Financial Dollarization:

Efficient Intranational Risk Sharing or Prescription for Disaster?

Lawrence Christiano, Husnu Dalgic and Armen Nurbekyan

Northwestern University, University of Mannheim and Central Bank of Armenia

November 29, 2022

Financial Dollarization in Emerging Markets

- Credit Dollarization \rightarrow Firms borrow in foreign currency ('dollars')
- Deposit Dollarization \rightarrow Households save in dollars.

Two Themes in Financial Dollarization Literature

- Dollarization a source of international risk sharing
 - Gourinchas, Rey and Govillot, "Exorbitant Privilege and Exorbitant Duty"

Two Themes in Financial Dollarization Literature

- Dollarization a source of international risk sharing
 - Gourinchas, Rey and Govillot, "Exorbitant Privilege and Exorbitant Duty"

- Dollarization a source of financial fragility
 - Levy-Yeyati (2006); Bocola and Lorenzoni (2020)

Findings

- Financial Dollarization is an intra-national insurance arrangement
 - Device for one group of people to insure others within countries.
 - Provide evidence that intra- national insurance flows bigger than international flows.

Findings

- Financial Dollarization is an *intra*-national insurance arrangement
 - Device for one group of people to insure others within countries.
 - Provide evidence that intra- national insurance flows bigger than international flows.
- We find no evidence that dollarization is associated with
 - Frequency of banking crises
 - Severity of banking crises
 - Large balance sheet effects

Findings

- Financial Dollarization is an *intra*-national insurance arrangement
 - Device for one group of people to insure others within countries.
 - Provide evidence that intra- national insurance flows bigger than international flows.
- We find no evidence that dollarization is associated with
 - Frequency of banking crises
 - Severity of banking crises
 - Large balance sheet effects
- A simple model motivated by the evidence.

- 140 countries 2000-2018
 - Determinants of Dollarization + Determinants of banking crises
- 16 Small Open Economies 2000-2018
 - Who borrows/lends in FC: Households vs Firms
- Peru and Armenia: Firm level data
 - Balance sheet effects following depreciations

Motivation

- Countercyclical exchange rate \longrightarrow Dollar assets gain in value in economic downturns
 - Dollar assets provide insurance against business cycle risk \longrightarrow High Dollarization

Motivation

- Countercyclical exchange rate \longrightarrow Dollar assets gain in value in economic downturns
 - Dollar assets provide insurance against business cycle risk \longrightarrow High Dollarization
- Measuring the comovement,

$$\frac{\Delta GDP_t}{\sigma_{\Delta GDP}} = \alpha + \rho \frac{\Delta \frac{S_t}{P_t}}{\sigma_{\Delta S/P}} + \epsilon_i$$

- Annual data from IFS (2000-2018)
- $\hat{\rho}$: Correlation coefficent
 - Direction-free
 - How many standard deviation movement in GDP is associated with one stdev increase in the exchange rate

Determinants of Dollarization

	Dependent variable:							
	Dollarization							
	(1)	(2)	(3)	(4)	(5)	(6)		
$Corr(\Delta GDP, \Delta S/P)$	-34.161***	-30.287***	-34.183***	-33.680***	-34.177***	-20.439**		
	(6.843)	(7.976)	(8.336)	(8.129)	(8.266)	(9.849)		
Av Inflation		0.027***	0.025***	0.025***	0.025***	0.022***		
		(0.005)	(0.005)	(0.005)	(0.006)	(0.005)		
Gini			0.170	0.271	0.112	0.057		
			(0.195)	(0.196)	(0.191)	(0.270)		
Commodity Export			-0.057	-0.069	-0.056	-0.073		
			(0.091)	(0.088)	(0.087)	(0.063)		
Reserves/GDP			0.026	0.021	0.028*	-0.003		
			(0.016)	(0.016)	(0.016)	(0.014)		
nstitutions				-0.389**	-0.368**	-0.239		
				(0.189)	(0.180)	(0.197)		
CB Independence					-9.251			
					(9.361)			
External Debt						0.253***		
						(0.085)		
Constant	21.429***	20.462***	10.937	9.519	20.023**	12.942		
	(1.882)	(2.194)	(7.515)	(7.360)	(9.656)	(14.152)		
Observations	121	112	94	87	73	58		
R ²	0.168	0.232	0.325	0.392	0.460	0.362		
Adjusted R ²	0.161	0.218	0.287	0.347	0.402	0.272		
Residual Std. Error	19.592 (df = 119)	19.197 (df = 109)	17.924 (df = 88)	17.144 (df = 80)	15.535 (df = 65)	16.768 (df =		

Note:

*p<0.1; **p<0.05; ***p<0.01

Interpretation

- Negative $cov(GDP, S/P) \longrightarrow$ High Dollarization (Dalgic, 2018)
- Negative cov(GDP, S/P): currency depreciates in recession
 - Dollar returns jump, exactly when households have low income.
 - What would make currency depreciate a lot in a recession?
 - Standard: Disturbances to export demand (Hassan (2011), Gopinath and Stein (2018), government irresponsibility, US crises (Gourinchas, Rey, Govillot (2017)).

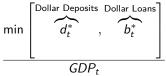
Interpretation

- Negative $cov(GDP, S/P) \longrightarrow$ High Dollarization (Dalgic, 2018)
- Negative cov(GDP, S/P): currency depreciates in recession
 - Dollar returns jump, exactly when households have low income.
 - What would make currency depreciate a lot in a recession?
 - Standard: Disturbances to export demand (Hassan (2011), Gopinath and Stein (2018), government irresponsibility, US crises (Gourinchas, Rey, Govillot (2017)).
- Reverse causality hypothesis:
 - Sunspots: fear of financial crisis motivates deposit dollarization, resulting currency mismatch in banks/firms causes anticipated crisis.
 - Will show evidence against this hypothesis.

Who is Providing the Insurance?

- Not the banks
 - IMF Financial Soundness Indicators, 115 countries, 2005-2018
 - Banks hold little mismatch

Who is Providing the Insurance?

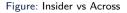

- Not the banks
 - IMF Financial Soundness Indicators, 115 countries, 2005-2018
 - Banks hold little mismatch
- Data from 16 emerging market economies

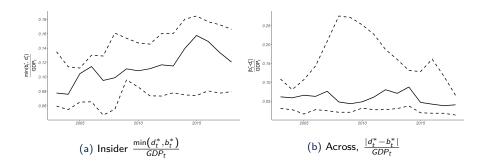
	dollar deposits total deposits	household (hh) dollar deposits Total dollar deposits	firm dollars from banks firm dollars from everywhere	hh dollar borrowing from banks total dollar deposits	total dollar borrowing, firms total dollar deposits
	Deposit			HH Share	NFC Share
	Dollarization				
Average	0.38	0.59	0.84	0.21	0.90
Median	0.36	0.62	0.91	0.15	0.94

- Most dollar deposits are held by households
- Most dollar credit is sourced from local banks
- Firms appear to bear the full (net) amount of the currency mismatch risk.
- Governments dollar position slightly positive due to less borrowing in dollars (Du & Scheger, 2013) and high reserves

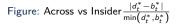
International Versus Intra-national Insurance Flows

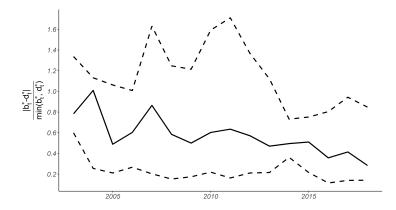
• Intra-national insurance


International Insurance,


$$\frac{|d_t^* - b_t^*|}{GDP_t}$$

• Intra vs International insurance


$$\frac{\min\left[d_t^*, b_t^*\right]}{|d_t^* - b_t^*|}$$


International Versus Intra-national Insurance Flows

International Versus Intra-national Insurance Flows

Where are the Foreigners?

=

• Data on the currency composition of international flows from Benetrix et. al. (2020):

dollar claims of domestic residents and foreigners' dollar claims on domestic residents

domestic resident dollar liabilities and foreigners' dollar liabilities to domestic residents

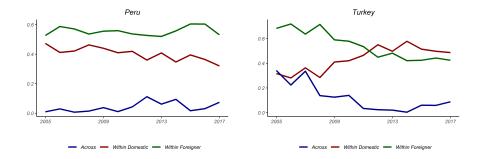
$$\overbrace{b_t^* + b_t^{*,f}}$$

Where are the Foreigners?

=

• Data on the currency composition of international flows from Benetrix et. al. (2020):

dollar claims of domestic residents and foreigners' dollar claims on domestic residents



domestic resident dollar liabilities and foreigners' dollar liabilities to domestic residents $\overbrace{b_t^* + b_\star^{*,f}}^{*,f}$

Then, we have the following decomposition (following Chari-Christiano (2020)):

Example: Peru and Turkey

Deposit Dollarization as Insurance Arrangement

- Some people (ordinary households), by putting dollar deposits in banks, in effect receive business cycle insurance from others (non-financial firms).
- Dollarization of financial markets looks like many other markets (e.g., commodity futures) in which risk is reallocated among people.
 - If that is the case, deposit dollarization is Pareto improving
- Is deposit dollarization destabilizing?
 - firms owe banks a lot of money just when they don't have very much.
 - if firms can't pay money back to banks, then banks in trouble.
- Bottom line: dollarization could (in principle) destabilize the financial system.

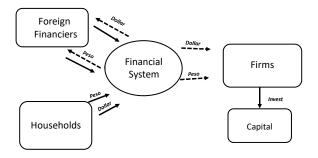
Dollarization and Banking Crises

- Data on systemic banking crises taken from Laeven & Valencia, 2018, 'Systemic Banking Crises Revisited'
 - Crisis:
 - Significant signs of financial distress in the banking system (as indicated by significant bank runs, losses in the banking system, and/or bank liquidations).
 - Significant banking policy intervention measures in response to significant losses in the banking system.
- Relation between deposit dollarization and *frequency* of crisis?
- Relation between deposit dollarization and *intensity* of crisis when it happens?

Does Dollarization Predict Banking Crises?

- Evidence based on logit regressions results
 - Levy-Yeyati (2006), Schularick and Taylor (2009). Gourinchas and Obstfeld (2012),
 - Binary variable $Dollar (20)_{i,t-1} = 1$ if dollarization exceeds 20 percent in the previous year
- Dollarization does not predict banking crisis
 - Area under the ROC curve (AUC) measure
 - Suss & Treitel (2020), Fuster et al. (2020)
 - Main predictor of crisis is
 - Foreign debt, <u>Foreign Liabilities of Banks</u>, (Gourinchas and Obstfeld, 2012)
 - Global financial cycle, VIX (Rey, 2015, Forbes and Warnock, 2012)
 - Too much external borrowing leads to crisis, not deposit dollarization.

Balance Sheet Effects


- Even if dollarization does not lead to crisis,
 - Financial channel may inefficiently reduce investment after an exchange rate depreciation
- Evidence from firms in Peru: 28 Largest Firms in Recent Depreciation results
 - · Firms with dollar debt suffer initially but recover quickly
- Evidence from firms in Peru:118 firms 1999-2014 results
 - Results suggest sales growth and GDP growth are main drivers of investment
 - Weak balance sheet effects
- Evidence from Armenia: Corporate Tax registry 2014-2016 results
 - Weak balance sheet effects
 - FC borrowers with large leverage suffer
- Stress test results
 - 100 percent depreciation \longrightarrow the net worth of the bankrupted firms is less than 1.5 percent of total net worth

- 1. Exchange rate depreciates a lot in a recession \rightarrow high deposit dollarization
- 2. High deposit dollarization \longrightarrow high interest rate spread \bigcirc results
- 3. Most dollar debt is financed locally
- 4. Deposit dollarization not systematically related to:
 - 4.1 likelihood of financial crisis
 - 4.2 intensity of a crisis if it occurs.

Model

- 2 periods
 - Period 1: Saving, capital production, exports and imports
 - Period 2: Shocks realized, production, exports and imports, consumption
- Agents
 - Households: Provide labor
 - Firms: Own the capital, hire labor
 - Foreign financiers: Borrow/lend in a domestic and foreign asset
 - All agents have similar problems, differentiated by sources of income, which produce different hedging needs.
- 2 goods
 - Home good: Produced locally, exported
 - Foreign good: Imported
- 2 assets
 - Dollar: Promises r* unit of Foreign good in period 2, per unit of period 1 domestic good.
 - Peso: r units of consumption good in period 2, per unit of domestic good. 27/62

Financial Markets, period 1

Period 1

- Households are endowed with Y units of Home good
- Save in dollar and peso assets

$$d + d^* = Y$$

Period 2

- Provides labor
- Consumption takes place

$$c_2^{house} = dr + d^*r^*e_2 + w_2l_2$$

Worker Households

• Household problem,

$$\max_{d,d^*} \textit{Ec}_2^{\textit{house}} - rac{\lambda}{2} \textit{var}\left(c_2^{\textit{house}}
ight)$$

• Intertemporal budget constraint

$$c_2^{house} = (e_2 r^* - r) d^* + w_2 + Yr$$

Household portfolio choice

$$d^{*} = \underbrace{\frac{\overline{E\left(e_{2}r^{*} - r\right)}}{\lambda var\left(r^{*}e_{2}\right)}}_{\sqrt{var}\left(r^{*}e_{2}\right)} - \underbrace{\frac{\overline{cov\left(r^{*}e_{2}, w_{2}\right)}}{var\left(r^{*}e_{2}\right)}}_{var\left(r^{*}e_{2}\right)}$$

Firm-Households

Period 1

- Firms lack internal funds
- Borrow to invest
- Need foreign goods to produce K, and p^K is shadow price:

$$p^{K}K = b + b^{*}$$

Period 2

Production

$$Y_2^h = \left(A_2 K\right)^\alpha I_2^{1-\alpha}$$

Consumption

$$c_2^{firm} = r_2^K K - (br + b^* e_2 r^*)$$

Firm-Households

• Firm problem,

$$\max_{b^*,b,K} E(c_2^{\textit{firm}}) - \frac{\lambda}{2} \textit{var}(c_2^{\textit{firm}})$$

Substitute similarly t=1 budget constraint

$$c_{2}^{firm} = (r_{2}^{K} - p^{K}r) K - b^{*} (e_{2}r^{*} - r)$$

Dollar debt choice

$$b^{*} = -\frac{E(e_{2}r^{*} - r)}{var(e_{2}r^{*})\lambda} + \frac{cov(e_{2}r^{*}, r_{2}^{k}K)}{var(e_{2}r^{*})}$$

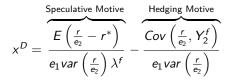
Investment choice ٠

$$K = \frac{E(r_{2}^{K} - p^{K}r)}{var(r_{2}^{K})\lambda} + b^{*}\frac{cov(e_{2}r^{*}, r_{2}^{K})}{var(r_{2}^{K})}$$
_{32/62}
_{32/62}

10

Foreign Financiers

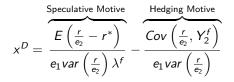
- Borrow in dollar asset market \longrightarrow Make loans in domestic credit market
 - Dollar loans: x^{\$}, Peso loans: x^D
 - Loans are in units of foreign goods (e.g., 'dollars')
 - Total position: $x^{\$} + x^D = b^f$
- Exogenous income Y_2^f : correlated with export demand shifter Y_2^*
- Period 2 income (by arbitrage, $r^{\$} = e_1 r^*$):


$$x^{\$}e_{1}r^{*} + \frac{x^{D}e_{1}r}{e_{2}} - b^{f}r^{\$} + Y_{2}^{f}$$

• Foreign financier problem,

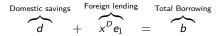
$$\max_{x^{D}} E\left(x^{D}e_{1}\left(\frac{r}{e_{2}}-r^{*}\right)+Y_{2}^{f}\right)-\frac{\lambda^{f}}{2}var\left(x^{D}e_{1}\left(\frac{r}{e_{2}}-r^{*}\right)+Y_{2}^{f}\right).$$

Foreign Financiers


• The solution to foreign financier problem,

- If the exchange rate depreciates $(e_2 \text{ high})$ when Y_2^f is low, covariance is positive
 - Financiers require risk premium to invest in peso assets (they are like the households).
- If the covariance is large, financiers do not want to invest in peso assets at all.

Foreign Financiers


• The solution to foreign financier problem,

- If the exchange rate depreciates $(e_2 \text{ high})$ when Y_2^f is low, covariance is positive
 - Financiers require risk premium to invest in peso assets (they are like the households).
- If the covariance is large, financiers do not want to invest in peso assets at all.
 - Related to large literature that suggests EME risk hard to diversify.

Equilibrium - Period 1

- Financial markets clearing,
 - Peso asset market

Dollar asset market

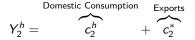
$$d^* + x^{\$} e_1 = b^*$$

Balance of payments,

Trade Balance Net Asset Acquisition

$$\overbrace{c_1^* - e_1k_f}^{\text{Net Asset Acquisition}} = \overbrace{d + d^* - (b + b^*)}^{\text{Net Asset Acquisition}}$$

Equilibrium - Period 2


• Final consumption good

$$c_{2} = A \left[\omega_{c}^{\frac{1}{\delta}} \left(c_{2}^{h} \right)^{\frac{\delta-1}{\delta}} + \left(1 - \omega_{c} \right)^{\frac{1}{\delta}} \left(c_{2}^{f} \right)^{\frac{\delta-1}{\delta}} \right]^{\frac{\delta}{\delta-1}}, \quad A = \omega_{c}^{\omega_{c}} \left(1 - \omega_{c} \right)^{1 - \omega_{c}}$$

Production

$$Y_2^h = (AK)^{\alpha}$$

Goods market equilibrium

• Balance of Payments

$$p_2^h c_2^* - e_2 c_2^f = (b-d) r + (b^* - d^*) r^* e_2$$

Shocks - Uncertainty

• Export demand

$$Y_2^* = \xi + \nu$$

• Foreign income shock

$$Y_2^f=s\nu$$

• Export demand and foreign income shocks are correlated

$$Cov\left(Y_{2}^{f},Y_{2}^{*}
ight)=s imes\sigma_{
u}^{2}$$

• Productivity shock A

Interest Rate Spread

Household and firm choices

$$b^{*} = -\frac{E(e_{2}r^{*} - r)}{var(e_{2}r^{*})\lambda} + \frac{cov(e_{2}r^{*}, r_{2}^{*}K)}{var(e_{2}r^{*})}$$
$$d^{*} = \frac{E(e_{2}r^{*} - r)}{\lambda var(r^{*}e_{2})} - \frac{cov(r^{*}e_{2}, w_{2})}{var(r^{*}e_{2})}$$

Use $GDP_2 = p_2^h Y_2^h = w_2 + r_2^k K$

• For the case $b^* - d^*$ small, we have the interest rate spread,

$$E\left(r-e_{2}r^{*}\right)=-\frac{1}{2}\lambda cov\left(r^{*}e_{2},GDP_{2}\right)$$

Variable	Description	Model	Peru
(a)	(b)	(c)	(d)
$\frac{b+b^*}{d+d^*}$	Total domestic borrowing Total domestic lending	1.02	
$100 \times (r-1)$	Domestic Rate	-0.3%	-0.3%
$E\left(e_{2}r^{*}\right)$	Expected Dollar Rate	0.975	
$100 \times E(r - e_2 r^*)$	Spread (domestic agents)	2.24%	$2.20\%^{(6)}$
$100 \times E(\frac{r}{e_2} - r^*)$	Spread (financier)	2.50%	
$d^{*}/(d^{*}+d)$	Deposit Dollarization	0.60	$0.44^{(2)}$
$\frac{b-d}{b}$	Foreign Source of Peso Credit	0.04	$0.01^{(3)}$
$\frac{\frac{b-d}{d^*-b^*}}{\frac{d^*-b^*}{d^*}}$	Foreign Absorption of Dollar Deposits	-0.00	$-0.07^{(3)}$
$b^{*}/(\ddot{b} + b^{*})$	Credit Dollarization	0.59	$0.40^{(3)}$
$\frac{c_1^* - e_1 k_f}{V}$	Scaled Trade Surplus	-0.02	$-0.02^{(4)}$
$\frac{\frac{c_1^* - e_1 k_f}{Y}}{100 \times \frac{\frac{E(r - r^* e_2)}{Y}}{r} \frac{d^*}{d^* + d}}$	Implicit tax on dollar deposits	1.3%	$1.5\%^{(5)}$
ρ	Correlation, e_2, GDP	-0.23	$-0.20^{(7)}$
$std(log(e_2))$	Standard Deviation, e_2	0.04	$0.03^{(8)}$

Importance of Hedging by Foreigners

• Can we explain interest rate spreads in the data without foreginers' hedging motive ?

$$x^{D} = \frac{E\left(\frac{r}{e_{2}} - r^{*}\right)}{e_{1}var\left(\frac{r}{e_{2}}\right)\lambda^{f}} - \frac{Cov\left(\frac{r}{e_{2}}, Y_{2}^{f}\right)}{e_{1}var\left(\frac{r}{e_{2}}\right)}$$
$$Cov\left(Y_{2}^{f}, Y_{2}^{*}\right) = s \times \sigma_{\nu}^{2}$$

- 1. Set s = 0 in the benchmark economy
 - Spread halves
 - Large lending in LC to domestic borrowers
 - Large increase in dollarization \longrightarrow Insurance provided by foreigners
- 2. Set s = 0 and target the spread with λ^{f}
 - Require large foreign risk aversion (45 vs 7 in the benchmark)

Importance of Hedging by Foreigners

Variable	Description		Peru	s = 0	s = 0
				no adj.	adj. λ^f only
(a)	(b)	(c)	(d)	(e)	(f)
$\frac{b+b^*}{d+d^*}$	Total domestic borrowing Total domestic lending	1.02		1.04	1.02
$100 \times (r-1)$	Domestic Rate	-0.3%	-0.3%	-0.2%	-0.3%
$E\left(e_{2}r^{*} ight)$	Expected Dollar Rate	0.975		0.975	0.975
$100 \times E(r - e_2 r^*)$	Spread (domestic agents)	2.24%	$2.20\%^{(6)}$	1.19	2.20%
$100 \times E(\frac{r}{e_2} - r^*)$	Spread (financier)	2.50%		1.38%	2.46%
$d^{*}/(d^{*}+d)$	Deposit Dollarization	0.60	$0.44^{(2)}$	1.26	0.62
$\frac{b-d}{b}$	Foreign Source of Peso Credit	0.04	$0.01^{(3)}$	1.22	0.16
$\frac{d^*-b^*}{d^*}$	Foreign Absorption of Dollar Deposits	-0.00	$-0.07^{(3)}$	1.14	0.08
$b^*/\left(ec{b}+b^* ight)$	Credit Dollarization	0.59	$0.40^{(3)}$	-0.17	0.56
$\frac{c_1^* - e_1 k_f}{Y}$	Scaled Trade Surplus	-0.02	$-0.02^{(4)}$	-0.04	-0.02
$100 \times \frac{E(r-r^*e_2)}{r} \frac{d^*}{d^*+d}$	Implicit tax on dollar deposits	1.3%	$1.5\%^{(5)}$	1.5%	1.4%
ρ	Correlation, e_2, GDP	-0.23	$-0.20^{(7)}$	-0.19	-0.23
$_{std(log(e_2))}$	Standard Deviation, e_2	0.04	$0.03^{(8)}$	0.04	0.04

Preventing Deposit Dollarization

- Exercise: Preventing domestic dollar deposits
- Households have to save everything in peso assets
 - Spread narrows (still positive)
 - Exchange rate becomes more volatile
 - Foreigners slightly benefit

ΔS pread	ΔV_{e_2}	ΔU_{HH}	ΔU_{Firm}	ΔU_{For}
-0.15%	0.7%	-0.13%	-0.3%	0.003%

- Empirical results drawn mainly from 2000s, and so are conditional on the regulatory environment of this time.
 - Examples: good idea to minimize currency & dollar maturity mismatch in banks.
- We question the skepticism about credit and deposit dollarization:
 - Dollarization may have important, unrecognized benefits (intra-national insurance mechanism).
 - Financial risks associated with may not be as large as many think.

- For each firm, have data on \$Assets and \$Liabilities, and S/ Assets and S/ Liabilities.
- Compute 'currency mismatch' for each firm, at start of 2014:

 $Currency \ Mismatch = \frac{\$Assets - \$Liabilities}{Total \ Assets}$

- Compute, for 2014Q2-2016Q4 and as percent of firm equity
 - FX losses
 - Net Earnings
 - Growth in total assets (proxy for investment)

Peru: Fairly Big Depreciation Recently

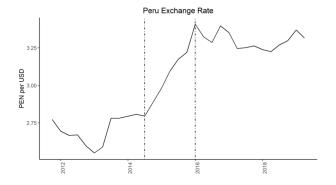


Figure 1: Nominal Exchange Rate in Peru

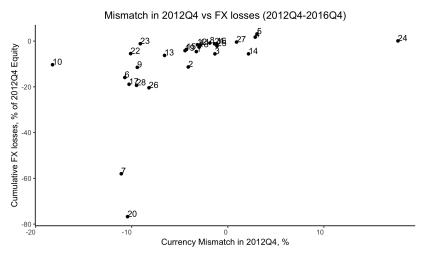


Figure: Credit Dollarization vs FX Losses 2014Q2-2016Q4

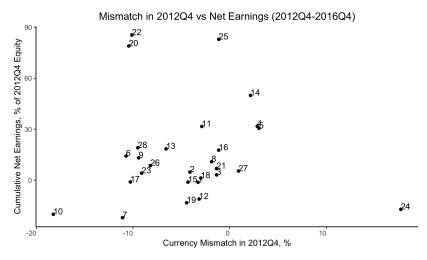


Figure: Credit Dollarization vs Net Earnings 2014Q2-2016Q4

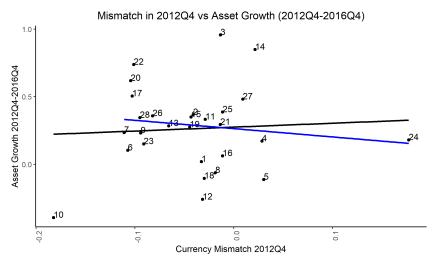
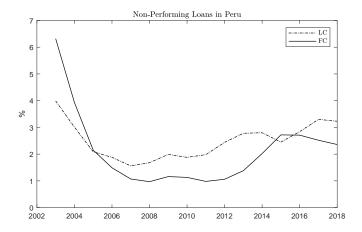


Figure: Credit Dollarization vs Asset Growth 2014Q2-2016Q4

- Even if dollarization does not lead to crisis,
 - Financial channel may inefficiently reduce investment after an exchange rate depreciation
- Evidence from firms in Peru
 - 118 firms 1999-2014
 - Investment proxied by Δ Fixed Assets
- Results suggest sales growth and GDP growth are main drivers of investment
- Currency mismatch does not seem to be related


Peru: Balance Sheet Effects

	(1)	(2)	(3)	(4)
Mismatch	4.540	2.705	1.481	2.671
	(3.428)	(3.221)	(2.387)	(2.733)
Mismatch * ΔER	-0.0386	-0.0736	-0.0837	-0.114
	(0.202)	(0.192)	(1.580)	(1.582)
ΔER		0.224	0.545	0.525
		(0.438)	(0.525)	(0.568)
log(Assets)	-11.00	2.164	-0.274	-1.939
	(7.098)	(4.460)	(0.870)	(1.379)
Leverage	0.457	0.240	0.148	0.154
	(0.458)	(0.453)	(0.532)	(0.496)
Sales/Assets	19.72**	30.12***	5.941**	5.884**
	(9.723)	(9.695)	(2.902)	(2.955)
GDP		1.464*	2.103**	2.109*
		(0.807)	(1.019)	(1.082)
Mismatch * Non Exporter * ΔER			-0.0425	0.0608
			(1.743)	(1.722)
VIX			0.417	0.404
			(0.293)	(0.310)
Exporter			-0.866	-0.502
			(3.136)	(3.062)
Exporter * ΔER			-0.302	-0.253
			(0.834)	(0.819)
Large				8.456
				(5.196)
Large * Mismatch				-1.355
				(4.936)
Large * Mismatch * ΔER				-0.102
				(0.851)
N	1316	1316	1275	1275
R2	0.174	0.128	0.0256	0.0299
firm fe	yes	yes	no	no
year fe	yes	no	no	no

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Peru: Non-performing Local Currency (LC) and Foreign Currency (FC) Loans

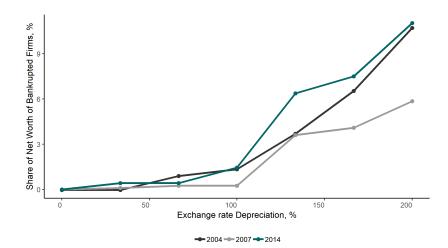
Source: Central Bank of Peru

Stress Testing

- What would be the effect of a 100% depreciation on firms?
- Data for unbalanced sample of Peruvianv 118 firms covering the years 1999-2014
 - N. R. Ramírez-Rondán (Empirical Economics, May 2018))
- Data on dollar denominated assets and liabilities

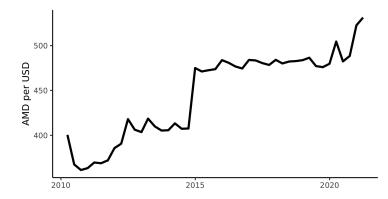
•
$$A^{\$}, A^{\$}, L^{\$}, L^{\$}$$

•
$$E_{t,i}^{S'} = A^S + A^S S' - L^S - L^S S'$$


$$I_{t,i}^{S'} = egin{cases} 1 & ext{if } E_{t,i}^{S'} < 0 \ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i} I_{t,i}^{S'} \times E_{t,i}}{\sum_{i} E_{t,i}}.$$

53 / 62


- 100 percent depreciation \longrightarrow the net worth of the bankrupted firms is less than 1.5 percent of total net worth

Peru: Stress Test for Exchange Rate Depreciation

Armenia

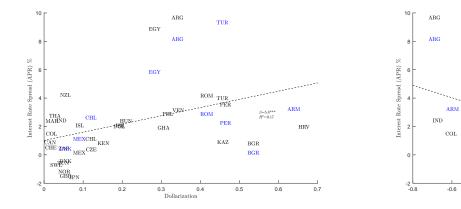
- Large and persistent depreciation in 2015
- Currency mismatch at the end of 2013 vs investment in 2015

Source: Central Bank of Armenia

Armenia

- · High credit dollarization has negative effect only for the most levered firms
- High Leverage: top 25% Total Credit Total Assets

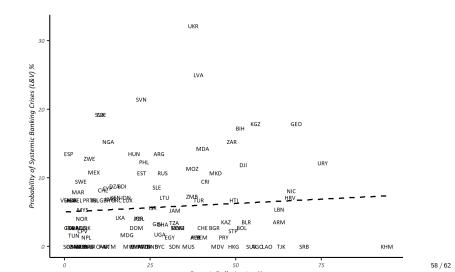
Table: Balance Sheet Effects in Armenia


Investment		2015	2016	2015	2016
Dollar Credit Total Credit 2013	(1)	0.0329	-0.0299	0.0749	-0.0227
		(0.76)	(-0.87)	(0.81)	(-0.86)
High Leverage ₂₀₁₃	(2)			12.54	4.601
				(1.17)	(0.50)
$\frac{\text{Dollar Credit}}{\text{Total Credit 2013}} \times \text{High Leverage}_{2013}$	(3)			-0.258**	-0.0420
				(-2.21)	(-0.39)
Age	(4)	0.0754	-0.0120	0.0854	0.0484
		(0.20)	(-0.04)	(0.23)	(0.16)
Employees	(5)	0.00726	0.00453	0.00675	0.00423
		(1.64)	(1.23)	(1.48)	(1.45)
N		679	609	671	594

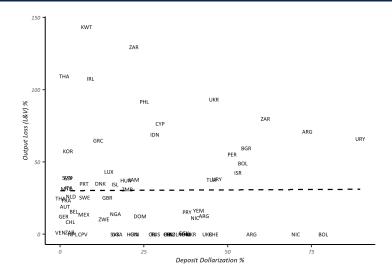
Notes: ; t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Notes: left-hand variable is 100 \times Δ *Capital*; sources: Armenian credit registry and corporate tax reports.


Dollarization vs Interest Rate Spreads

back

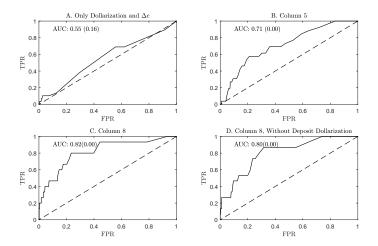

Probability of a Banking Crisis versus Deposit

Dollarization

Loss of Output In a Banking Crisis versus Deposit

Dollarization

Frequency of Banking Crises vs Dollarization


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dollar (20), β(1)	-0.318	-0.362	-0.358	-0.449	0.427	-0.105	-0.455	-1.083*
Donar (20), p(1)	(-0.50)	(-0.61)	(-0.53)	(-0.73)	(0.80)	(-0.16)	(-0.76)	(-1.66)
$\Delta e, \beta(2)$	-0.939*	-2.122	0.710	1.461	0.303	2.620	3.501	4.373
10, p(1)	(-1.90)	(-1.12)	(0.19)	(0.38)	(0.28)	(1.31)	(1.58)	(1.39)
Dollar(20)* $\Delta e, \beta(3)$	1.628**	2.454	0.780	0.276	0.407	-1.612	-2.431	-3.920
()	(2.36)	(1.63)	(0.20)	(0.07)	(0.36)	(-0.66)	(-0.87)	(-0.95)
High FL/FA, $\beta(4)$			1.690***	1.245		1.503**	1.296	0.899
u ,,			(2.83)	(1.41)		(2.54)	(1.46)	(0.97)
High FL/FA $*\Delta e, \beta(5)$			-4.526*	-5.221*		-2.470	-2.693	-4.807*
			(-1.72)	(-1.80)		(-1.42)	(-1.40)	(-1.74)
Low Reserve, $\beta(6)$				-0.872			-1.240	-2.224**
				(-0.88)			(-1.17)	(-2.14)
Dollar(20) * Low Reserves, $\beta(7)$				0.338			1.022	2.448*
				(0.42)			(0.75)	(1.75)
High FL/FA * Low Reserves, $\beta(8)$				1.128			0.580	0.503
				(0.98)			(0.41)	(0.32)
External Debt, $\beta(9)$								0.381***
								(7.37)
Real GDP Growth, $\beta(10)$	-0.0386	-0.0448	0.0334	0.0301	-0.0379	0.0303	0.0269	0.0550
	(-0.99)	(-1.05)	(0.41)	(0.36)	(-0.94)	(0.35)	(0.31)	(0.72)
VIX, , β(11)	0.189***	0.203***	0.155***	0.157***	0.104***	0.124***	0.126***	0.117***
	(2.65)	(2.83)	(3.09)	(3.15)	(2.67)	(3.02)	(3.07)	(2.87)
$\Delta rer, \beta(12)$		1.211	-0.739	-0.851	-0.0942	-1.411	-1.640	-2.365
		(0.71)	(-0.57)	(-0.72)	(-0.08)	(-1.05)	(-1.12)	(-1.12)
Constant	-8.065***	-8.403***	-8.775***	-8.490***	-6.774***	-8.093***	-7.679***	-7.668***
	(-5.44)	(-5.47)	(-6.13)	(-5.40)	(-6.55)	(-6.80)	(-5.88)	(-5.96)

 $60 \, / \, 62$

Does Dollarization Predict Banking Crises?

- We use area under the ROC curve (AUC) measure
 - Suss & Treitel (2020), Fuster et al. (2020)
- Model prediction: p(x)
 - Signal crisis if $p(x) > \overline{p}$
 - Low \bar{p} : Predict most crisis (high TPR) but too many false positives (high FPR)
 - Good model: High TPR with low FPR
- For $ar{p} \in [0,1]$ plot TPR against FPR, measure the area under the curve
- Random guess: AUC is 0.5
 - Good model AUC above 0.75

Does Dollarization Predict Banking Crises?

