies the growth effects of trade barriers, and clarifies the importance of the
productivity channel. Section 7 checks the robustness of the results based on certain parameter values. Concluding remarks are offered in section 8.

2. Productivity dynamics

Economic growth in middle income countries like South Africa is typically understood as catching up to the world technology frontier. The understanding is based on early contributions by Gerschenkron (1962) and formalized by Nelson and Phelps (1966). The implied international spillovers have emerged as the dominating explanation of the world growth pattern, as argued by Lucas (2007). Growth experiences must be understood as cross-country flows of production-related knowledge from the successful economies to the less successful ones. Klenow and Rodriguez-Clare (2005) and Aghion and Howitt (2005) offer overviews of the growth-literature based on international spillovers. Recent development of the barriers to growth model is offered by Parente and Prescott (1994, 2005). Applied growth models dealing with economic growth and productivity dynamics have been developed by Ngai (2004) for different country groups and Japan, Coleman (2005) for Japan, Duarte and Restuccia (2007) for Portugal, and Diao et al. (2005, 2006) for Thailand. The model applied here is an aggregate version of the two-sector model of Rattsø and Stokke (2007) for South Africa.

Cross-country evidence about the importance of the world technology frontier is supplied by Benhabib and Spiegel (1994, 2005), Caselli and Coleman (2006), and Griffith et al. (2004). In a study of R&D spillover in 77 developing countries, Coe et al. (1997) conclude that a developing country can boost its productivity by importing a larger variety of intermediate products and capital equipment embodying foreign knowledge. By taking into account the endogeneity of trade and institutional quality, Alcala and Ciccone (2004) confirm the positive effect of trade on productivity. Benhabib and Spiegel (1994, 2005) show that human capital stimulates both innovation and technology adoption.

Country studies add to the evidence. Based on panel data for UK manufacturing industries Cameron et al. (2005) document a positive and significant effect of the distance to the technological frontier on productivity growth. They also show that international trade stimulates technology transfer. Cameron (2005) finds similar results for Japanese productivity growth. Several studies indicate the importance of openness for the TFP growth in South
Africa. Harding and Rattsø (2007) address the endogeneity problem of trade policy and use other regions tariff development as part of the WTO process as instruments for the tariff reductions since 1988. They find that tariffs have been important for labor productivity and their results are consistent with catching up to the world technology frontier. Fedderke (2005) puts more emphasis to domestic factors, and identifies important effects of R&D and human capital in TFP growth. Inspired by this empirical evidence we study the endogenous formation of productivity growth driven by innovation and technology adoption.

We start out from the analytical formulation of Benhabib and Spiegel (2005, equation 2.3) combining foreign technology adoption with logistic diffusion and own innovations. Consistent with the empirical literature that trade policy and openness affects technology spillovers we extend their specification to include trade barriers.

The rate of growth of labor augmenting technical progress is specified as:

\[\dot{A}_t = g(H_t) + c(H_t, T_t) \left(1 - \frac{A_t}{A^*_t}\right) = H_t^\theta + \lambda H_t^\theta T_t^\theta \left(1 - \frac{A_t}{A^*_t}\right) \] \hspace{1cm} (1)

The first term on the right-hand side of equation (1) represents the contribution from innovation activities, while the second term is the technology adoption function. \(A_t \) and \(A^*_t \) represent the domestic and frontier level of productivity, respectively, and \(A_t / A^*_t \) is the technology gap. \(\lambda, \theta_1, \theta_2 \) and \(\theta_3 \) are constant parameters. We measure human capital \((H_t) \) by the share of skilled workers in the labor force. The skill-ratio is exogenous in the model, but is set according to the observed development during 1960-2005. Trade barriers are represented by total trade as share of GDP \((T_t) \), which is endogenously determined. The complementarity between trade and human capital in technology adoption is also investigated by Stokke (2004) for the case of Thailand. The linear relationship between productivity growth and the technology gap limits the advantage of backwardness compared to the Nelson-Phelps specification and gives possible divergence in cases of high barriers to technology adoption. This is consistent with empirical evidence showing convergence among open economies, while high trade barriers may generate a development trap (see Sachs and Warner, 1995).

Under symmetric growth, the long-run productivity growth is given by the exogenous frontier growth rate \(g \), and the technology gap is constant. The degree of catch-up depends on the
level of barriers and the innovative capacity of the economy. The long run equilibrium consequently implies a proportional relationship between A_t and A_t^*:

$$A_t = \frac{H_t^a + \frac{\lambda H_t^b T_t^b}{\lambda H_t^a T_t^a} - g}{\lambda H_t^a T_t^a} \cdot A_t^*$$

The equilibrium values of human capital and the trade share are constant, and, together with the frontier growth rate and the parameters, they determine relative productivity. Changes in the sources of innovation and adoption generate transitional growth to a new technology gap, as illustrated in Figure 1 below. The dynamics is consistent with the common understanding that differences in income levels are permanent, while differences in growth rates are transitory (Acemoglu and Ventura, 2002).

The formulation allows parameterization according to characteristics of the South African economy and implies endogenous productivity growth responding to changes in the skill-ratio and the trade share. Future theoretical and empirical research can strengthen the foundation for the specific form of the productivity relationship.

3. The Ramsey growth model

Calibrated general equilibrium models have been used in the Parente and Prescott (1994) tradition emphasizing barriers to capital accumulation (see for instance Chari et al., 1997; Restuccia, 2004). Technological change is exogenous as in the standard Solow model. Compared to this literature we focus on open economy mechanisms and the interaction between endogenous productivity and investment. The endogeneity of productivity growth with barriers to technology adoption is the essential aspect of this approach, and is based on Nelson and Phelps (1966) and Benhabib and Spiegel (1994, 2005). Open economy dynamics have been investigated by Ferreira and Trejos (2006) combining the Heckscher-Ohlin trade framework with a standard neoclassical model. Quantification of the model illustrates how protectionism may explain cross-country income and productivity differences. Similar results are found by Waugh (2007). While these analyses focus on the productivity effect from comparative advantage, we relate trade barriers to the adoption of foreign technology.
The productivity dynamics explained above are embedded in a growth model with general equilibrium effects. We assume standard intertemporal decision making of a representative firm and a representative household. The model captures a small open economy, and the growth pattern does not influence world prices or world interest rate, which are exogenously given. Investments can be financed through foreign borrowing, and the decisions about savings and investment can therefore be separated, although with a long-run restriction on foreign debt. The growth model describes an economy with macroeconomic stability, full employment of resources, and an open capital market. Some rigidity is built in with cost of investment adjustment and imperfect substitution between domestic and foreign goods. But the overly flexibility in resource allocation motivates further research emphasizing domestic market imperfections.

The production technology and the intertemporal dynamics are outlined below. Detailed documentation of the growth model is given in a separate model appendix available from the authors. Value added \((X_t)\) is defined as a Cobb-Douglas function of unskilled labor \((L_{ut})\), skilled labor \((L_{st})\) and capital \((K_t)\):

\[
X_t = A_t^{\alpha_u + \alpha_s} L_{ut}^{\alpha_u} L_{st}^{\alpha_s} K_t^{1-\alpha_u-\alpha_s}
\]

(3)

where labor augmenting technical progress \((A_t)\) develops endogenously according to equation (1).

The representative firm makes its investment decision according to intertemporal profit maximization, subject to the accumulation of the capital stock over time:

\[
\begin{align*}
\text{Max} & \sum_{t=1}^{\infty} (1+r)^{-t} [R_k \cdot K_t - (P_i \cdot I_t + ADJ_t)] \\
\text{s.t.} & \quad K_{t+1} = K_t \cdot (1-\delta) + I_t
\end{align*}
\]

(4) (5)

where \(r\) is the exogenous world market interest rate, \(R_k\) is the capital rental rate, \(P_i\) is the price level, \(I_t\) is investments, \(ADJ_t\) is investment adjustment costs, and \(\delta\) is the rate of depreciation. Following the common practice in the literature, unit adjustment costs are specified as a positive function of the investment-capital ratio. Hence, total adjustment costs are given as:

\[
ADJ_t = a \cdot P_i \cdot \frac{I_t^2}{K_t}
\]

(6)

where \(a\) is a constant parameter.
Differentiating the intertemporal profit function with respect to K_t gives the following no-arbitrage condition:

$$ r \cdot q_{t-1} = Rk_t + a \cdot P_t \cdot \left(\frac{I_t}{K_t} \right)^2 - \delta \cdot q_t + \dot{q}_t $$ \hspace{1cm} (7)

Equation (7) states that the marginal return to capital must equal the interest payments on a perfectly substitutable asset with a value of q_{t-1}, where q is the shadow price of capital. The first term on the right-hand side is the capital rental rate, while the second term is the partial derivative of the adjustment cost function with respect to capital. The marginal return to capital must be adjusted by the depreciation rate and by the capital gain or loss, \dot{q}_t.

The representative consumer maximizes an intertemporal utility function taking into account the current budget constraint for each period:

$$ \text{Max} \sum_{t=1}^{\infty} (1 + \rho)^{-t} U(C_t) $$ \hspace{1cm} (8)

$$ s.t. P_t \cdot C_t = Y_t - SAV_t $$ \hspace{1cm} (9)

Assuming intertemporal elasticity of substitution equal to unity, the utility function is defined as $U(C_t) = \ln C_t$, where C_t is consumption in period t, Y_t is household income, SAV_t is private savings, and ρ is the positive rate of time preference. The utility maximization gives the Euler equation for optimal allocation of consumption over time:

$$ \frac{P_{t+1}C_{t+1}}{P_tC_t} = \frac{1 + r}{1 + \rho} $$ \hspace{1cm} (10)

Consumption growth depends on the interest rate, the time preference rate, and the price path.

4. Reproducing the growth path for South Africa

The parameters of the model are set to reproduce the broad economic development in South Africa during the past decades. Starting out from a consistent data base in the base year 1998, we calibrate backward a growth path that is close to the observed real GDP growth during 1960-2005. The model parameters are consistent with long run equilibrium\footnote{The calibration is documented in a separate appendix available from the authors.}, where the long run growth rate is assumed to equal 2% (1.3% technological progress rate and 0.7% labor
growth\(^2\)). The long run growth path must be consistent with the macroeconomic equilibrium as represented by the Euler equation: \(r = (1 + \rho)(1 + g + n) - 1 \), where \(g + n \) is the exogenous long-run growth rate. Appendix Table 1 gives an overview of selected calibrated parameters.

The parameters of the productivity specification given in equation (1) are set according to available econometric estimates. The elasticity of productivity growth with respect to the trade share is given by the parameter \(\theta_3 \) multiplied by the adoption share in productivity growth. In the model simulations the relative importance of technology adoption is endogenous and varies over time and across scenarios. Assuming an elasticity of productivity growth with respect to the trade share in the range 0.6-0.9, we set \(\theta_3 = 1.3 \). 10 percentage points increase in the trade share give 0.2-0.4 percentage points higher productivity growth when starting from the assumed steady state\(^3\). The magnitude of the effect is consistent with econometric estimates offered by Romalis (2007). He applies US tariff data as instruments for openness in developing countries, and shows that 10 percentage points increase in the trade share generates 0.2-0.5 percentage points higher GDP per capita growth rate. Cameron et al. (2005) examine the role of international trade (measured by total imports as share of output) for TFP growth in UK manufacturing industries during 1970-92. In their preferred specification 10 percentage points increase in the import share gives about 1 percentage point higher TFP growth\(^4\). Compared to this estimate, the elasticity of productivity growth with respect to the trade share applied in our model can be seen as conservative. In section 7 we investigate how the quantitative effects of trade barriers depend on the parameters.

To reproduce the actual GDP growth, the initial levels of capital and productivity are scaled down compared to the steady state path. The capital stock and the domestic productivity level are reduced to 24 and 80 percent, respectively, of its steady state value in 1960. This gives an initial technology gap \((A_t^*/A^*) \) of 0.32. The scaling back serves as an exogenous shock that takes the economy outside the equilibrium long run path in 1960. The initial capital stock and productivity level are below the long run path and economic growth is driven by endogenous adjustment back to equilibrium growth.

\(^2\) The assumption of 0.7% labor growth is consistent with data on average annual employment growth in South Africa during 1971-2005 (TIPS, 2006).

\(^3\) The calculation is based on trade shares in the range 0.3-0.6, which is consistent with the values in the model simulations.

\(^4\) This is calculated based on the coefficient on the interaction term between the import share and the technology gap in regression 2 in their Table 4. We proxy the average value of the technology gap by the average of the 1970 and 1992 value as reported in their Table 2.
The supply of different labor types is set according to TIPS (2006) data on employment shares by skill level\(^5\). The share of unskilled labor in the total labor force declines from 0.78 to 0.44 during 1960-2005, and with a corresponding increase in the skilled labor share from 0.22 to 0.56. The share of skilled workers in the labor force represents our measure of human capital in the productivity specification.

Figure 2 shows how we track the actual growth rate as a steady decline in the model growth rate during 1961-90, followed by constant growth post Apartheid. The South African growth experience here can be understood as neoclassical convergence, trade and human capital affecting international spillovers, and endogenous interplay between productivity and investment profitability. While the initial high growth was driven by investment and profitability, the stagnation involved a drop in productivity growth due to reduced technology adoption and an associated fall in investment profitability. Sanctions and protectionism have served as barriers to productivity growth and investment, and the economy is not able to catch up with the frontier. Elimination of sanctions and trade liberalization have stimulated economic growth with reduced barriers post Apartheid.

Figure 2 about here.

5. Measuring trade barriers by tariff equivalent

The general equilibrium model allows for measurement of the hard to measure protectionist factors affecting international trade. Given the growth projection we calibrate export and import taxes necessary to reproduce the observed export and import paths during 1960-2005. The development of terms of trade and real effective exchange rate are calibrated consistent with data to adjust for the impact of world price shocks on the trade level\(^6\). Total trade taxes as share of trade represents our measure of openness. Figure 3 reports the reproduction of the trade path, while the tariff equivalent is illustrated in Figure 4.

Figure 3 and 4 about here.

\(^5\) The TIPS data separates between three labor types (unskilled, skilled and highly skilled). We label skilled and highly skilled workers as skilled. The supplies of skilled and unskilled labor are extended backwards to 1960 based on average growth rates during 1970-2005.

\(^6\) The calibration is given in a separate appendix available from the authors.
While the tariff equivalent decreases during the 1960s, the slow growth of exports and imports in the 70s and 80s requires a gradual increase of the tariff-equivalent with a peak in the late 1980s of about 55%. After 1990 the removal of sanctions together with a gradual liberalization of the trade policy increased trade rapidly, reflected in the model by decreasing tariffs. The underlying paths of the export tax and the import tax are documented in a separate appendix available from the authors. The import tax declines rapidly from more than 60% in 1990 to 7% in 2005. The export tax is also declining post Apartheid, but remains above 30% even in 2005 indicating that domestic conditions are holding back South African exports. In the model simulations the tariff equivalent represents the barrier to international spillovers.

Interestingly, the calibrated tariff paths are consistent with tariffs calculated from partial analyses of exports and imports with reasonable values of elasticities. The export function is assumed to depend on the world level of GDP and the real effective exchange rate, with elasticities set equal to 1. With export taxes equal to zero, we reproduce the export path in the 1960s, but to capture the slowdown in exports in the 1970s and 80s it is necessary to gradually increase the tax to about 45%. Consistent with the results in the general equilibrium model the export tax remains high in the post Apartheid period. The import function is assumed to depend on the South African GDP level and the real effective exchange rate, with elasticities set equal to 1.2 and -1.5, respectively. To reproduce the actual import path tariffs are initially high, decreases during the 60s, increases to a peak of about 70% in 1986, and then decreases rapidly, broadly consistent with the calibrated import tariff path in the general equilibrium model.

Existing measures of openness in South Africa are scarce. A recent contribution by Edwards and Lawrence (2006) offers data on tariffs and surcharges since 1960. The development path (illustrated in their Figure 6) with liberalization in the 1960s, increasing protectionism since the mid 70s, peak in 1990, and liberalization since 1990, is consistent with our calibrated tariff equivalent measure of openness. Aron and Muellbauer (2002) develop an openness indicator for South Africa based on econometric estimation. Their model includes a measure of tariffs and surcharges, while the unobservable effect of sanctions and quotas are captured by a non-linear stochastic trend. The indicator illustrates the changing degree of openness

7 The real effective exchange rate is defined as the nominal exchange rate times the foreign price level relative to the domestic price level, and is given by IMF (2006).
during 1970-2000 with increasing protectionism in the 70s, sanctions and protectionism in the 80s and trade liberalization after 1990. Compared to the analysis by Aron and Muellbauer our openness indicator takes into account that both imports and exports are held back by sanctions, covers a longer time period, and gives a more intuitive measure of openness (export and import tax as share of total trade).

6. Quantification of the investment and productivity responses to openness

The growth model allows a counterfactual analysis of the role of international trade and thereby a quantification of the growth effect of trade barriers. Changing trade policy barriers over time lead to prolonged transitional growth. As explained in section 5, we have calibrated a tariff-equivalent growing from the late 60s and with a peak in the late 1980s to reproduce the actual trade and growth path. Eliminating the rise in the tariff-equivalent during the period of sanctions and protectionism, we can simulate the economic development in a more open economy. In the experiment, the import tax decreases gradually from about 40% in 1960 to 7% in 2005, while the export tax decreases from 5% in 1960 and remains equal to zero from 1966. This implies a gradual decrease in the tariff equivalent level (gradual trade liberalization). The average tariff rate during 1960-2005 equals 18%, down from about 40% along the South African reference path.

The new GDP growth path is shown in Figure 5 below. Given the investment and productivity links to openness assumed, the analysis shows that South Africa could have avoided some of the decline in the growth rate. The sanctions and protectionism have contributed to more costly investment goods and less technology adoption and consequently held back economic growth. The growth effect adds up to a rather large permanent income gap between the two scenarios. The model predicts that the 2005 level of real GDP is 35% higher when trade barriers are eliminated. The productivity level increases from 33% to 41% of the world technology frontier. Investments are raised by nearly 50%.

Figure 5 about here.

More openness reduces the cost of adopting foreign technology by limiting the trade barriers to technology transfer, and productivity growth increases. The period of technological stagnation is avoided and the economy catches up relative to the frontier. As seen from Figure
relative productivity increases over time, and generates a permanent productivity gap of about 8 percentage points between the two scenarios. The growth rate effect of higher trade share is decreasing over time since the learning potential from technology adoption declines as the economy catches up. Investment profitability is stimulated by less expensive foreign capital goods and higher productivity growth. Increased capital accumulation implies more trade, which generates further technology spillovers from abroad. The productivity-investment interaction stimulates growth and contributes to the large growth differential between the two scenarios during transition.

Figure 6 about here.

The model clarifies how the timing and expectation of trade policy can generate a complicated dynamic pattern of response. In our setting, future trade liberalization is expected and will influence current investment and production decisions. Gradual trade liberalization gives an immediate drop in both the investment rate and the trade share compared to the reference path. Current investments are postponed since investors will take advantage of cheaper imported investment goods in the future. In addition, higher expected productivity with a more open economy increases the expected profitability of future investments and contributes to lower initial investment rate. Over time the profitability of capital accumulation increases, and the 2005 level of real investments is 50% higher than along the calibrated South Africa path. Gradual trade liberalization has a similar effect on foreign trade. The initial trade share falls by 2 percentage points, mainly driven by lower export share. When cheaper foreign goods and lower export taxes are expected in the future, current trade is held back. At the end of the period studied (2005) the trade share is 13 percentage points higher in the open economy scenario.

Our main interest is a clarification of the vehicles from openness to growth, the endogenous adjustment of productivity and investment. We run a counterfactual experiment with exogenous productivity growth equal to the frontier rate and compare the quantitative effects of reduced tariffs in experiments with exogenous and endogenous productivity growth. The

8 Along the South African reference path productivity growth is stagnant and about equal to the growth rate at the frontier. In the exogenous productivity scenario we therefore assume productivity growth equal to the frontier rate so that the reference path is similar in the two experiments.
share of the effect of reduced tariffs on GDP, investment, and trade working via the productivity channel is illustrated in Table 1.

Table 1 about here.

Reduced tariffs stimulate investments via less expensive foreign investment goods and higher productivity that increases the profitability of investments. As seen from Table 1, the increase in the 2005 real investment level of 50% is reduced to 17% when the productivity effect is not included. This implies that 2/3 of the effect of a more open economy on investments is due to increased productivity. Similarly, almost 70% of the increase in real GDP comes from the productivity effect, working either directly or indirectly via investment profitability. The calculations include the induced capital accumulation effect emphasized by Hulten (2001). Given the parameterization explained above, the broad conclusion is that the openness effect on growth is divided between 1/3 via investment and 2/3 via productivity.

The productivity effect on trade works via investment and GDP, but also depends on the development in relative prices. Higher productivity growth has opposite effects on the real exchange rate. The positive supply-side effect decreases the relative domestic price, while the income effect increases demand and holds back the price decline. In the simulations the first effect dominates and the productivity effect generates a depreciation of the real exchange rate. As seen from the last column of Table 1, 15% of the effect of reduced tariffs on total trade works via higher productivity growth. If we consider the export share separately, the relative importance of the productivity effect is almost 30%. The positive productivity effect on exports is driven by the real depreciation, which shifts production sales towards export markets, together with increased investment and production. Regarding the import share, increased productivity growth limits the positive effect of reduced tariffs due to the depreciation of the real exchange rate.

7. Robustness tests

The quantitative effects of trade barriers discussed above obviously depend on parameter values, in particular trade and productivity elasticities. In the base-run simulations the elasticity of substitution between domestic and foreign goods is assumed to equal 3, while the elasticity of substitution between domestic and export markets is set to 2 (consistent with
empirical estimates documented in the Appendix). Table 2 shows how the quantitative effects of trade barriers change with the level of trade elasticities.

Table 2 about here.

A low elasticity of substitution implies that it is hard to substitute between domestic and foreign goods, as well as between domestic and foreign markets. Trade is therefore kept relatively high also along the reference path with an increasing tariff equivalent. The lower the elasticity of substitution, the smaller the quantitative effects of reducing trade barriers (the difference between a closed and an open economy is reduced). With trade elasticities equal to 1.5 we observe technological catch-up in both scenarios, and the difference in degree of catch-up is 5 percentage points, compared to 8 percentage points in the base run scenario with higher elasticities. The 2005 level of real GDP is 24% (rather than 35%) higher in the more open economy. With high elasticity of substitution (equal to 4.5 for imports and 2.5 for exports) trade is reduced more when the tariff equivalent increases, which means that the degree of catch-up is held back along the reference path (and the economy even diverges). The quantitative effects of reduced tariffs are larger than in the low elasticity scenario.

The elasticity of productivity growth with respect to the trade share is given by the parameter θ_3 multiplied by the share of adoption in productivity growth. In the base-run simulations we set $\theta_3 = 1.3$, giving an elasticity in the range 0.6-0.9 (broadly consistent with available econometric estimates documented in the Appendix). Table 3 shows how the value of θ_3 alters the quantitative effects of trade barriers.

Table 3 about here.

A lower value of θ_3 means that the impact of changes in the trade share on productivity growth is smaller. If the trade share increases with 1%, the technology adoption part of productivity growth increases with $\theta_3 \%$. During international isolation the trade share decreases and productivity growth is held back. The lower the value of θ_3, the smaller is the negative effect of isolation on productivity growth and the higher is the degree of catch-up. Hence, the quantitative effects of trade barriers are lower the lower the elasticity of productivity growth with respect to the trade share. With low (0.8) and high (1.8) values of θ_3
the increase in the 2005 real GDP level due to a more open economy is 26% and 43%, respectively, compared to 35% in the base run scenario.

Independent of the values of trade and productivity elasticities the importance of the productivity channel for trade liberalization effects remains high. The share of the effect of reduced barriers on investment and GDP working indirectly via increased productivity lies in the range 50-75%.

8. Concluding remarks

The analysis addresses the relationship between openness and growth using South Africa as a case study. We offer an attempt at quantifying the effects using a Ramsey growth model extended to capture catching up and barriers to growth. The econometric literature has estimated the effect of trade barriers for economic growth, but has not clarified the endogenous adjustment of foreign trade, investment and productivity. Using parameters calibrated based on the econometric evidence, we have shown how investment and productivity respond and interact. Due to international sanctions against the Apartheid regime and a complex system of import quotas the degree of protectionism cannot be measured directly. Based on the model we offer an openness index by calibrating a tariff equivalent that reproduces the actual trade path during 1960-2005.

The growth model allows a counterfactual analysis of the role of international trade and thereby a quantification of the growth effect of trade barriers. The quantification emphasizes investment and productivity as channels to growth. Eliminating the rise in the tariff equivalent during the period of sanctions and protectionism increases the 2005 GDP and investment levels by 35% and 50%, respectively. Given the productivity mechanism assumed, a more open economy reduces the cost of technology adoption and contributes to higher degree of technological catch up. The analysis confirms the positive interaction between productivity and investment profitability. More than 2/3 of the effect of reduced barriers on investment and GDP comes from higher productivity growth.

The quantitative results in the analysis reflect the growth potential assuming well-functioning domestic markets and that the barrier model works. South African growth under new rule has been reluctant and there is widespread disappointment about the recent growth results. The
lack of growth response to more openness and human capital points to domestic market imperfections beyond the growth constraints discussed in this paper. Future research should address the domestic market challenges in combination with the productivity growth analysis presented here.

References

Benhabib, J. and M. Spiegel (2005), Human capital and technology diffusion, Ch. 13 in P. Aghion and S. Durlauf (eds.), *Handbook of Economic Growth*, vol.1A.

Cameron, G. (2005), The sun also rises: Productivity convergence between Japan and the USA, *Journal of Economic Growth* 10, 387-408.

Fedderke, J. (2005), Technology, human capital and growth: Evidence from a middle income country case study applying dynamic heterogeneous panel analysis, mimeo, ERSA, University of Witwatersrand.

Klenow, P. and A. Rodriguez-Clare (2005), Externalities and growth, Ch. 11 in P. Aghion and S. Durlauf (eds.), Handbook of Economic Growth, vol.1A.

Parente, S. and E. Prescott (2005), A unified theory of the evolution of international income levels, Ch. 21 in P. Aghion and S. Durlauf (eds.), Handbook of Economic Growth, vol. 1B.

Waugh, M (2007), International trade and income differences, mimeo, Department of Economics, University of Iowa.

0o0o0o0
Appendix: Calibration of trade and productivity elasticities

Productivity growth is given by equation (1) in section 2:
\[
\hat{A}_t = H_t^\theta + \lambda H_t^\theta T_t^\theta \left(1 - \frac{A_t}{A^*}\right)
\]
where H is the human capital level (measured by the skill ratio), T is total trade as share of GDP, and A/A^* is the technology gap relative to the frontier. The parameters of the productivity specification are set in line with available econometric estimates.

The elasticity of productivity growth with respect to the trade share is given by the parameter θ_3 multiplied by the adoption share in productivity growth. We assume $\theta_3 = 1.3$, which gives an elasticity of productivity growth with respect to the trade share in the range 0.6-0.9. As documented in section 4, this is consistent with available econometric estimates.

The elasticity of productivity growth with respect to the skill ratio is given by θ_1 multiplied by the innovation share plus θ_2 multiplied by the adoption share. We set $\theta_1 = \theta_2 = 0.6$, which gives an elasticity of 0.6. If the skill ratio increases with 1%, productivity growth increases with 0.6%, and the effect works via both innovation and technology adoption. This implies that an increase in the skill ratio of 10 percentage points gives 0.2-0.35 percentage points higher productivity growth when starting from the assumed steady state rate (1.3%)\(^9\). In an analysis of 19 OECD countries during 1960-2000 Vandenbussche et al. (2006) find that human capital (measured by the share of the adult population with some tertiary education) stimulates TFP growth, and that the positive effect of human capital decreases with the distance to the technological frontier. Evaluated at the average technology gap among the OECD countries in the analysis ($A/A^* = 0.74$) their results imply that 10 percentage points higher skill ratio generates about 1 percentage point higher TFP growth rate\(^{10}\). The smaller magnitude of effect assumed in our analysis (0.2-0.35 percentage points) seems reasonable since South Africa is further from the technological frontier.

\(^9\) The calculation is based on skill ratios in the range 0.22-0.56, which reflects the development during 1960-2005 in the model simulations.

\(^{10}\) The calculation is based on estimated coefficients in regression 5 of Table 4 in Vandenbussche et al. (2006). The average technology gap is given in their Table 1.
The effect of the technology gap on productivity growth is given as
\[
\frac{\partial A}{\partial (A/A^*)} = -\lambda H^b T^b,
\]
which equals about -2 when calculated from the base year values of the skill ratio and the trade share. If relative productivity increases by 10 percentage points (for instance from 0.3 to 0.4), productivity growth decreases by 0.2 percentage points (for instance from 1.3% to 1.1%). This reflects the increase in adoption costs (lower learning potential) as the economy catches up towards the frontier. The magnitude of the effect is in line with econometric estimates offered by Hansson and Henrekson (1994). In a cross-country study they find a significant effect of the technology gap in interaction with human capital and trade openness on labor productivity growth. According to their estimates, 10% increase in the technology gap \((A/A^*)\) gives 0.06-0.1 percentage point lower labor productivity growth rate. This implies that if the technology gap increases by 10 percentage points from 0.3 to 0.4 (33% increase), productivity growth decreases by 0.2-0.3 percentage points.

The trade elasticities represent substitution possibilities between domestic and foreign goods (Armington), and between sales to domestic markets versus export markets (CET). We assume an Armington elasticity equal to 3, and a CET elasticity equal to 2, which is consistent with available national and international estimates. Hertel et al. (2007) combine parameter estimation and general equilibrium modeling. Based on data from five Latin American countries, the US and New Zealand they estimate the elasticity of substitution among imports from different countries. The “rule of two” says that the elasticity of substitution across imports by sources is equal to twice the elasticity of substitution between domestic and foreign goods\(^{11}\). Based on this hypothesis the average Armington elasticity across sectors equals 3.5. IDC (1997) and Gibson (2003) offer Armington estimates for South African manufacturing industries and the average elasticity (among significant estimates) equals 1.8 and 1.1, respectively. However, these are short-run elasticities, which are normally smaller than long-run elasticities more relevant in our setting. Available estimates of export elasticities are more limited. Senhadji and Montenegro (1999) estimate export elasticities for 53 developing and developed economies. The average elasticity across middle income countries is 1.7.

\(^{11}\) Empirical support for the “rule of two” hypothesis is offered by Liu et al. (2004).
Appendix Table 1. Selected calibrated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>World market interest rate</td>
<td>0.11</td>
</tr>
<tr>
<td>ρ</td>
<td>Time preference rate</td>
<td>0.09</td>
</tr>
<tr>
<td>g</td>
<td>Long-run technical progress rate</td>
<td>0.013</td>
</tr>
<tr>
<td>n</td>
<td>Labor growth rate</td>
<td>0.007</td>
</tr>
<tr>
<td>α_1</td>
<td>Unskilled labor share in production</td>
<td>0.19</td>
</tr>
<tr>
<td>α_2</td>
<td>Skilled labor share in production</td>
<td>0.34</td>
</tr>
<tr>
<td>$1-\alpha_1-\alpha_2$</td>
<td>Capital share in production</td>
<td>0.47</td>
</tr>
<tr>
<td>δ</td>
<td>Rate of depreciation</td>
<td>0.04</td>
</tr>
<tr>
<td>θ_1</td>
<td>Parameter in the productivity specification</td>
<td>0.6</td>
</tr>
<tr>
<td>θ_2</td>
<td>Parameter in the productivity specification</td>
<td>0.6</td>
</tr>
<tr>
<td>θ_3</td>
<td>Parameter in the productivity specification</td>
<td>1.3</td>
</tr>
<tr>
<td>σ_m</td>
<td>Armington elasticity</td>
<td>3.0</td>
</tr>
<tr>
<td>σ_e</td>
<td>CET elasticity</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Figure 1. Productivity dynamics: Transitional and long-run effects of increased trade share.

Figure 2. Real GDP growth rate: Calibrated path of model versus actual growth (measured as 3-year moving average)
Figure 3. Total trade: Calibrated path of model versus actual path (given in Billions of 1995 rand)

Figure 4. Calibrated openness indicator for South Africa 1960-2005. Measured as import tax and export tax as share of total trade.
Figure 5. Real GDP growth: Calibrated path versus counterfactual path

![Real GDP growth](image)

Figure 6. Domestic productivity level relative to the frontier: Calibrated path versus counterfactual path.

![Technology gap (A/A*)](image)
Table 1. The impact of eliminating the rise in the tariff equivalent on key macro variables:
The share of the effect working via increased productivity growth

<table>
<thead>
<tr>
<th></th>
<th>Exogenous productivity growth(^1)</th>
<th>Endogenous productivity growth(^1)</th>
<th>Share of reduced tariff effect working via increased productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>11% increase</td>
<td>35% increase</td>
<td>69%</td>
</tr>
<tr>
<td>Real investment</td>
<td>17% increase</td>
<td>50% increase</td>
<td>66%</td>
</tr>
<tr>
<td>Trade/GDP</td>
<td>11%-points increase</td>
<td>13%-points increase</td>
<td>15%</td>
</tr>
</tbody>
</table>

\(^1\) The values give the impact of tariff reductions on the end of period (2005) level of GDP, investment and the trade share.

Table 2. Quantitative effects of trade barriers for different values of trade elasticities.

<table>
<thead>
<tr>
<th></th>
<th>Low elasticity(^1)</th>
<th>Base run(^2)</th>
<th>High elasticity(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>24%</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>A/A*</td>
<td>5 %-points</td>
<td>8 %-points</td>
<td>10 %-points</td>
</tr>
<tr>
<td>Real investment</td>
<td>37%</td>
<td>50%</td>
<td>57%</td>
</tr>
<tr>
<td>Trade/GDP</td>
<td>6%-points</td>
<td>13%-points</td>
<td>16%-points</td>
</tr>
</tbody>
</table>

\(^1\) Low elasticity: Armington = 1.5 and CET = 1.5.
\(^2\) Base run: Armington = 3 and CET = 2.
\(^3\) High elasticity: Armington = 4.5 and CET = 2.5.

Note: The values give the impact of tariff reductions on the end of period (2005) level of GDP, relative productivity, investment, and the trade share.

Table 3. Quantitative effects of trade barriers for different values of the elasticity of productivity growth with respect to the trade share.

<table>
<thead>
<tr>
<th></th>
<th>(\theta_1 = 0.8)</th>
<th>Base run: (\theta_1 = 1.3)</th>
<th>(\theta_1 = 1.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>26%</td>
<td>35%</td>
<td>43%</td>
</tr>
<tr>
<td>A/A*</td>
<td>5 %-points</td>
<td>8 %-points</td>
<td>11 %-points</td>
</tr>
<tr>
<td>Real investment</td>
<td>38%</td>
<td>50%</td>
<td>61%</td>
</tr>
<tr>
<td>Trade/GDP</td>
<td>12%-points</td>
<td>13%-points</td>
<td>13%-points</td>
</tr>
</tbody>
</table>

Note: The values give the impact of tariff reductions on the end of period (2005) level of GDP, relative productivity, investment and the trade share.