
The Dynamics Of Projecting Confidence

in Decision Making

G. Charles-Cadogan

March 9, 2014

Preliminary draft

Abstract

We introduce a model in which a decision maker’s (DM) projection of
confidence in her risk based decisions is enough to generate chaotic dy-
namics by and through behavioural operations on probability spaces.
The model explains preference reversal phenomenon in the context of
an ergodic theory of probabilistic risk attitudes and stochastic choice
process. We extend the model to fluctuations of the Lyapunov ex-
ponent for the behavioural operator in a large sample of DMs with
heterogeneous preferences, and we characterize the time dependent
probability of chaotic dynamics in that milieu. Specifically, we iden-
tify a Perron effect for the empirical Lyapunov exponent process driven
by the distribution of DMs heterogeneity. That is, our model predicts
that for a seemingly stable system of DMs, tail event chaos is triggered
by probabilistic optimism and pessimism that fall in a critical range of
values for curvature and elevation parameters for subjective probabil-
ity distributions popularized by behavioural economics and psychology.
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1 Introduction

This paper proposes a model of how a decision maker (DM) projects
confidence in her risk based decisions, and examines some dynamic
consequences of that behaviour. To motivate the model, we note that
a decision maker (DM) who purchases a lottery ticket hopes that she
will win. She purchases an insurance policy out of fear of loss. In
each case, she has a preference for probability distributions over gam-
bling and or insurance. It is known that the cardinal utility function
for gambling is convex, and that for insurance is concave. For exam-
ple, Friedman and Savage (1948) reconciled a DM purchase of insur-
ance and lottery ticket by introducing a utility function with concave
and convex segments1. See also, Markowitz (1952). In contrast Yaari
(1987) duality theory assumes linear utility and shifts all risk atti-
tude to subjective probability weighting2. There, DMs overweigh small
probabilities (hence optimism about lottery ticket) and underweigh
large probabilities (hence pessimism about insured event)3. See also
Kahneman and Tversky (1979). This phenomenon is usually depicted
by an inverse S-shaped, i.e., concave-convex, probability weighting
function (PWF)4–first plotted by Preston and Baretta (1948)–which
cuts the diagonal of a unit square at a de facto fixed point. See Figure 1
on page 2. The DM’s hope or optimism about the lottery ticket stems
from projecting windfall into a gain domain whereas her fear or pes-
simism about the insured event stems from projecting catastrophe into
a loss domain5. These confidence factors are depicted by the areas

1A review of the literature shows that Törnqvist (1945) specified a utility function
with concave and convex segments and he credited Svennilson (1938) with doing same in
another context.

2For a simple lottery (−h, p;h, 1− p) at wealth level Y , Arrow (1971, p. 95) represents

probabilistic risk attitudes as p(Y, h) = 1
2
+ RA(Y )

4
h + o(h2) where RA(Y ) is the Arrow-

Pratt risk measure decreasing in Y . See also, Merton (1992, p. 218) for util-prob.
3Sadiraj (2013) proved that this kind of probabilistic risk attitude suffers from cali-

bration problems that can lead to absurd local risk aversion for extremely small or large
probabilities in rank dependent utility (RDU) models like Quiggin (1982); Yaari (1987);
and Tversky and Kahneman (1992). See also, Cox et al. (2013).

4More recent studies report heterogenous functional forms that range from uni-
formly convex to uniformly concave with various combinations of concave-convex seg-
ments in between. See e.g., Gonzalez and Wu (1999); Abdellaoui (2000); Wilcox (2011);
Cavagnaro et al. (2013). Our results are robust to functional forms.

5Our use of “projection” is distinguished from the literature on “projection bias”
spawned by Loewenstein et al. (2003) which deals with habit formation.
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A (optimism) and B (pessimism) in Figure 2. Thus, the psycholog-
ical space of hope and fear is a separable projective space. See e.g.,
Shephard (1987); Zhang (2004); He and Zhou (2013). Hence, the ge-
ometry of PWFs describes a phase space (or state space) in which DMs
transform probability distributions, and project onto state space (gain
and loss domains).

Figure 1:
Preston and Baretta (1948)
psychological probability
function

Figure 2: Distribution of Con-
fidence
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A seminal paper by Tversky and Wakker (1995) introduced the
concept of bounded subadditivity to characterize what events impact
the probability transformation process. See also, Fox et al. (1996).
But they did not provide a constructive model for how the trans-
formation takes place. The implicit assumption in all of the papers
above is that the PWF is static, i.e., fixed6. However, that assump-
tion must be reconciled with preference reversal phenomenon reported
in the literature7. See e.g., Lichtenstein and Slovic (1973); Tversky
(1969). Furthermore, in an experiment designed to test stability of

6Andersen et al. (2008, pp. 1111) conducted a field experiment in Denmark and report
that “[a]s subjects become more positive about their current finances and more optimistic

about future expenditures, risk attitudes tend to decline”[emphasis added].
7Holt (1986) defines the “preference reversal phenomenon” as one “in which subjects

put a lower selling price on the lottery for which they state a preference”. Ross (2005,
pp. 177-181) reviews the literature on preference reversal and its implications for revealed
preference theory. Tversky et al. (1990) attribute the phenomenon to violation of “pro-
cedure invariance” which occur when preferences constructed from normative elicitation
procedures, which should yield the same results in theory, do not do so in the lab. See
also, Smith (1982, pg. 927).
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risk attitude over time, Zeisberger et al. (2012) found that risk attitude
parameters for prospect theory were stable for aggregate data. How-
ever, at the individual level one third of the subjects exhibited insta-
bility of risk attitudes over time8. See also, Loomes and Sugden (1998);
Fox and Tannenbaum (2011). For example, Loomes and Sugden (1998)
used stochastic choice models to analyse the risk attitude of their sub-
jects over time. This suggests the existence of a background driv-
ing stochastic process induced by time varying stochastic choice. Our
model fills a gap in the literature by introducing a behavioural operator
that characterizes DMs projection of confidence, parameter instability,
and preference reversal over time in state space characterized by a be-
havioural stochastic process motivated by ergodic theory9. Because our
model is fairly abstract, it applies to any situation where DMs confi-
dence is in play. For example, in Odean (1998) and Harrison and Kreps
(1978) heterogenous DMs are classified by type, and their behaviors are
analyzed in a partial equilibrium to explain speculative bubbles. Our
model provides a mechanism for classifying such DMs and it shows how
probabilistic risk attitudes affect market instability.

Our main result can be summarized as follows. Let Q and
P be known probability distributions over loss and gain domains in
“mixed frame” state space, see e.g., Harrison and Swarthout (2013),
that supports the coexistence of gambling and insurance. We assume
that Q represents “small” probabilities and P represents “large” prob-
abilities relative to a fixed point probability p⋆. See e.g., Figure 2.
In effect, p⋆ splits the probability distribution. In our model, beliefs
about some parameter θ are accompanied by probability distortions,
i.e., PWFs w, reported in the literature on behavioural and experi-
mental economics10. See e.g., Fellner (1961); Gonzalez and Wu (1999);
Cavagnaro et al. (2013). A DM who has preferences consistent with
Von Neumann and Morgenstern (1953) expected utility theory (EUT)
will have a linear PWF P , whereas a DM with “nonexpected” utility
preferences will have a nonlinear PWF of type w(P ) 6= P . This feature
of our model finds support in the experimental literature. For instance,

8Holt (1986, pg. 509) reports that the rate of preference reversal “is typically above 40
percent” in experiments with money incentives.

9This result is consistent with violation of the independence axiom due to nonlinearity
in probabilities. See e.g., Holt (1986, pg. 511)

10Rutström and Wilcox (2009, pg. 621) describe an adaptive learning model introduced
by Cheung and Friedman (1997) as a “gamma weighted belief” (GWB) process.
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Bruhin et al. (2010) conducted an experiment with a large sample of
DMs and report that heterogenous preferences emerged endogenously.
Using different methodology, Harrison and Rutström (2009) also find
evidence of heterogenous preferences in their mixture model11. So that
if P (E) is the experimenter’s frequentist probability assigned to some
measurable event E, when θ ∈ E, then w(P (E)) is the corresponding
subjective probability assigned to A. Thus, w(P (E))−P (E) is a mea-
sure of the difference between a DM’s subjective probability measure
and the experimenter’s probability measure for θ in E 12. w(P (E)) >
P (E) implies overconfidence that θ lies in E, whereas w(P (E)) < P (E)
implies underconfidence of same13. See e.g., A and B in Figure 2.
Without loss of generality, we assume that heterogenous [nonlinear]
beliefs are of concave-convex type w(P ), in contrast to linear beliefs
P , even though concave (uniformly optimistic), convex (uniformly pes-
simistic), convex-concave, and combinations of all of the above have
been reported in the literature14. See e.g., Gonzalez and Wu (1999);
Wilcox (2011); Cavagnaro et al. (2013). Heterogeniety in our model is
characterized by random effects superimposed on the concave-convex
probability weighting function which is the core theory in our model.
See e.g., Loomes and Sugden (1998, pg. 583); Hey and Orme (1994);
Barsky et al. (1997); Andersen et al. (2012, pp. 162-163). We exploit
the difference in belief to construct a behavioural kernel operatorK(Q,P )
with domain of definition D(K). Gemoetrically, the kernel is depicted
by areas A and B in Figure 2. There exist functions f and g such that
for f ∈ D(K),

g(Q) = (Kf)(Q) =

∫
K(Q,P )f(P )dP

is the projection of f in Q-space. Thus, if K and g are known, we
11Bruhin et al. (2010, pg. 1376) report a 80 : 20% split for w(P ) and P , whereas

Harrison and Rutström (2009, pg. 146) report a 45 : 55% split. The Bruhin, et al split is
rather high. In private communication, Harrison notes that the different splits may be an
artifact of the different experimental design and estimation procedures employed in the
two papers.

12Harrison et al. (2013, Lemma 2, pg. 8) equates this deviation to a function of marginal
utility.

13Pleskac and Busemeyer (2010, pg. 869) use a probability ratio type statistic to mea-
sure confidence.

14The curvature and elevation of w reflects the degree of optimism or pessimism
and areas of type A and B in Figure 2 extend to any nonlinear PWF. See e.g.,
Tversky and Wakker (1995); Abdellaoui et al. (2010); Vieider (2012)
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can recover f(Q) = (K−1g)(Q) provided the inverse operation K−1 is
meaningful15. In the sequel we show how to construct K and extend
it to composite operations that characterize ergodic confidence levels.
In our model, beliefs are the only primitives that induce endogenous
instability.

We extend the behavioural operator K to a large sample of N

heterogenous DMs via composite oprtaions T̂ = −KT ◦ K. Chaotic
dynamics supported by the orbit of w(P ) are characterized by an em-

pirical process for the Lyapunov exponent of T̂ induced by the dis-
tribution of heterogenous DMs, and estimated from Prelec (1998) 2-
parameter probability weighting function. We show how those two
parameters–α for curvature and β for elevation–control the probabil-
ity of tail event chaos in an otherwise stable system of DMs. That
result is distinguished from Cavalcante, Hugo L. D. de S. et al. (2013)
who introduced a model of tail event chaos controlled by perturbing
the system.

The rest of the paper proceeds as follows. In section 2 we
introduce the kernel operator, and report the main results on a dy-
namical system of confidence. In section 3 we present analytics for
the Lyaponov exponent for a large sample of heterogenous DMs. In
section 4 we conclude with perspectives.

2 The Behavioural Kernel Operator

The kernel operator is constructed from deviation of subjective prob-
ability from an objective probability measure. Let θ be an abstract
object in Ω. Our model rests on the following:

Assumption 2.1. Subjects’ prior beliefs about θ can be elicitetd.

Assumption 2.2. Prior beliefs about θ are independent.

Assumption 2.3. Heterogenous beliefs are of two types: w(P ) and P .

Assumption 2.4. DMs have preference for probability distributions
over ranked outcomes.

15f is not necessarily unique. Furthermore, in the sequel K effectively applies to a
Hilbert space so some results may not hold in other spaces. See e.g., Hochstadt (1973,
p. 33).
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Assumption 2.1 is motivated by Georgia State University (GSU)
Credit Risk Officer (CRO) Index which is still in its infancy. There,
prior probabilities are elicitetd from a sample of credit risk officers con-
cerning their confidence in the behaviour of 11-major financial market
indexes. See Agarwal et al. (2013); Harrison and Phillips (2013).

2.1 Confidence operations over probability domains.

Under Assumption 2.3, p∗ is a fixed point probability (w(p⋆) = p⋆)
that separates loss and gain domains. See e.g., Tversky and Kahneman
(1992); Prelec (1998); Cavagnaro et al. (2013). Let Pℓ , [0, p∗] and

Pg , (p∗, 1] be loss and gain probability domains as indicated. So that
the entire domain is P = Pℓ ∪Pg. Let w(p) be a probability weighting
function (PWF), and p be an an objective probability measure.

Definition 2.1 (Behavioural matrix operator).
The confidence index from loss to gain domain is a real valued mapping
defined by the kernel function

K : Pℓ ×Pg → [−1, 1] (2.1)

K(pℓ, pg) =

∫ pg

pℓ

[w(p)− p]dp

=

∫ pg

pℓ

w(p)dp− 1

2
(p2g − p2ℓ), (pℓ, pg) ∈ Pℓ × Pg

(2.2)

By construction
∫ 1

0

∫ 1

0
K(q, p)dqdp < ∞. So K belongs to the Hilbert

space of squared integrable functions L2([0, 1]2) with respect to Lebesgue

measure. See Hochstadt (1973, p. 12). K can be transformed to K̂ so
that the latter is singular at the fixed point p∗ as follows:

K̂(pℓ, pg) =
K(pℓ, pg)

pg − pℓ
=

1

pg − pℓ

∫ pg

pℓ

w(p)dp− 1

2
(pg + pℓ) (2.3)

For internal consistency, we require K(pℓ, pg) = 0, pℓ > pg. So K

is of Volterra type. See e.g., Hochstadt (1973, pg. 2). Furthermore,

limp→p⋆ K̂(p, p⋆) = ∞ implies that K̂ is singular near p∗ and so K̂

is treated as a distribution. See e.g., Stein (1993, pg. 19). For ℓ =
1, . . . , m and g = 1, . . . , r K = {K(pℓ, pg)} is a behavioural matrix
operator. �
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K̂ is an averaging operator induced by K. It suggests that the Newto-
nian potential or logarithmic potential on loss-gain probability domains
are admissible kernels. The estimation characteristics of these kernels
are outside the scope of this paper. The interested reader is referred
to the exposition in Stein (2010).

2.1.1 Extension to stochastic kernels

The kernel above can be extended to probability weighting functions
that cut the 45◦-line more than once–if at all–by the following means.
Let Co, Cu, CZ be the set of probabilities that correspond to overcon-
fidence (o), underconfidence (u) and neutrality (Z). Thus

Co = {p|w(p) > p, p ∈ [0, 1], w : [0, 1] → [0, 1]} (2.4)

Cu = {p|w(p) < p, p ∈ [0, 1], w : [0, 1] → [0, 1]} (2.5)

Cz = {p|w(p) = p, p ∈ [0, 1], w : [0, 1] → [0, 1]} (2.6)

By construction, Co, Cu, CZ are Borel measurable sets, i.e., they are
open and monotonic, CZ is a zero set, and P =

⋃
j Cj. Thus, we extend

(2.2) to the stochastic kernel:

K(pℓ, Cj) =

∫ Cj

pℓ

(w(p)− p)dp, j = 0, u, z (2.7)

where K(pℓ, Cj) = 0 if pℓ > p for p ∈ Cj. Underconfidence implies that
sgn(K(pℓ, Cj)) = −ve and overconfidence implies sgn(K(pℓ, Cj)) =
+ve. If pℓ is fixed, then K(pℓ, Cj) is a set function distributed over
Cj . Similarly, for fixed Cj, K(pℓ, Cj) is a so called Baire function16 in
pℓ. Feller (1971, Def. 1, pg. 205) defines a related function for a Markov
kernel when K is a probability distribution in Cj. For our purposes, all
that is required is that K is measurable which we state in the following.

Lemma 2.5. The behavioural kernel K is measurable.

Proof. Since Cj is Borel measurable, and K(pℓ, Cj) is a Baire function
for fixed Cj, K is measurable by virtue of the monotonicity it inherits
from Lebesgue integrability over Cj .

16According to Feller (1971, pg. 196) “The smallest closed class of functions containing
all continuous functions is called the Baire class and will be denoted by B. The functions
in B are called Baire functions”. In particular, this class of functions is acceptable as
random variables.
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The measurability of K implies that the following construct is ad-
missible for measuring behavioural operations. Let T be a partiaolly
ordered index set on probability domains, and Tℓ and Tg be subsets of
T for indexed loss and indexed gain probabilities, respectively. So that

T = Tℓ ∪ Tg (2.8)

For example, for ℓ ∈ Tℓ and g ∈ Tg if ℓ = 1, . . . , m; g = 1, . . . , r
the index T gives rise to a m × r matrix operator K = [K(pℓ, pg)].
Akheizer and Glazman (1961, Pt. I, pp. 54-56) shows how to compute
K in the context of Hilbert-Schmidt operator relative to a given or-
thogonal basis {φk(·)}∞k=1 ∈ L2(R). The “adjoint matrix”17 K∗ =
[K∗(pg, pℓ)] = −[K(pℓ, pg)]

T . So K transforms gain probability domain
into loss probability domain–implying fear of loss, or risk aversion, for
prior probability pℓ. K∗ is an Euclidean motion that transforms loss
probability domain into hope of gain from risk seeking for prior gain
probability pg.

Definition 2.2 (Behavioural operator on loss gain probability do-
mains). Let K be a behavioral operator constructed as in (2.2). Then
the adjoint behavioural operator is a rotation and reversal operation
represented by K∗ = −KT . �

Thus, K∗ captures preference reversal phenomenon in probabilistic
risk attitudes. Moreover, K and K∗ are generated (in part) by prior
probability beliefs consistent with Gilboa and Schmeidler (1989) and
Kurz (1994). The “axis of spin” induced by this behavioural rotation
is along the diagonal of the unit square in the plane in which K and
K∗ operates in the sequel.

2.2 Ergodic confidence behaviour

Consider the composite behavioural operator T = KT ◦K and its ad-
joint T ∗ = −T T = −T which is skew symmetric. See e.g., Bravo and Pérez
(2013, pg. 21).

17Technically, the adjoint matrix is defined as cof(K)T where “cof” means cofactor. See
e.g., Strang (1988, pg. 232)
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Figure 3: Behavioural opera-
tions on probability domains
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Understanding the adjoint operator T ∗

By definition, T ∗ takes a vector valued function in optimism domain
(through K) sends it into pessimism [fear of loss] domain, rotates18 it
and sends it back from a reduced part of pessimism domain (through
K∗) where it is transformed into optimism [hope of gain] domain. In
other words, T ∗ is a contraction mapping of optimism domain. A DM
who continues to have hope of gain in the face of repeated losses in that
cycle will be eventually ruined in an invariant subspace which reduces

T ∗19. By the same token, an operator T̃ ∗ = −K ◦KT = KK∗ = −T̃ is
a contraction mapping of pessimism domain. In this case, a DM who
fears loss of her gains will eventually stop before she looses it all up to an

invariant subspace which reduces T̃ ∗. Thus, the composite behavior of
K and K∗ is ergodic because it sends vector valued functions back and
forth across loss-gain probability domains in a “3-cycle” while reducing
the respective domain in each cycle. These phenomena are depicted on
page 9. There, Figure 3 depicts the behavioural operations that trans-
form probability domains. Figure 4 depicts the corresponding phase
portrait and a fixed point neighbourhood basis set “centered” at the
“attractor” p∗. In what follows, we introduce a behavioural ergodic

18This rotation or spin around the diagonal in the unit square is not depicted in Figure 3.
19See e.g., Akheizer and Glazman (1961, pg. 82) for technical details on reduced oper-

ators.
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theory by analyzing T . The analysis for T̃ is similar so it is omitted.
Let

T = KT ◦K = KTK ⇒ T ∗ = −(KT ◦K)T = −KTK = K∗K = −T

(2.9)

Define the range of K by

∆K = {g| Kf = g, f ∈ D(K)} (2.10)

T ∗f = −KTKf = K∗g ⇒ g ∈ ∆K ∩ D(K∗) (2.11)

∆T ∗ = {K∗g| g ∈ ∆K ∩ D(K∗)} ⊂ D(K∗) (2.12)

Thus, T ∗ reduces K∗, i.e. it reduces the domain of K∗, and T is skew
symmetric by construction.

Lemma 2.6 (Graph of confidence).
Let D(K), D(K∗) be the domain of K, and K∗ respectively. Further-
more, construct the operator T = K∗K. We claim (i) that T is a
bounded linear operator, and (ii) that for f ∈ D(K) the graph (f, Tf)
is closed. �

Proof. See subsection A.1

Proposition 2.7 (Ergodic confidence).

Let T̂ = K∗K , f ∈ D(T ) and D(K) ∩ D(K∗) ⊆ D(T ). Define the

reduced space D(T̂ ) = {f | f ∈ D(K) ∩ D(K∗) ⊆ D(T ). And let B

be a Banach-space, i.e. normed linear space, that contains D(T̂ ). Let
(B,T, Q) be a probability space, such that Q and T is a probability
measure and σ-field of Borel measureable subsets, on B, respectively.
We claim that Q is measure preserving, and that the orbit or trajectory

of T̂ induces an ergodic component of confidence. �

Proof. See subsection A.2.

Remark 2.1. Let B be the set of all probabilities p for which f(p) ∈
D(T̂ ). The maximal of such set B is called the ergodic basin of Q. See
Jost (2005, pg. 141). One of the prerequisites for an ergodic theory is
the existence of a Krylov-Bogulyubov type invariant probability mea-
sure. See Jost (2005, pg. 139). The phase portrait in Figure Figure 4 on
page 9, based on an inverted S-shaped probability weighting function,
is an admissible representation of the underlying chaotic behavioural
dynamical system. �
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Remark 2.2. We note that by construction T̂ = −KTK . So that
sgn(T̂ ) ∼ (−) ; sgn(T̂ 2) ∼ (+) , and sgn(T̂ 3) ∼ (−) satisfy the
“3-period” prerequisite for chaos. See Devaney (1989, pp. 60, 62).
Typically, ergodic theorems imply the equivalence of space and time
averages. �

Proposition 2.8 (Chaotic behaviour).
The dynamical system (B,T, Q, T ) induced by confidence in Proposi-
tion 2.7 is chaotic because:

(1) It is sensitive to initial conditions;

(2) It is topologically mixing;

(3) Its periodic orbits are dense.

�

Proof. By hypothesis, ambiguity implies (1). In the proof of Proposi-

tion 2.7, it is shown that the orbit generated by the operator T̂ con-
structed from K and K∗ is “3-period” (−)(+)(−). That implies (3)
by and through Sarkovskii’s Theorem. See Devaney (1989, pp. 60, 62).
Moreover, according to Vellekoop and Borglund (1994, pg. 353) and
Banks et al. (1992, pg. 332) (1) and (3) ⇒ (2). So by definition, the
dynamical system induced by the random initial conditions attributed
to prior beliefs is weakly chaotic.

Proposition 2.8 implies that dynamical systems induced by confi-
dence are weakly unpredictable.

2.2.1 Extension to matrix operators

By construction T̂ can be represented by a square matrix operator. In
which case, according to Ruelle (1979, Prop. 1.3(b), pg. 30), we have

lim
n→∞

1

n
ln ‖T̂ nu‖ = λ(r) (2.13)

where λ(r) is an eigenvalue of T̂ , u ∈ V r\V (r−1), r = 1, . . . , n and V r =
U (1)⊕ . . .⊕U (r) for eigenspaces U . Thus, (2.13) represents a Lyapunov

exponent. See e.g., Walters (1982, pg. 233). Operators like T̂ are
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typically used to characterize dynamics in linear systems of differential

equations of type ẋxx = T̂xxx. See, e.g., Arnold (1984, pg. 201). For
example, Grasselli and Costa Lima (2012, pg. 206) applied a matrix

operator like T̂ , to an extended Goodwin-Keene model, to characterize
chaotic dynamics in a model of Minsky financial instability hypothesis
with so called Ponzi finance. In the following section, we apply (2.13)
to characterize chaotic dynamics in a large sample of DMs.

3 Large sample theory of Lyapunov exponents for

heterogenous beliefs in finite time

In this section, we consider the finite-time behaviour of the Lyapunov
exponent for the orbit of subjective probability distributions for a large
sample of heterogenous DMs distinguished by a disturbance term. See
e.g., Pazó et al. (2013).

3.1 Preliminaries

Definition 3.1 (Lyapunov exponent). Jost (2005, pg. 31). Let w(p)
be a probability weighting function such that the first derivative w′

exist. The Lyapunov exponent of the orbit pn = w(pn−1), n ∈ N for
p = p0 is

λ(p) := lim
n→∞

1

n

n∑

j=1

ln |w′(pj)| (3.1)

provided the limit exist.

Assumption 3.1. The Lyapunov exponent λ(p) is in the spectrum of

eigenvalues σ(T̂ ) for T̂ in Proposition 2.7. �

This assumption establishes a nexus between the reduced space

D(T̂ ) in Proposition 2.7 and the analyses that follow.

Existence of behavioural Feller process

Suppose that starting at time s, a DM transitions from confidence
probability ws at pℓ to confidence about a set of probabilities Γ in time
t. Let P{wt+s ∈ dy|ws(pℓ)} = Kt(pℓ, dy) be the kernel probability
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density function for that event. The Chapman-Kolmogorov equation20

allows us to derive the following transition probability for that DM:

P{wt+s ∈ Γ|ws(pℓ}) = Kt+s(pℓ,Γ) =

∫

P

Ks(pℓ, dy)Kt(y,Γ) (3.2)

Subjective transition probabilities of this type are used to character-
ize heterogenous expectations in Harrison and Kreps (1978, pp. 326-
327). Kolmogorov’s representation theorem tells us that there ex-
ists a behavioural Feller process (introduced in (3.12) below) over
a filtration Ft of Brownian motion such that {λN (t; p, α, β),Ft; 0 ≤
t < ∞}, (Ω,F W̄ ), Pw(pℓ) satisfies (3.2). See e.g., Karatzas and Shreve
(1991, pp. 292-283). For purposes of exposition, we consider the 2-
parameter probability weighting function introduced by Prelec (1998,
Prop. 1, pg. 503) and written as

w(p) = exp(−β(− ln(p))α), 0 < α < 1, β > 0 (3.3)

By log differentiation we get

ln[w′(p)] = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α (3.4)

Thus, the behavioural operator in Definition 2.1 can be written
as K(·;α, β) where α is a curvature parameter and β is an eleva-
tion parameter–each of which controls confidence levels. See e.g.,
Abdellaoui et al. (2010). Monotonicity of w(p) guarantees that w′(p) >
0 so the absolute value requirement in (3.1) is satisfied. However, the
true probability weighting function w(p) is unknown, so the parameters
α and β are unobservable in phase space.

Assumption 3.2. Heterogenous DMs are distributed according to ǫi ∼
iid(0, σ2), i = 1, . . . , N . �

Consider a large sample of N heterogenous decision makers (DMs).
DMs [unobserved] heterogeneity is accounted for by appending ǫi
to (3.4)21. See e.g., Hey and Orme (1994); Barsky et al. (1997);
Harrison and Rutström (2008) and Zeisberger et al. (2012). In which
case the subjective probability

ln[w′(p)]o = ln[w′(p)] + ǫi (3.5)

20See Feller (1971, pg. 351)
21We could model heterogeneity as a random effect such as αi = µi + ǫij where µi ∼

(0, σ2) and ǫij is a “treatment effect” or news. See e.g., (Kutner et al., 2005, pg. 1031).
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is an observed (o) random coefficient, i.e., random variable. See e.g.,
Andersen et al. (2012, pg. 162). This is important because by definition
a collection of random variables observed at different points in time is
a sample function of a stochastic process. In Lian and Stenlund (2012,
pp. 241-242) the evolution of an object like ln[w′(p)]o was presented in
the context of a dynamical system–which we do in the sequel. Let [0, T ]
be the finite time interval for which Lyapunov exponents are observed
for each DM. Without loss of generality we normalize the time interval

to coincide with [0, 1] and let Π(n) = {0, t(n)1 , t
(n)
2 , . . . , t

(n)
k , . . . , 1} parti-

tion [0, 1] into dyadic intervals such that t
(n)
k = k.2−n. This facilitates

analysis in the function space C[0, 1]. So the heterogeneous subjective

probability in (3.5), observed at each time point t
(n)
k , k = 1, . . . , 2n, is

distinguished by the heterogeneity factor ǫi(t
(n)
k ).

3.2 Chaos and fluctuation of empirical Lyapunov exponent

process

Consider the cumulative effect of heterogeneity factors at time t ∈
[t
(n)
k , t

(n)
k+1) defined by

S
j
nt =

nt∑

k=1

ǫj(t
(n)
k ), S

j

[nt] =

[nt]∑

k=1

ǫj(t
(n)
k ) (3.6)

where [nt] is the integer part of nt for arbitrary n. The random bro-
ken line connecting the points ([nt], Sj

[nt]) and (nt, Sj
nt) is given by the

empirical process

W j
n(t) = S

j

[nt] + (nt− [nt])ǫj([nt] + 1) (3.7)

By virtue of Donsker’s Theorem, we assume that W j
n(t) is an approxi-

mate Brownian motion in the space of continuous functions C[0, 1]. See
e.g., Serfling (1980, p. 41); Knight (1962); Shorack and Wellner (1986,
pp. 52-53); Karatzas and Shreve (1991, pg. 66). Let w(t; p) be the state
of the PWF at time t. According to Gikhman and Skorokhod (1969,
pp. 370-371), by virtue of (3.4), (3.5) and (3.7) the incremental change
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in time dependent PWF for the j-th DM at time t can be written as

∆ ln[w′j(t; p)] = aj(p;α, β)∆t+ σ∆W j
n(t), for constant drift (3.8)

aj(p;α, β) = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α

(3.9)

For example, aj(p;α, β) is the constant drift term comprised of proba-
bilistic risk attitude factors in a stochastic differential equation, charac-
terised by an unobserved background driving empirical process W j

n(t),
induced by heterogeneous DMs stochastic choice measured at different
points in time. Thus, the aggregate change in PWF for the sample size
N is given by

N∑

j=1

∆ ln[w′j(t; p)] =
N∑

j=1

aj(p;α, β)∆t+ σ

N∑

j=1

∆W j
n(t) (3.10)

Substituting ∆ ln[w′j(t; p)] for ln |w′(pj)|, j = 1, . . . , m in (3.1)22, and
replacing ∆t and ∆Wn with dt and dWn respectively gives us

N∑

j=1

dλj(t; p, α, β) =
1

m

N∑

j=1

m∑

r=1

aj(p;α, β)dt+
1

m

N∑

j=1

m∑

r=1

dW j
n(t)

(3.11)

Dividing LHS and RHS by N and using “bar” to represent sample
average, we get the stochastic Lyapunov exponent process

dλ̄N(t; p, α, β) =ām,N(p;α, β)dt+ σdW n,N(t), (3.12)

λ̄N(·) =
1

N

N∑

j=1

λj(·), ām,N(·) =
1

N

N∑

j=1

aj(p;α, β),

W n,N(t) =
1

N

N∑

j=1

W j
n(t)

(3.13)

W n,N(t) is the background driving Brownian motion induced by
stochastic choices of heterogeneous DMs. Integrating the stochastic
differential equation in (3.12) gives us the following.

22wj(t; p) is the weighted probability w(pj) at time t, with initial value at p
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Stability condition

We note that Leonov and Kuznetsov (2007, Def. 9) defines a large
time Lyapounov exponent as lim supt→∞

1
t
lnλ(t). However, our

analysis is based on finite-time. The stability condition, see e.g.,
Leonov and Kuznetsov (2007), corresponds to negative eigenvalues in
our model and is given by

sup
t

λ̄N (t; p, α, β) < 0 ⇒ σ sup
t

(
W n,N(t)−W n,N(0)

)

+

∫ t

0

ām,N(p;α, β)du < 0
(3.14)

⇒ sup
t

W n,N(t) < W n,N(0)−
1

σ
ām,N(p;α, β)t,

W n,N(0) = 0

(3.15)

3.3 Estimating the behavioural probability of chaos

To estimate the probability of stability we rewrite W n,N(t) in (3.13) as
an approximate Brownian motion

W n,N(t) ≡ Wn

( t

N

)
(3.16)

If φ(·) is the probability density function for W n,N(t), then the proba-
bility density function for suptW n,N(t) is proportional to φ(·). See e.g.,
Gikhman and Skorokhod (1969, pg. 286); Karatzas and Shreve (1991,
pg. 96, Prob. 8.2). So that

Pr
{
sup
t

W n,N(t) < −1

σ
ām,N (p;α, β)t

}

= Pr
{
sup
t

Wn

( t

N

)
< −1

σ
ām,N(p;α, β)t

} (3.17)

= c0Φ
(
− ām,N(p;α, β)

σ

√
Nt

)
= ϕ(t, α, β,N, σ) (3.18)

where c0 is a constant of proportionality, Φ(·) is the cumulative normal
distribution and ϕ(·) is a numerical probability. Thus, DMs hetero-
geneity, W n,N(t), induces a Perron effect with tail event probability of
chaos

Pr
{
sup
t

W n,N(t) ≥ −1

σ
ām,N(p;α, β)t

}
= 1− ϕ(t, α, β,N, σ) (3.19)
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in a seemingly stable system. See e.g., Leonov and Kuznetsov (2007).
According to (3.18) given α, β, σ at time t, the probability of instability
in (3.19) increases as N gets larger. To evaluate the impact of the other
control variables on the probability of instability in (3.19), we turn to
comparative statics. Rewrite the drift term aj(p;α, β) in (3.9), which
is the same in (3.13) for given p, as

f(α, β; p) = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α

(3.20)

∂f

∂α
= α−1 + ln(− ln(p))− β(− ln(p))α+1 (3.21)

∂f

∂α
> 0 ⇒ 0 < β <

1

α
+ ln(− ln(p))

(− ln(p))α+1
(3.22)

Similarly,

∂f

∂β
=

1

β
− (− ln(p))α,

∂f

∂β
> 0 ⇒ 0 < β < (− ln(p))−α (3.23)

The first order effects for increasing drift (and hence increased proba-
bility of instability in (3.19)) in (3.22) and (3.23) is given by

0 < β < min
{α−1 + ln(− ln(p))

(− ln(p))α+1
, (− ln(p))−α

}
(3.24)

Since α controls the curvature of w(P ), it determines the degree of
DM’s confidence. So (3.24) depicts the range of elevated confidence
that support an increased likelihood of chaos. In the case of Prelec
(1998) single factor model, i.e., β = 1, 0 < α < 1, we find that the set
of feasible values in (3.24) for curvature α are solutions to the nonlinear
equation

α−1 + ln(− ln(p))

(− ln(p))α+1
> 1 (3.25)

⇒ (− ln(p))α+1 − α−1 − ln(− ln(p)) < 0 (3.26)

The solution (if it exists) to (3.26)suggests that there are at most count-
ably many DMs of type α who would induce chaotic dynamics by pref-
erence reversal. Thus, (3.26) allows us to classify DMs who are prone
to exhibit chaotic behaviour. We summarize the result above23 in

23These results also appear in Cadogan-Charles (2014)
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Proposition 3.3 (Chaotic probabilistic risk attitudes). Given a large
sample of heterogenous DMs with Prelec (1998) 2-parameter PWFs (α
and β) in a dynamical system of projecting confidence in psychological
space, the tail event probability 1 − ϕ that the system becomes chaotic
depends on either of the following

1. growth in sample size N ;

2. risk attitude parameters α (curvature) and β (elevation) that in-
duce the range of confidence

0 < β < min

{
α−1 + ln(− ln(p))

(− ln(p))α+1
, (− ln(p))−α

}

3. increased precision in σ for classifying heterogenous DMs.

Proposition 3.4 (Classifying chaotic decision makers). A decision
maker with Prelec (1998) 1-parameter PWF exhibits chaotic behavior
if the type α curvature of her subjective probability distribution satisfies
the inequality

(− ln(p))α+1 − α−1 − ln(− ln(p)) < 0

�

If αr, r = 1, . . . , K are solutions to (3.26), then Proposition 3.4
constitutes a classification scheme. It says that there are α1, . . . , αK

probabilistic risk attitude measures that are susceptible to preference
reversal and tail event chaos dynamics. Thus, given p it is possible to
derive numerical estimates for αr and test experimentally whether the
classification scheme holds.

4 Conclusion

We introduced a model in which decision makers (DMs) projection of
confidence is sufficient to generate chaotic dynamics by and through
a behavioural kernel operator that transforms probability spaces. We
extend the model to fluctuations for the Lyapounov exponent in a large
sample of DMs with heterogenous beliefs, and we characterize the time
dependent probability of chaotic dynamics in that milieu. Specifically,
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we show how probabilistic risk attitude factors for optimism and pes-
simism control the chaotic dynamics in a large system of DMs. In
particular, our theory identifies the critical range of curvature and ele-
vation parameter values that support preference reversal. Our results
have implications for credit markets where confidence and risk man-
agement play a key role. For example, according to the Georgia State
University, CRO Risk Index website24 ”[t]he CRO Risk Index seeks to
aggregate the subjective opinions of global risk professionals regarding
significant movements in financial markets and general economic con-
ditions”. This paper provides an analytic framework for characterizing
the role of “subjective opinions” in those markets by and through a
2-parameter subjective probability distribution. The model presented
here can be extended to accommodate different behavioural stochastic
processes for the Lyapunov exponent. For example, adding random
effects to either the curvature or elevation parameters (or both) would
affect the drift term in the behavioural stochastic process.

A Appendix of Proofs

A.1 Proof of Lemma 2.6–Graph of confidence

Proof.

(i). That T is a bounded operator follows from the facts that the
fixed point p∗ induces singularity in K and K∗. Let {Tn}∞n=1 be
a sequence of operators induced by an appropriate corresponding
sequence ofKn

′s andK∗

n
′s, and σ(Tn) be the spectrum of T . Thus,

we write ‖Tn‖ =
∏Nn

j=1 λj, λj ∈ σ(Tn), where Nn = dim σ(Tn).

Singularity implies limNn→∞ λNn
= 0 and for λ ∈ σ(T ), we have

limn→∞ ‖Tn − T‖ ≤ limn→∞ |λn − λ|‖f‖ = 0. Thus, Tn → T is
bounded.

(ii). Let f ∈ D(K) and C(x) = (Kf)(x). So (Tf)(x) = (K∗Kf)(x) =
(K∗f ∗)(x) = C∗(x) for f ∈ D(T ). For that operation to be
meaningful we must have f ∗ ∈ D(K∗). But T ∗ = −T T = KTK =
−T ⇒ f ∗ ∈ D(T ). According to the Open Mapping Closed

24See http://www.gsucroriskindex.org/. Last visited 2014/02/18
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Graph Theorem, see Yosida (1980, pg. 73), the boundedness of T
guarantees that the graph (f, Tf) ∈ D(T )×D(T ∗) is closed.

A.2 Proof of Proposition 2.7–Ergodic confidence

Proof. Let f ∈ D(T̂ ). Then (T̂ f)(x) = (K∗Kf)(x) = (K∗f ∗)(x) = C∗

for f ∗ ∈ D(T ∗). But T ∗ = −T T = −(−KTK) = KTK = −T ⇒
f ∗ ∈ D(T ). Since f is arbitrary, then by our reduced space hypothesis,

T̂ maps arbitrary points f in its domain back into that domain. So
that T̂ : D(T̂ ) → D(T̂ ). Whereupon from our probability space on
Banach space hypothesis, for some measureable set A ∈ T we have the
set function T̂ (A) = A ⇒ T̂−1(A) = A and Q(T̂−1(A)) = Q(A). In

which case T̂ is measure preserving. Now by Lemma 2.6, (T̂C∗)(x) =

T̂ (T̂ f)(x) = (T̂ 2f)(x) ⇒ (f, T̂ 2f) is a closed graph on D(T̂ ) ×D(T̂ ∗).

By the method of induction, (f, T̂ jf), j = 1, . . . is also a graph. In

which case the evolution of the graph (f, T̂ jf), j = 1, . . . is a dynamical
system, see Devaney (1989, pg. 2), that traces the trajectory or orbit
of f . Now we construct a sum of N graphs and take their average to
get

f ∗

N(x) =
1

N

N∑

j=1

(T̂ jf)(x) (A.1)

According to Birchoff-Khinchin Ergodic Theorem,
Gikhman and Skorokhod (1969, pg. 127), since Q is measure
preserving on T, we have

lim
N→∞

f ∗

N(x) = lim
N→

1

N

N∑

j=1

(T̂ jf)(x) = f ∗(x) a.s. Q (A.2)

20



Furthermore, f ∗ is T̂ -invariant and Q integrable, i.e.

(T̂ f ∗)(x) = f ∗(x) (A.3)

E[f ∗(x)] =

∫
f ∗(x)dQ(x) = lim

N→

1

N

N∑

j=1

∫
(T̂ jf)(x)dQ(x) (A.4)

= lim
N→

1

N

N∑

j=1

E[T̂ jf)(x)] (A.5)

Moreover,

E[f ∗(x)] = E[f(x)] ⇒ (T̂E[f ∗(x)]) = T̂E[f(x)] = E[(T̂ f)(x)] = E[C(x)]
(A.6)

So the “time average” in (A.5) is equal to the “space average” in (A.6).

Whence f ∈ D(T̂ ) induces an ergodic component of confidence C(x).
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