# **Measuring Market Expectations**

# **Christiane Baumeister**

University of Notre Dame University of Pretoria NBER and CEPR

SAMNet Workshop: New Developments in Macroeconomics November 30, 2021

# Motivation

- Expectations are key
  - decision-making under uncertainty
  - forward-looking models in macro and finance

# Motivation

- Expectations are key
  - decision-making under uncertainty
  - forward-looking models in macro and finance
- Asset prices are a valuable source of information about expectations
  - ⇒ policymakers and private sector often take them at face value
  - ⇒ forecast efficiency regressions: futures prices are <u>not</u> unbiased predictors of future spot prices

# Motivation

- Expectations are key
  - decision-making under uncertainty
  - forward-looking models in macro and finance
- Asset prices are a valuable source of information about expectations
  - ⇒ policymakers and private sector often take them at face value
  - ⇒ forecast efficiency regressions: futures prices are <u>not</u> unbiased predictors of future spot prices
- But financial market participants demand compensation for risk: asset price = market expectation + risk premium

#### **Asset Pricing**

• The absence of profitable arbitrage opportunities implies:

$$E_t(M_{t+h}(S_{t+h} - F_t^h)) = 0$$

where

 $M_{t+h}$  is the stochastic discount factor  $(S_{t+h} - F_t^h)$  is the random payoff of a long position

• Solving for the futures price yields:

$$F_t^h = E_t(S_{t+h}) + \frac{cov_t(M_{t+h}S_{t+h})}{E_t(M_{t+h})}$$

where the latter term refers to the time-varying risk premium

## **Modeling Risk Premia**

- Return regressions
- Gaussian affine term structure models

## **Modeling Risk Premia**

- Return regressions
- Gaussian affine term structure models

⇒ unifying perspective (Dai & Singleton, 2002; Hamilton & Wu, 2014):

$$f_{t+1}^{h-1} - f_t^h = \kappa_{h-1} + \delta'_{h-1} x_t + \varepsilon_{t+1}^{h-1}$$

where

- ►  $f_{t+1}^{h-1} f_t^h$  is the payoff on a long position in an *h*-period futures contract
- $\succ$   $x_t$  are observed or latent risk pricing factors
- > in term structure models:  $\kappa_{h-1} = \beta'_{h-1}\lambda \frac{1}{2}\beta'_{h-1}\Sigma\Sigma'\beta_{h-1}$  $\delta'_{h-1} = \beta'_{h-1}\Lambda$

in return regressions: 
$$\kappa_{h-1} = \hat{\kappa}_{h-1}^{OLS}$$
  
 $\delta_{h-1} = \hat{\delta}_{h-1}^{OLS}$ 

# **Key Differences**

#### • Return regressions

- unrestricted least squares
- observed proxies for relevant risk factors:
  - common factors across asset classes
  - asset-specific factors
- easy to pinpoint source(s) of risk

⇒ fitted value is estimate of time-varying risk premium

#### • Affine term structure models

- cross-equation restrictions to rule out arbitrage
- Iatent factors inferred from behavior of asset prices
- additional observable determinants to help with interpretability and link to macroeconomic dynamics
- ⇒ difference between observed futures price and rational expectation is estimate of time-varying risk premium

#### **Illustration for the Oil Market**

| Article              | Model | Monthly Predictors for WTI Futures Payoff                 |
|----------------------|-------|-----------------------------------------------------------|
| Bessembinder (1992)  | B1    | CRSP value-weighted equity index returns                  |
|                      | B2    | CRSP value-weighted equity index returns                  |
|                      |       | Unexpected CPI inflation                                  |
|                      |       | Change in expected CPI inflation                          |
|                      |       | Change in 3-month T-bill rate                             |
|                      |       | Change in the term structure (20YGB – 3-month T-bill)     |
|                      |       | Change in default premium (BAA – 20YGB)                   |
|                      |       | Unexpected change in U.S. industrial production           |
| Bessembinder and     | BC    | Dividend yield on CRSP value-weighted equity index        |
| Chan (1992)          |       | 3-month T-bill rate                                       |
|                      |       | Junk bond premium (BAA-AAA)                               |
| Bessembinder and     | BS    | Ratio of trading volume of oil futures contracts to open  |
| Seguin (1993)        |       | interest by horizon                                       |
| De Roon, Nijman, and | DNV1  | Returns on S&P 500 stock price index                      |
| Veld (2000)          |       | Own-market hedging pressure                               |
|                      |       | Cross-market hedging pressure for gold, silver, platinum, |
|                      |       | heating oil                                               |
|                      | DNV2  | DNV1 + own-market price pressure                          |

#### **Illustration for the Oil Market**

| Article              | Model            | Monthly Predictors for WTI Futures Payoff                 |  |  |
|----------------------|------------------|-----------------------------------------------------------|--|--|
| Gorton, Hayashi, and | GHR1             | Normalized U.S. crude oil commercial inventories          |  |  |
| Rouwenhorst (2013)   | GHR2             | Own-market hedging pressure                               |  |  |
| Hong and Yogo (2012) | HY1              | 1-month T-bill rate                                       |  |  |
|                      |                  | Yield spread (AAA – 1MTbill)                              |  |  |
|                      |                  | Horizon-specific basis                                    |  |  |
|                      | HY2              | HY1 + growth rate of dollar open interest for oil futures |  |  |
|                      | HY3              | HY1 + CFNAI                                               |  |  |
|                      | HY4              | HY3 + growth rate of dollar open interest for oil futures |  |  |
|                      | HY5              | HY1 + futures market imbalance                            |  |  |
|                      | HY6              | HY5 + growth rate of dollar open interest for oil futures |  |  |
|                      | HY7              | HY5 + CFNAI                                               |  |  |
|                      | HY8              | HY7 + growth rate of dollar open interest for oil futures |  |  |
| Pagano and Pisani    | PP1              | Degree of capacity utilization in U.S. manufacturing      |  |  |
| (2009)               | PP2              | Term spreads                                              |  |  |
|                      | PP3              | Composite leading indicator for OECD + 6 NMEs             |  |  |
| Pagano and Pisani    | PPE1             | GECON from Baumeister, Korobilis, and Lee (2020)          |  |  |
| (2009) Extensions    | PPE2 PP2 + GECON |                                                           |  |  |
|                      | PPE3             | PP3 + GECON                                               |  |  |

#### **Heterogeneity of Risk Premium Estimates**

There will be as many risk premium estimates as there are models ⇒ imply different market expectations (shown for the 1-year horizon)



#### **A Model Selection Criterion**

- Set of spot price expectations:  $E_t(S_{t+h}) = F_t^h RP_t^h$
- Baumeister and Kilian (2017): to identify the most plausible market-based expectation measure, assess accuracy of price expectations in terms of their mean-squared prediction error (MSPE):  $E[S_{t+h} - E_t(S_{t+h})]^2$
- Key insight:

The conditional expectation minimizes the MSPE under quadratic loss (Granger, 1969; Granger & Newbold, 1986)

- Select market expectation that delivers the largest MSPE reduction
- ⇒ general methodology to recover unique market expectation

## **Oil Price Expectations**

|                      | Monthly horizon h |                |                |                |
|----------------------|-------------------|----------------|----------------|----------------|
| Models               | 3                 | 6              | 9              | 12             |
| $F_t^h$              | 0.976*            | 0.965**        | 0.923**        | 0.859**        |
| Basis Regressions    |                   |                |                |                |
| FF1                  | 1.013             | 1.037          | 1.027          | 0.985*         |
| FF2                  | 1.015             | 1.036          | 1.029          | <b>0.987</b> * |
| Payoff Regressions   |                   |                |                |                |
| B1                   | 0.984*            | 1.022          | 1.017          | <b>0.975</b> * |
| B2                   | <b>0.899</b> *    | 0.930**        | 0.931**        | 0.865**        |
| BC                   | 0.994             | 1.020          | 1.005          | <b>0.959</b> * |
| BS                   | 1.003             | 1.004          | 1.055          | 1.016          |
| DNV1                 | 0.925**           | 0.978          | 0.938*         | 0.853**        |
| DNV2                 | 0.925**           | 0.969          | 0.939*         | 0.850**        |
| GHR1                 | 0.957**           | 0.989*         | 1.031          | <b>0.994</b> * |
| GHR2                 | 1.011             | 1.037          | 1.015          | <b>0.980</b> * |
| HY1                  | <b>0.977</b> **   | 0.992          | 0.989          | 0.938*         |
| HY2                  | <b>0.975</b> *    | 0.995          | 0.993          | <b>0.947</b> * |
| HY3                  | 0.909**           | 0.955**        | 0.963**        | 0.915**        |
| HY4                  | 0.912**           | 0.954**        | 0.963**        | 0.926**        |
| HY5                  | <b>0.970</b> *    | 0.954          | 0.906*         | 0.848**        |
| HY6                  | <b>0.972</b> *    | 0.957          | 0.908*         | 0.861**        |
| HY7                  | 0.887**           | 0.894**        | 0.849**        | 0.794**        |
| HY8                  | 0.892**           | 0.888**        | 0.838**        | 0.801**        |
| PP1                  | 1.003             | 1.031          | 1.032          | <b>0.997</b> * |
| PP2                  | <b>0.979</b> *    | <b>0.989</b> * | <b>0.981</b> * | 0.960*         |
| PP3                  | 1.012             | 1.013          | 0.949**        | 0.865**        |
| PPE1                 | 0.953*            | <b>0.995</b> * | 0.986*         | 0.942**        |
| PPE2                 | 0.926**           | 0.945**        | 0.943**        | 0.930**        |
| PPE3                 | 0.954*            | 0.973**        | 0.907**        | 0.825**        |
| Term Structure Model |                   |                |                |                |
| HW                   | 0.896*            | 0.829**        | 0.762**        | 0.697**        |

#### **Oil Price Expectations at Different Points in Time**



## **Deriving Shock Measures**

- Market-based oil price shocks:
  - (1) Oil price surprises computed as log difference between actual oil price and what market participants expected the price to be last month



#### **Deriving Shock Measures**

- Market-based oil price shocks:
  - 'Pure' expectation shocks driven by market beliefs (orthogonal to (2)fundamental oil supply and demand shocks)



2003.1-2020.4

# **Modeling Applications**

- Evaluation of economic models
  - <u>Testing hypotheses</u>: test for bubbles (Pavlidis et al., 2017); test for financialization of commodity markets (Baumeister et al., 2017)
  - <u>Modeling agents' decisions</u>: vehicle purchases (e.g. Allcott and Wozny, 2014); inventory build-up (Baumeister et al., 2017); investment in resource extraction (Anderson et al., 2018; Gilje et al., 2020)
- Input for policy analysis
  - Regulation and government policies
    - Management of the Strategic Petroleum Reserve (Newell and Prest, 2017)
    - Changes in gasoline taxes vs fuel-economy regulations (Busse et al., 2013)
  - Economic outlook
    - Feed oil price expectations into macroeconomic projections

# **Implications for Out-of-Sample Forecasting**

- Does risk adjustment translate into out-of-sample forecasting success?
  - ⇒ Baumeister and Kilian (2017) provided encouraging results BUT weakened over extended evaluation period
  - ⇒ Way forward: add to forecast combinations

| Monthly          | $\mathbf{r}^{h}$ |                 | HW + daily      |
|------------------|------------------|-----------------|-----------------|
| horizon <i>h</i> | Γ <sub>t</sub>   | 11 VV           | price change    |
| 3                | 0.890**          | 1.066           | <b>0.901</b> ** |
| 6                | 0.840**          | <b>0.972</b> *  | 0.935**         |
| 9                | <b>0.781</b> **  | <b>0.945</b> ** | 0.909**         |
| 12               | 0.739**          | 0.916**         | 0.894**         |

Recursive MSPE Ratios Relative to No-Change Forecast of the WTI Oil Price Evaluation Period: 2009.1-2020.7

NOTES: Boldface indicates improvements on the monthly no-change forecast.

## **Monetary Policy Expectations**

- Common measure: Fed funds futures
  risk-adjusted expectation measure (Piazzesi and Swanson, 2008)
- Many other financial instruments can be used to infer marketbased expectations about future changes in Fed policy
  - differ in their characteristics which means different risk premia
  - Gürkaynak, Sack & Swanson (2007) investigate their forecasting performance but ignore risk premia
- Additional challenges:
  - Zero lower bound: shadow-rate model (Bauer & Rudebusch, 2016)
  - Heterogeneous beliefs influence size and variation of risk premia (Kelly & Pruitt, 2013; Barillas & Nimark, 2017, 2019; Cao, Crump, Eusepi & Moench, 2020)

# **Inflation Expectations**

- Common measure: breakeven inflation rates
  - difference between yields on nominal Treasuries and inflationprotected Treasuries
  - derived from two markets with differing characteristics, in particular liquidity during periods of financial stress
- In addition to risk premium: adjust for liquidity premium
- Existence of inflation-linked assets not a precondition for deriving market-based measure of inflation expectations
  - model joint dynamics of nominal rates and actual inflation in a statespace framework where inflation and real rates are unobserved states (Hamilton, 1985; Burmeister et al., 1986)
  - use futures prices of agricultural commodities and relationship between commodity and consumer prices to back out overall inflation expectations (Hamilton, 1992)

## Conclusion

- Long list of assets traded on financial, forward, and futures markets whose prices incorporate expectations about key macroeconomic variables
  - ⇒ inflation, house prices, freight costs, commodity prices, interest rates, foreign exchange, emission allowances (carbon price), ...
- Same general methodology can be applied to select the most plausible market-based expectation measure
   important: account for specific features of each market in deriving

the relevant set of expectations for evaluation

• Useful for many economic applications and policy decisions