Global Shocks and Local Response: Currency Risk and Monetary Policy

Husnu Dalgic and Kemal Ozhan

University of Mannheim and IMF

May 5, 2025

Motivation

An Economy's response to global shocks → Riskiness of its currency

Motivation

- An Economy's response to global shocks → Riskiness of its currency
- Traditional view → ER insulates the economy against external shocks
- Weak ER insulation → ER more volatile & loses value in recessions
 - Currency Risk + risk premium

Motivation

- An Economy's response to global shocks → Riskiness of its currency
- Traditional view → ER insulates the economy against external shocks
- Weak ER insulation ER more volatile & loses value in recessions
 - Currency Risk + risk premium
- Risk premium †: People expect higher returns to hold local currency
 - ▶ Policy rate can be 'too low' → High structural inflation

Currency Risk: Global or Local Factors?

 Kalemli-Ozcan & Varela (2025) → Local factors determine currency risk/return

Currency Risk: Global or Local Factors?

- Kalemli-Ozcan & Varela (2025) → Local factors determine currency risk/return
- Global Factors: Two principal components of currency returns
 - Significant drivers of currency returns (Lustig et al 2011)
 - ► Close to 60% of excess returns can be explained by global factors

Currency Risk: Global or Local Factors?

- Kalemli-Ozcan & Varela (2025) → Local factors determine currency risk/return
- Global Factors: Two principal components of currency returns
 - Significant drivers of currency returns (Lustig et al 2011)
 - ▶ Close to 60% of excess returns can be explained by global factors
- ER movements driven by global shocks
 - Local response of the economy shapes the risk
- This paper → Bridge between international finance and macro

Data

- Data from 25 countries between 02/2003 11/2018 (Fx4Casts)
- Monthly currency returns,

$$R_t^L \frac{S_t}{S_{t+1}} - R_t^{US}$$

- Currency Risk: Lustig et al (2011): First two principal components of currency returns
 - Dollar risk: Value of the dollar against all currencies
 - Carry trade risk: Safe vs risky currencies

Global or Local Shocks?

- Regress country returns on two principle components
 - ▶ In some EMEs close to 60% of returns are driven by common components

	Dependent variable:					
	Turkey	Chile	Mexcio	Euro Area	Japan	
	(1)	(2)	(3)	(4)	(5)	
Dollar Risk Exposure	0.258***	0.167***	0.167***	0.191***	0.035	
	(0.025)	(0.016)	(0.014)	(0.005)	(0.028)	
Carry trade Risk Exposure	0.406***	0.118***	0.156***	-0.219***	-0.130**	
	(0.093)	(0.028)	(0.041)	(0.029)	(0.051)	
Constant	0.005**	0.003***	0.001	0.0005	-0.001	
	(0.002)	(0.001)	(0.001)	(0.001)	(0.002)	
Observations	190	190	190	190	190	
R^2	0.599	0.460	0.553	0.876	0.097	
Adjusted R ²	0.595	0.454	0.548	0.874	0.087	
Residual Std. Error (df = 187)	0.033	0.024	0.021	0.010	0.027	

Note: *p

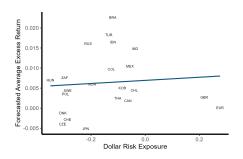
 $^*p{<}0.1;\,^{**}p{<}0.05;\,^{***}p{<}0.01$

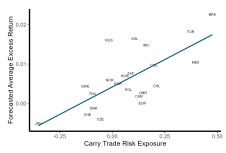
Global Shocks?

• Exposure to the two components explain significant portion of excess returns

		Dependent variable			
	Excess Returns				
	(1)	(2)	(3)		
Dollar Risk Exposure	0.012*		0.011**		
	(0.006)		(0.005)		
Carry trade Risk Exposure		0.007***	0.007***		
		(0.002)	(0.002)		
Constant	0.0001	0.002***	0.0003		
	(0.001)	(0.0003)	(0.001)		
Observations	25	25	25		
R ²	0.136	0.458	0.571		
Adjusted R ²	0.098	0.435	0.532		
Residual Std. Error	0.002 (df = 23)	0.002 (df = 23)	0.001 (df = 22)		

Note:


*p<0.1; **p<0.05; ***p<0.01


Expected Returns

- Risk premium or unanticipated movements?
- Do investors forecast excess returns?
 - ▶ Data on 1 month ahead forecast by large institutions (FX4Casts)
 - 25 countries between 02/2003 11/2018
- Expected excess return,

$$R_t^L \frac{S_t}{\mathbb{E}_t\left(S_{t+1}\right)} - R_t^{US}$$

Expected Returns

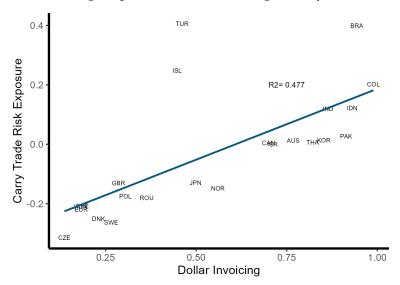
Determinants of Currency Returns

- Net foreign assets (Wiriadinata (2018), Della Corte et al. (2016))
 - Net debtor countries offer higher interest rates
- Foreign liabilities of the banking system (Levy-Yeyati (2006), Christiano et al (2021))
 - Associated with banking crises
- Dollar Invoicing (Gopinath and Stein 2023)
- Reserves (Bocola and Lorenzoni, 2020)
 - Buffer against crises
- Size (Hassan, 2013)
- Trade Centrality (Richmond, 2019)

Local Response

• Two global factors: Foreign Liabilities of the banking system and Dollar Invoicing explain the exposure

	Dependent variable:					
	Dollar Risk Exposure		Carry Risk	Exposure		
	(1)	(2)	(3)	(4)		
FL/FA	0.035*	0.043**	0.016	0.037		
	(0.018)	(0.019)	(0.030)	(0.059)		
Net Foreign Assets/GDP	-0.029	-0.049	-0.190***	-0.090		
	(0.029)	(0.032)	(0.071)	(0.060)		
Reserves/GDP	-0.079	-0.161	-0.157	-0.384		
	(0.219)	(0.138)	(0.330)	(0.360)		
Dollar Invoicing	-0.098**	-0.095**	0.490***	0.457***		
	(0.043)	(0.040)	(0.086)	(0.075)		
GDP(Nominal USD)	0.006		0.018			
	(0.018)		(0.026)			
Average Centrality		-6.345		-7.729		
		(10.384)		(14.102)		
Constant	0.213***	0.228***	-0.285***	-0.280**		
	(0.053)	(0.076)	(0.088)	(0.119)		
Observations	20	14	20	14		
R ²	0.496	0.743	0.615	0.533		
Adjusted R ²	0.316	0.582	0.477	0.242		
Residual Std. Error	0.063 (df = 14)	0.047 (df = 8)	0.154 (df = 14)	0.167 (df = 8)		


Note:

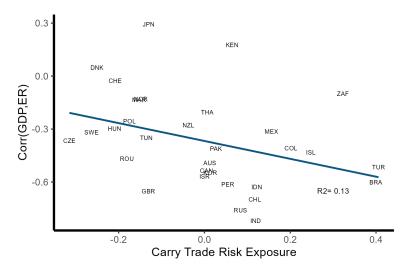
*p<0.1; **p<0.05; ***p<0.01

10 / 26

Currency Risk

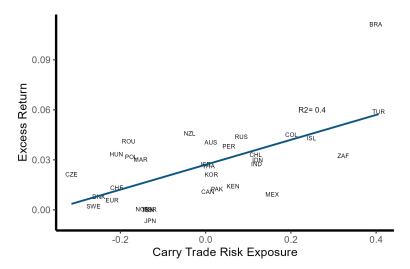
Dollar Invoicing (Gopinath et al 2020) → Higher carry trade risk

Cyclicality of the Exchange Rate

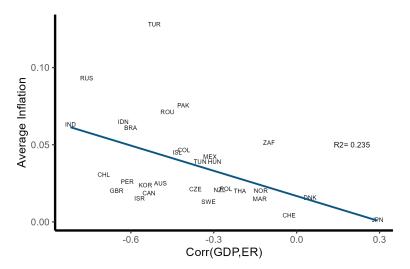

Measuring the comovement,

$$\frac{\Delta GDP_t}{\sigma_{\Delta GDP}} = \alpha + \rho \frac{\Delta \frac{S_t}{P_t}}{\sigma_{\Delta S/P}} + \epsilon_i$$

- $\hat{\rho}$: Correlation coefficent, Direction-free
 - How many standard deviation movement in GDP is associated with one stdev increase in the exchange rate
 - ► Linked to household portfolio formation (Dalgic 2024)
 - ▶ Intranational risk sharing (Christiano, Dalgic, Nurbekyan, 2024)
- High Currency risk → Countercyclical Exchange rate
 - Exchange rate depreciates in recessions


Cyclicality of the Exchange Rate

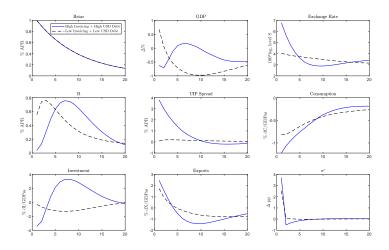
• High Currency risk — Countercyclical Exchange rate


Currency Returns

High Currency risk → Higher average returns

High Inflation

Countercyclical exchange rate → High average inflation


Model

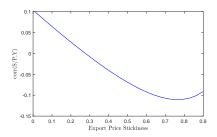
- Small open economy NK model
 - ▶ Based on Camara et al (2024)
- Export invoiced in dollars (DCP) →Sticky export prices
 - ▶ High dollar invoicing → Weak expenditure switching channel →
 Depreciations are recessionary
- Financial Frictions (a la Gertler & Karadi 2011)
 - Foreign financiers (Gabaix Maggiori 2015)
 - ▶ Dollar Debt (Dalgic 2024) → ER Depreciations create financial stress

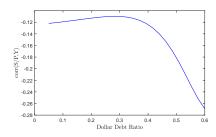
Response to Foreign Interest Rate Shocks

- Important driver of SOE business cycles
 - ▶ Neumeyer & Perri (2005); Fernandez-Villaverde et al. (2011)
- US Monetary Policy Shocks → Global financial cycle
 - ▶ Global risk aversion & liquidity demand
 - Capital flight: Flight to quality
 - Low US demand for exports (Camara, Christiano, Dalgic 2024)
 - Miranda-Agrippino & Rey (2020); Bruno & Shin (2015a; 2015b); Ilzetski & Jin (2021)
- Compare economies:
 - High USD Debt, Sticky export prices
 - ▶ Low USD Debt, Flexible export prices: M-F ER insulation

Response to Foreign Interest Rate Shocks

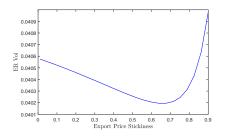
Mechanism

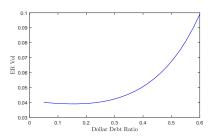



Steady State Results

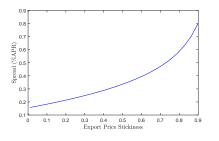
- Steady state as a function of export price stickiness (θ^x) and ratio of dollar debt ($\bar{\phi}$)
- Export price stickiness (θ^x) \longrightarrow Exports do not respond to ER depreciations
 - Weak ER insulation
- Dollar debt $(\bar{\phi})$: ER depreciations hurt bank balance sheets
- Depreciations are recessionary \longrightarrow More negative $corr(\Delta Y_t, \Delta S_t/P_t)$

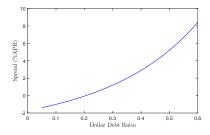
GDP-ER Correlation


- More negative $corr(\Delta Y_t, \Delta S_t/P_t)$
- Global shocks become more recessionary

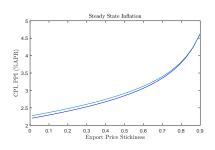


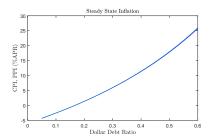
Exchange Rate Volatility


• Higher ER volatility in the steady state



Interest Rate Spread


- Negative $corr(\Delta Y_t, \Delta S_t/P_t)$ \longrightarrow Local assets lose value in recessions
- Risky currency \longrightarrow Low peso demand \longrightarrow High interest rates (Dalgic 2024)



Inflation

• High structural inflation

Inflation

- Why does inflation go up?
- Risk premium †: Investors demand higher local interest rates
 - Natural interest rate R* ↑
- Taylor rule at the target inflation is 'too loose'
 - ▶ High inflation

$$\log\left(\frac{R_t}{\bar{R}}\right) = r^{\pi}\log\left(\frac{\pi_t}{\bar{\pi}}\right)$$

Conclusion

- Global Shocks + Local response
 - ▶ How does an economy respond to global shocks → Riskiness of the currency
- Volatile and countercyclical exchange rate
 - High interest rates
 - ► If monetary policy accomodates High structural inflation