Apple Product Prices, the Law of One Price and Real Exchange Rate Dynamics SAMNET workshop

Rick Walker

Stellenbosch University, Department of Economics

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Joint work with Dr Hylton Hollander and Dr Dawie van Lill

Refresher: Basic LOP / PPP Theory

Where $P_t^{i_x}$ represents the price of good x in the case of LOP (or $\forall x \text{ in PPP}$) in country *i* at time *t* and E_t^{iUS} is the nominal exchange rate between country *i* vs the USD at time *t*, then:

$$\frac{P_t^{i_x}}{P_t^{US_x}} = E_t^{iUS}$$

The generalised equation in logarithmic form becomes:

$$p_t^{i_x} - p_t^{US_x} = \alpha_x + \beta_x e_t^{iUS} + \varepsilon_t^{i_x}$$

For relative LOP (or PPP) to hold re product x: $\beta_x = 1$ For absolute LOP (or PPP) to hold: $\alpha_x = 0$ and $\beta_x = 1$ The real exchange rate is simply:

$$q_t^{i_x} = p_t^{i_x} - p_t^{US_x} - e_t^{iUS}$$
 2/18

Why Apple Product Price datasets?

- 1. Homogenous
- 2. Products are tradable
- 3. No 'product' or 'time aggregation' bias
- 4. Derived RERs can be measured in price levels
- 5. Products distributed internationally
- 6. Imported from China and Taiwan and then distributed
- 7. Easier to net out transaction costs
 - Taxes, tariffs shipping costs can be accounted for

Panel Regressions Summary: Exchange Rate Passthrough As per analyses of Click (1996) on Big Macs

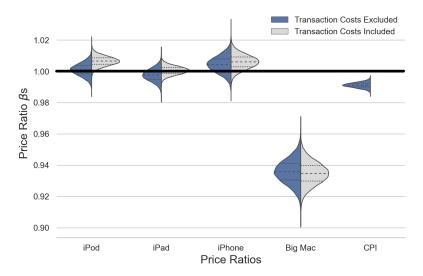
$p_t^{i_{\!X}} - p_t^{U\!S_{\!X}} = lpha_{\!X} + eta_{\!X} e_t^{i_{\!U\!S}} + \epsilon_t^{i_{\!X}}$								
Coefficients	CPI	Big Mac	iPods	iPads	iPhones			
α _x	0.7714	0.6097	0.3131	0.2152	0.5500			
	(0.0380)***	(0.0640)***	(0.0336)***	(0.0265)***	(0.0411)***			
β_x	0.5727	0.6293	0.9903 (0.9922	0.7647			
	(0.0193)***	(0.0269)***	0.0110)***	(0.0097)***	(0.0333)***			
R^2 Overall	0.8142	0.8680	0.9919	0.9929	0.9340			
Obs	49 Countries,	31 Countries,	46 Countries,	45 Countries,	39 Countries, 9			
	14 Years N $=$	14 Years N $=$	11 Years N $=$	10 Years N $=$	${\sf Years}\;{\sf N}=351$			
	686	434	506	450				
Effects	Entity, Time	Entity, Time	Random	Random	Entity, Time			

Standard Errors in Parenthesis: * p<0.10; ** p<0.05; *** p<0.01

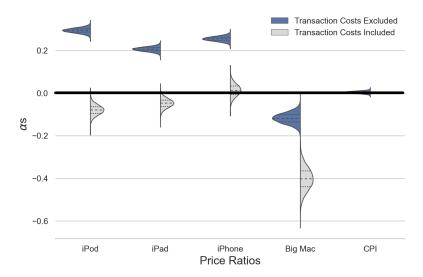
Panel Regressions Summary: Exchange Rate Passthrough


$\boxed{\alpha_{x} + \beta_{x} e_{t}^{iUS} + \delta_{x1} \ln\left(\frac{1 + \tau_{i_{xt}}}{1 + \tau_{US_{xt}}}\right) + \delta_{x2} \ln\left(\frac{1 + \iota_{i_{xt}}}{1 + \iota_{US_{xt}}}\right) + \delta_{x3} \ln\left(\frac{\lambda_{i_{xt}}}{\lambda_{US_{xt}}}\right)}$								
Coefficients	CPI	Big Mac	iPods	iPads	iPhones			
α _x	0.7714	0.8655	-0.0597	0.3069	0.3779			
	(0.0380)***	(0.1520)***	(0.0613)	(0.1029)***	(0.0972)***			
$\beta_{\mathbf{x}}$	0.5727	0.6334	1.0007	0.9514	0.7748			
	(0.0193)***	(0.0269)***	(0.0083)***	(0.0265)***	(0.0352)***			
$\delta_{\times 1}$		-0.2094	0.2307	-0.0103	0.1202			
		(0.1129)*	(0.0421)***	(0.0641)	(0.0579)**			
δ_{x2}			0.5293	0.1513	0.1933			
			(0.1869)***	(0.3464)	(0.3907)			
δ_{x3}				0.0089	0.0049			
				(0.0109)	(0.0096)			
R ² Overall	0.8142	0.8650	0.9951	0.9911	0.9413			
Obs	49C, 14Y	31C, 14Y	46C, 11Y	45C, 10Y	39C, 9Y			
Effects	Entity, Time	Entity, Time	Random	Entity, Time	Entity, Tim 5 / 18			

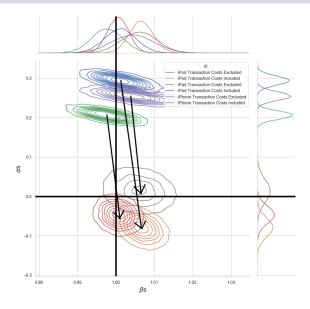
Bayesian Analyses PyMC3 with MCMC Algorithms


Generalised Linear Model Specification:

$$p_t^{i_x} - p_t^{US_x} \sim \mathcal{N}\left(\alpha_x + \beta_x e_t^{iUS}, \sigma_t^{i_x^2}\right)$$


Priors: $\sigma_t^{i_x} \sim HN(0,1)$, $\alpha_x \sim N(0,0.5)$ and $\beta_x \sim N(1,0.5)$ Example of posterior outputs on iPod price dataset:

Bayesian Analyses Violin Plots of MCMC Generated βs



Bayesian Analyses Violin Plots of MCMC Generated αs

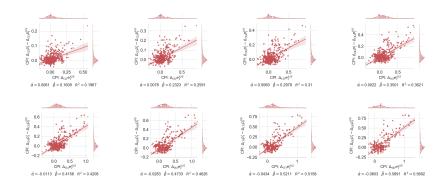
Bayesian Analyses

Kernel Density Joint Plot of $\alpha {\rm s}$ and $\beta {\rm s}$ Before and After Transaction Costs

h Period Changes Analyses Source: Celements et al. (2012)

Control for heterogeneity of the parameter by using difference operators to estimate:

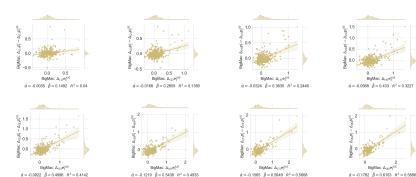
$$\Delta_{(h)}\left(p_t^{i_x} - p_t^{US_x}\right) = \beta \Delta_{(h)} e_t^{iUS} + \varepsilon_t^{i_x}$$


Where h is the logarithmic h-year change:

$$\Delta_{(h)} \left(p_t^{i_x} - p_t^{US_x} \right) = \left(p_t^{i_x} - p_t^{US_x} \right) - \left(p_{t-h}^{i_x} - p_{t-h}^{US_x} \right)$$
$$\Delta_{(h)} e_t^{iUS} = e_t^{iUS} - e_{t-h}^{iUS}$$

CPI Price Data over h Period Changes

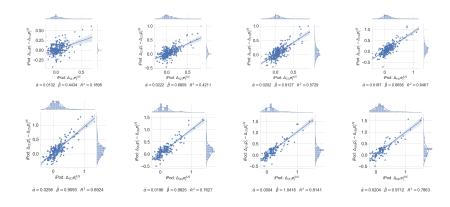
 β increases with $\mathit{h},$ but slowly


With $h=8 \beta=0.57$

Big Mac Price Data over h Period Changes

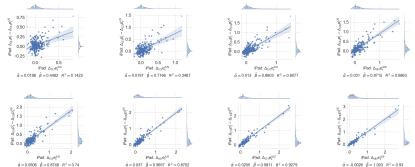
 β increases with $\mathit{h},$ but also slowly

With $h=8 \beta=0.61$



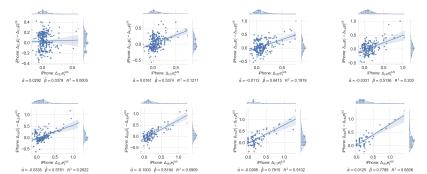
12/18

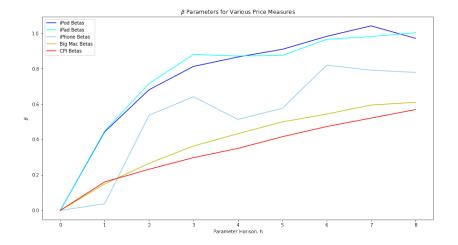
iPod Price Data over h Period Changes


 β increases with h, quicker covergence to '1'

With $h=6 \beta=0.98$

iPad Price Data over h Period Changes


 β increases with *h*, quicker covergence to '1'


 $\hat{\alpha} = -0.0026$ $\hat{\beta} = 1.003$ $R^2 = 0.93$

iPhone Price Data over h Period Changes

 β increases with h, quicker convergence to '1'

APPs, Big Mac and CPI Betas over h Period Changes β convergence to '1' quicker with APPs

The Purchasing Power Parity Puzzle.

Rogoff, K.

Journal of Economic Literature 34(2), 1996.

Contrarian McParity.

Click, R. Economic Letters 53, 1996.

The Big Mac Index Two Decades on: An Evaluation of Burgernomics.

Clements, K., Lan, Y. and Seah, S.

International Journal of Finance and Economics 17, 2012.

Thank you for listening!