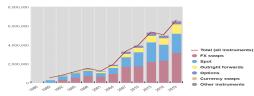
Foreign Exchange Imbalances: A Markov-Switching Approach for South Africa


Cyril Dell'Eva and Nicola Viegi *University of Pretoria*

The 29^{th} of November 2021

Introduction - Foreign Exchange market

Foreign Exchange market turnover Daily in millions of USD

1- Global FX turnover

2- FX turnover - South Africa

Source: BIS Triennial Central Banks Survey of Foreign Exchange and Over-the-counter (OTC) Derivatives Markets in 2019

Introduction - Literature

- Micro level Microstructure
 - ► FX market ⇒ short to medium run exchange rate movements
- Macro level Imperfect financial markets
 - Exchange rate determined in the FX market
 - Financial intermediaries ability to bear risk (Gabaix and Maggiori (2015))
- Dell'Eva and Viegi (mimeo)
 - Tractable macroeconomic model

Aim of the paper

Estimate Dell'Eva and Viegi (mimeo) for South Africa

Introduction - The paper

Methodology

- Macro model Exchange rate driven by positions and risk in the FX market
 - Non linearity in exchange rate movements
- Estimate with Bayesian Markov-Switching
 - Switching driven by the VIX

South Africa

- The ZAR is highly volatile
 - Is there a global financial cycle able to explain part of this volatility?
- Simulation of shocks with the estimated parameters
 - Is South Africa affected differently?

Introduction - Contributions

- Switching do appear
 - Driven by a Global Financial Cycle
- Exchange rate volatility is larger in the risky regime
- The SARB accounts for risk and adapts its response
- Simulation of shocks
 - All depends on the households' incentive to consume domestic or foreign goods
 - Shocks ⇒ South Africa is affected in a different manner according to the regime

The model – FX market and exchange rate

- South Africa trades with the rest of the world and have access to international financial markets
- Financial institutions act as intermediaries in the international financial markets
 - ▶ Their ability to bear risk is limited
 - Risk premium.
- The country borrows in international financial markets
 - ► The financier is long in ZAR
 - ► The ZAR depreciates today and appreciate further
 - The tighter the risk-bearing capacity, the larger the current depreciation.

The model

• Standard equations derived from the micro founded model

$$x_{t} = E_{t}[x_{t+1}] - \frac{1}{\sigma} \left(r_{t} - E_{t}[\pi_{Ht+1}] - \bar{r}r_{t} \right) + \delta \Delta E_{t}e_{t+1} + g_{t}, \tag{1}$$

$$\pi_{Ht} = \beta E_t \pi_{Ht+1} + \kappa x_t + u_t, \tag{2}$$

$$\pi_t = \pi_{Ht} + \alpha \Delta e_t + w_t, \tag{3}$$

$$r_t = \rho_r r_{t-1} + (1 - \rho_r)(\gamma_\pi \pi_t + \gamma_x x_t) + q_t, \tag{4}$$

The expected depreciation is

$$UIP \qquad \Rightarrow \qquad \Delta e_{t+1} = r_t - m_{t+1} - m_t, \tag{5}$$

$$Risk \Rightarrow \Delta e_{t+1} = (1-\Gamma)r_t + (\Gamma-1)m_{t+1} - (1+\Gamma)m_t. \tag{6}$$

Bayesian Markov-Switching

• The volatility of the shock on the VIX follows an independent two states Markov process

$$\Gamma_t = \rho_\Gamma \Gamma_{t-1}^{(s_t)} + \sigma_{\Gamma_t}^{(s_t)} \epsilon_t. \tag{7}$$

- ► The risky regime (vol,2) is the one with the highest volatility $\Rightarrow \sigma_{\Gamma}(vol,2) > \sigma_{\Gamma}(vol,1)$
- The Markov-Switching rational expectations model is

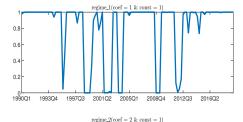
$$E_t \left[\Psi + \Phi_{s_{t+1}} X_{t+1}(s_t) + \Theta_{s_t} X_t(s_t, s_{t-1}) + \Xi_{s_t} X_{t-1}(s_{t-1}, s_{t-2}) + \eta_{s_t} \Omega_t \right] = 0, \quad (8)$$

- $ightharpoonup s_t = (1,2)$ and denotes the two alternative regimes
- $lackbox{T} = [p_{st,s_t+1}]$ is the Markov transition probability with $[p_{st,s_t+1}] = prob(s_{t+1}|s_t)$
- We allow the monetary policy parameters to take different values according to the regime
 - $ightharpoonup \gamma_{\pi}(coef,1), \gamma_{\pi}(coef,2), \gamma_{x}(coef,1), \gamma_{x}(coef,2), \rho_{r}(coef,1) \text{ and } \rho_{r}(coef,2)$

Data

- From 1990 to 2019
- Data from the QPM
 - Output gap, CPI, nominal exchange rate and nominal interest rate
 - Annual interest rate so

$$r_{obs} = log \left(1 + \frac{r_{data}}{4 * 100} \right) \tag{9}$$


- Federal Reserve Economic Data (FRED)
 - Producer Price Index (PPI) ⇒ seasonally adjust
- Yahoo finance
 - ► VIX

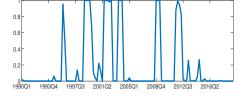
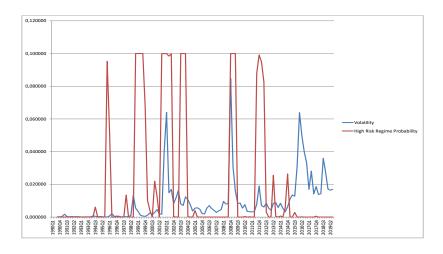
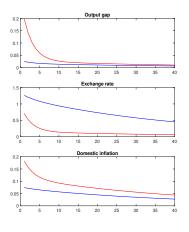

Parameters and estimations

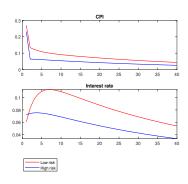
Table: Prior and posterior distributions of structural parameters

			Prior				Posterior
Parameters	Distribution	a	b	Low	High	Initial	Mode
γ	Gamma(a,b)	28.67	0.09	1.750	3.250	2.9	0.958
σ	Gamma(a,b)	10.29	0.23	1.325	3.775	0.88	0.628
μ	Gamma(a,b)	22.95	0.13	2.000	4.000	1.1	1.238
β	Beta(a,b)	120.50	5.80	0.920	0.980	0.99	0.992
α	Beta(a,b)	19.21	43.47	0.215	0.405	0.15	0.125
$\gamma_{\pi}(coef, 1)$	Gamma(a,b)	3.263	0.393	0.375	2.625	1.5	0.974
$\gamma_{\pi}(coef, 2)$	Gamma(a,b)	3.263	0.393	0.375	2.625	1.5	1.077
$\gamma_x(coef, 1)$	Gamma(a,b)	11.455	0.049	0.325	0.875	0.5	0.399
$\gamma_x(coef, 2)$	Gamma(a,b)	11.455	0.049	0.325	0.875	0.5	0.502
$\rho_r(coef, 1)$	Gamma(a,b)	11.455	0.049	0.325	0.875	0.4	0.827
$\rho_r(coef, 2)$	Gamma(a,b)	11.455	0.049	0.325	0.875	0.4	0.725
$\sigma_{\Gamma}(vol, 1)$	InvGamma(a,b)	0.3261	0.00015	0.0001	2	0.01	0.061
$\sigma_{\Gamma}(vol, 2)$	InvGamma(a,b)	0.3261	0.00015	0.0001	2	8.0	0.811
coeftp12	Beta(a,b)	1.0043	2.0056	0.0256	0.7761	0.0206	0.023
coeftp21	Beta(a,b)	1.0043	2.0056	0.0256	0.7761	0.0338	0.854

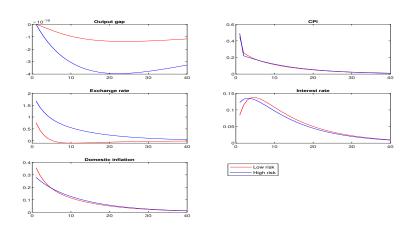
From one regime to another




High risk regime


- $\textbf{@} \ 1998Q4 \rightarrow Asian \ crisis$
- $\ \, \textbf{3} \ \, \textbf{2001Q3} \, \rightarrow \, \textbf{Global recession} \\$
- \bigcirc 2003Q3 \rightarrow War in Irak

Exchange rate volatility and risk



Demand shock

Supply shock

Conclusion

- Markov-Switching driven by the VIX
- External factors (global financial cycle) determine whether South Africa is perceived as risky or not
- ZAR more volatile in the risky regime
- The SARB responds differently according to the regime
- Households' incentive to consume domestic or foreign goods determine the financier's position
 - Exchange rate movements
- The effect of the demand shock is absorbed by the financier
- The effect of a supply shock is exacerbated by the financier