

Economic Stability in Small Open Economy under the Shadow of International Financiers

Cyril Dell'Eva and Nicola Viegi

University of Pretoria

South Arfrican Macroeconomic Network Annual Workshop November 2020

Introduction •000	The model	Results 00000	Empirical Estimation	Conclusion O	Appendix 0000000
		Intro	oduction		

- · Policy makers in emerging economies worry about destabilizing capital flows
 - After the 2008 crisis: massive capital inflows in emerging economies.
- The Uncovered Interest Parity (UIP)
 - The high yield currency tends to depreciate.
 - Cancel destabilizing capital flows issue.
- Empirical studies: The high yield currency tends to appreciate instead.
- Macro models usually assume UIP to hold.

Introduction 0000	The model	Results 00000	Empirical Estimation	Conclusion O	Appendix 0000000
		Intro	oduction		

- The microstructure literature questions the continuous use of the UIP
 - Short to medium run exchange rate are driven by postion and risk in the Foreign Exchang (FX) market.
- Gabaix and Maggiori (2015) propose a macroeconomic model in which the exchange rate is determined in the FX market.

Aim of this paper

Introduce short to medium run deviations from UIP in a tractable macroeconomic framework.

Introduction ○○●○	The model	Results 00000	Empirical Estimation	Conclusion O	Appendix 0000000
			oduction e paper		

- We use a micro founded New-Keynesian small open economy model
 - The exchange rate is determined in the FX market.
- We simulate demand and supply shocks under different monetary policy frameworks
 - Which monetary policy is able to stabilize SOEs in a risky environment?
- Estimate the model with Bayesian Markov Switching for South Africa:
 - The switch is driven by the risk (VIX)
 - How shocks affect the South African economy?

Introduction	The model 00000	Results 00000	Empirical Estimation	Conclusion O	Appendix 0000000
			oduction tributions		

- 1. We propose a tractable macroeconomic model with realistic deviations from the $\ensuremath{\mathsf{UIP}}$
 - Relevant for policy making.
- 2. The model reproduces:
 - The persistent depreciation observed in indebted countries
 - The appreciation observed in countries receiving capital.
- 3. The monetary policy is able to mitigate the destabilizing effect of capital flows.
- 4. An optimal monetary policy appears to be the best at stabilizing those economies.
- 5. During high risk period, an optimal policy responding to exchange rate does not prevent South Africa to observe a large exchange rate volatility.

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	●0000	00000		O	0000000
			change rate nic intuition		

- The SOE trades with the rest of the world and has access to international financial markets
- Financial institutions act as intermediaries in the international financial markets
 - Their ability to bear risk is limited
 - Risk premium.
- The SOE finances its imports by borrowing to financial markets
 - Households sell domestic bonds labeled in domestic currency
 - The financier is long in the SOE currency
 - The domestic currency depreciates today and appreciates further
 - The tighter the risk-bearing capacity, the larger the current depreciation.

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	○●○○○	00000		O	0000000
		The ex	change rate		

In the model

• The financier maximizes the value of her firm V_t :

$$V_t = E_t \left[\beta(R_t - R_t^* \frac{\epsilon_{t+1}}{\epsilon_t}), \right] q_t, \tag{1}$$

q_t is the financier demand for domestic currency and *ε_t* the nominal exchange rate.
 R_t and *R^{*}_t* are the domestic and foreign interest rates respectively,

• Under the constraint:

$$V_t \ge \Gamma \frac{q_t^2}{\epsilon_t},\tag{2}$$

With Γ the risk-bearing capacity.

• Substituting (1) into (2) and using $\beta = \frac{1}{R}$ one obtains the aggregate financiers' demand for assets:

$$Q_t = \frac{1}{\Gamma} E_t \left[\epsilon_t - \frac{R_t^*}{R_t} \epsilon_{t+1} \right].$$
(3)

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00●00	00000		O	0000000
			change rate he model		

• The equilibrium demand for the domestic currency is:

$$\xi_{t\epsilon t} - \nu_t + Q_t = 0,$$

$$\xi_{t+1\epsilon t+1} - \nu_{t+1} - R_t Q_t = 0.$$
 (4)

 \blacktriangleright ξ_t represents exports value and ν_t imports value.

• The expected depreciation in the domestic cureency is:

$$\frac{\epsilon_{t+1} - \epsilon_t}{\epsilon_t} = \frac{(R_t - \Gamma - 1)R_t\nu_t + (\Gamma + R_t - 1)}{(1 + \Gamma)R_t\nu_t + E_t\nu_{t+1}}.$$
(5)

• Expected changes in the exchange rate in log:

$$\Delta e_{t+1} = (1 - \Gamma)r_t + (\Gamma - 1)m_{t+1} - (1 + \Gamma)m_t, \tag{6}$$

• Where $m_t = log(\nu_t)$, and $e_t = log(\epsilon_t)$.

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	00000	000000	0	0000000

Standard equations linearized

• The CPI inflation (in log) is:

$$\pi_t = \pi_{Ht} + \alpha \Delta e_t + u_t. \tag{7}$$

• The domestic inflation comes from the micro founded model and is standard:

$$\pi_{Ht} = \beta E_t \pi_{Ht+1} + \kappa x_t + u_{Ht},\tag{8}$$

• The IS curve also comes from the micro founded model:

$$x_t = E_t[x_{t+1}] - \frac{1}{\sigma} \left(r_t - E_t[\pi_{t+1}] - \bar{rr}_t \right) + \phi E_t[\Delta e_{t+1}] + g_t.$$
(9)

Expected exchange rate movements affect the output gap ($\phi > 0$).

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	00000	000000	0	0000000

The monetary policies

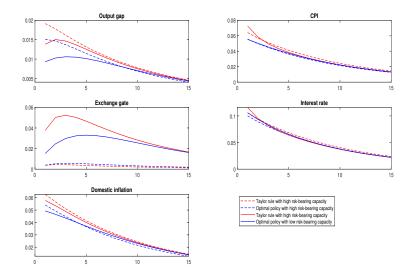
1. Taylor rules:

$$r_t = \gamma_\pi \pi_t + \gamma_x x_t,\tag{10}$$

2. Optimal monetary policy:

$$max - \frac{1}{2}E_t \left[\sum_{i=0}^{\infty} \beta^i [\psi(x_{t+i} - \bar{x})^2 + (\pi_{t+i} - \bar{\pi})^2] \right].$$

Using the FOC, we get the following reaction function:

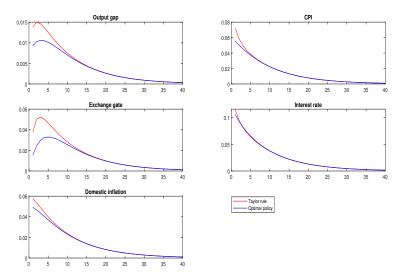

$$r_{t} = \sigma E_{t} x_{t+1} + E_{t} \pi_{t+1} + \gamma_{\pi h} E_{t} \pi_{Ht+1} + \gamma_{e1} \Delta E_{t} e_{t+1} + \gamma_{e} \Delta e_{t} + \bar{rr}_{t} + \gamma_{u} u_{t},$$
(11)

 \triangleright $\gamma_{\pi h}$, γ_{e1} and γ_e are positive.

The central bank responds to current and expected exchange rate changes.

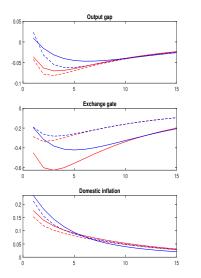
Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	0000	000000	0	0000000

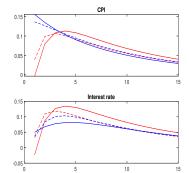
Demand shock


The model 00000

Results 00000 Empirical Estimation

Conclusio


Appendix 0000000


Demand shock Low risk-bearing capacity

Results 00000

Supply shock

10

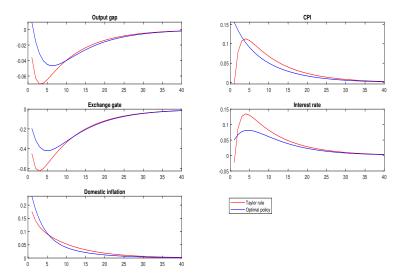
15

5

--- Taylor rule with high risk-bearing capacity

- Optimal policy wiht high risk-bearing capacity Taylor rule with low risk-bearing capacity

- Optimal policy with low risk-bearing capacity


The model 00000

Results 00000 Empirical Estimatio

Conclusion

Appendix 0000000

Supply shock Low risk-bearing capacity

Introducti	on
0000	

The mode 00000 Results 00000 Empirical Estimatior 000000 Conclusion

Appendix 0000000

Monetary policy performance

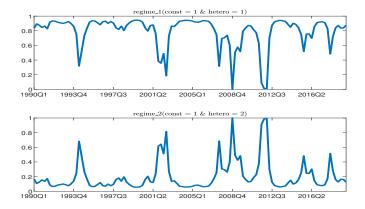
Table: Polici	es comparison
Table: Polici	es comparison

	Demand shock	Supply shock		
High risk-bearing	capacity $(\Gamma = 0.1$.)		
Taylor rule CPI	0,02239	0,05573		
Taylor rule domestic inflation	0,02236	0,06921		
Optimal monetary policy	0,01941	0,05857		
Low risk-bearing capacity $(\Gamma = 10)$				
Taylor rule CPI	0,02207	0,05684		
Taylor rule domestic inflation	0,02162	0,08519		
Optimal monetary policy	0,01868	0,05531		

- In average, the optimal monetary policy always better performs.
- Demand shock: Optimal monetary policy performs better at stabilizing the output gap and prices.
- For a supply shock, it depends on the level of risk.

Estimation: South Africa

- 1. Quarterly data from 1990 to 2019
 - From the QPM: output gap, nominal interest and exchange rates and the CPI.
 - From Fred database: PPI and the VIX.
- 2. Estimate our New-Keynesian model using Bayesian methods allowing for Markov Switching (Method of Liu, Waggoner and Zha (2011)):


The regime switching is driven by risk (VIX):

$$\Gamma_t = \rho_{\Gamma} \Gamma_{t-1} + \sigma_{\Gamma}(s_t) \epsilon_{\Gamma t}, \tag{12}$$

- σ_Γ is the standard deviation of the innovation ε_{Γt}.
- The shock volatility $\sigma_{\Gamma}(s_t)$ varies with the regime $s_t = 1, 2$.
- The regime switches when the shock volatility reaches a certain threshold.

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	00000	00000	0	0000000

Regime switching

Introduction 0000	The model	Results 00000	Empirical Estimation	Conclusion O	Appendix 0000000
		F	Results		

Table: Prior and posterior distributions of structural parameters

	Р	Posterior				
Parameters	Distribution	Low	High	Initial	Mode	Mode Std
γ_{π}	Gamma(a,b)	0.825	2.275	1.5	0.882	0.0068
γ_x	Gamma(a,b)	0.825	2.275	0.5	0.085	0.0023
β	Beta(a,b)	0.920	0.980	0.99	0.967	0.0019
γ	Gamma(a,b)	1.750	3.250	2.9	1.448	0.0025
σ	Gamma(a,b)	1.325	3.775	1	1.265	0.0051
α	Beta(a,b)	0.215	0.405	0.3	0.348	0.0020
$\sigma_{\Gamma}(coef, 1)$	InvGamma(a,b)	0.0001	2	0.01	0.068	0.0033
$\sigma_{\Gamma}(coef, 2)$	InvGamma(a,b)	0.0001	2	0.08	0.138	0.0063
coeftp12	Beta(a,b)	0.215	0.7761	0.0206	0.117	0.0029
coeftp21	Beta(a,b)	0.215	0.7761	0.0338	0.419	0.0029

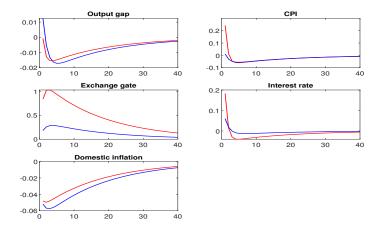
Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	00000	000000	0	0000000

Optimal monetary policy parameters

Table: Optimal monetary policy parameters

Parameters	Calibration	Estimation
γ_x	1	1.27
γ_{π}	1	1
$\gamma_{\pi,h}$	0.0323	0.0756
γ_e	0.0326	0.0782
γ_{e1}	0.4974	0.6625

• The estimated parameters lead to a stronger response of the central bank.

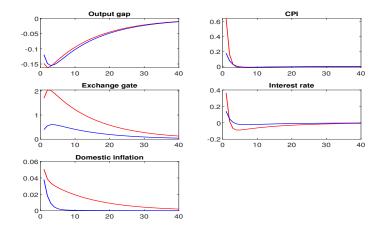

I he model

Results 00000 Empirical Estimation

Conclusion O Appendix 0000000

Optimal reaction function

Figure: Demand shock. In red: low risk-bearing capacity, in blue: UIP.


The model

Results 00000 Empirical Estimation

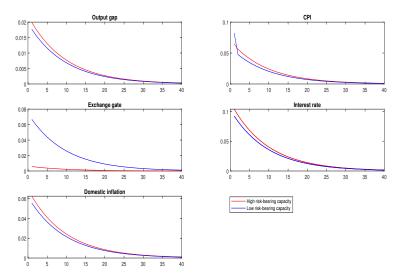
Conclusion O Appendix 0000000

Optimal reaction function

Figure: Supply shock. In red: low risk-bearing capacity, in blue: UIP.

Introduction 0000	The model	Results 00000	Empirical Estimation	Conclusion •	Appendix 0000000
		Со	nclusion		

- Capital flows could destabilize emerging economies.
- We introduce this effect in a New-Keynesian model
 - The exchange rate is driven by position and risk in the FX market.
- 1. Currencies of indebted countries depreciate.
- 2. The monetary policy has the ability to mitigate the destabilizing effect of capital flows.
- 3. In a risky environment, the optimal monetary policy brings more stability
 - The central bank responds to exchange rate changes.
- 4. In crisis periods, this policy does not prevent large exchange rate volatility in South Africa.

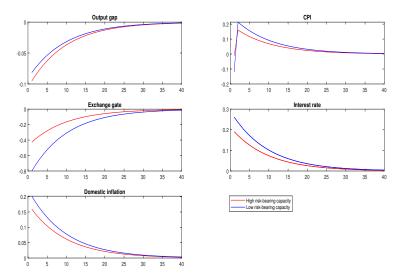

The model

Results 20000 Empirical Estimation

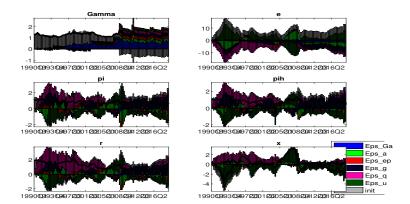
Conclusion

Appendix •000000

Demand shock Taylor rule domestic inflation


The model

Results 00000 Empirical Estimatio


Conclusion

Appendix

Supply shock Taylor rule domestic inflation

Shock decomposition

Introduction	The model	Results	Empirical Estimation	Conclusion	Appendix
0000	00000	00000		O	○○○●○○○

Consumption

• Dynamic maximization problem leads to the Euler equation (in log):

$$c_t = E_t[c_{t+1}] - \frac{1}{\sigma} \Big(r_t - E_t[\pi_{t+1}] - \mu \Big).$$
(13)

• Agents consume domestic and foreign tradable goods and non tradable.

We assume that non tradable are produced by an endowment process:

$$Y_{Nt} = \chi_t; \qquad C_{Nt} = \chi_t.$$

• The consumption of tradable is:

$$C_{Tt} = \left[(1-\alpha)^{\frac{1}{\eta}} C_{Ht}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} C_{Ft}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}},$$
(14)

• With C_{HT} the consumption of domestic goods and C_{Ft} imported goods.

- $\blacktriangleright \alpha$ is the share of foreign goods.
- \blacktriangleright η is the elasticity of substitution between domestic and foreign goods.

Imports, exports

• Households choose how to compose their basket of goods by maximizing:

$$\max_{C_{Nt},C_{Ht},C_{Ft}} C_{Nt}^{\chi_t} C_{Ht}^{a_t} C_{Ft}^{\nu_t} + \lambda_t \left[C_t - C_{Nt} - P_{Ht} C_{Ht} - P_{Ft} C_{Ft} \right].$$
(15)

- With χ , a and ν stochastic preference parameters.
- C_t is the aggregate consumption.
- The first order conditions are:

$$\frac{\chi_t}{C_{Nt}} = \lambda_t$$
 and $\frac{\nu_t}{C_{Ft}} = \lambda_t P_t$.

The South African value of SA imports is:

$$P_{Ft}C_{Ft} = \nu_t.$$

• For simplicity, we assume exports equal to 1.

Introduction 0000	The model	Results 00000	Empirical Estimation	Conclusion O	Appendix 00000●0

• The nominal exchange rate is the ratio between foreign and domestic prices

$$P_{Ht}^* = \epsilon_t P_{Ht}$$

- In the long run, imported prices are equal to foreign prices.
- The nominal exchange rate is:

$$\epsilon_t = \frac{P_{Ft}}{P_{Ht}}$$

The exchange rate In the model

- Households optimally value the currency trade according to its excess return.
- The financier can divert its fund and maximizes the expected value of her firm:

$$V_t = E_t \left[\beta (R_t - R_t^* \frac{\epsilon_{t+1}}{\epsilon_t}) \right] q_t.$$

 \blacktriangleright q_t is the financier demand for domestic currency and ϵ_t the nominal exchange rate.

 \triangleright R_t and R_t^* are the domestic and foreign interest rates respectively,

- When the financier diverts the funds:
 - Her firm is unwound and the households that has lent to her recover a portion $1 \Gamma \left| \frac{d}{\epsilon_t} \right|$ of its credit position $\left| \frac{d}{\epsilon_t} \right|$.
 - Γ is the risk-bearing capacity.
 - The financier is subject to a credit constraint:

$$\frac{V_t}{\epsilon_t} \ge \left| \frac{q_t}{\epsilon_t} \right| \left| \Gamma \right| \frac{q_t}{\epsilon_t} \right| = \Gamma \left(\frac{q_t}{\epsilon_t} \right)^2.$$
(16)