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@ What is the optimal exchange rate policy?
@ exchange rate as a target
— trilemma vs. fear of floating

@ exchange rate is not a policy instrument

— what mix of monetary policy, FX interventions, capital controls?

@ Build on a realistic GE model of exchange rates consistent with

— PPP, UIP, Backus-Smith, Meese-Rogoff puzzles = UIP shock v
— Mussa puzzle = Y = i(0?)

@ Dual role of exchange rates:

a) in goods markets
b) in financial markets

@ Develop a rich framework for policy analysis
— intuitive linear-quadratic Ramsey problem (cf. CGG'99, GM'05)

— optimal targets, pecking order of instruments, divine coincidence, time
consistency, forward guidance, gains from cooperation
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Main Results

@ First best:

— one-to-one mapping between instruments, targets, shocks

— exchange rate targeting is suboptimal

@ Divine coincidence in an open economy
— requires that the frictionless real exchange rate is stable

— peg can implement the first-best

© More generally, optimal MP partially stabilizes exchange rate
© Capital controls are required when foreign traders

© Gains from international cooperation under second-best policies
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Relation to the Literature

@ Portfolio models:

— Segmented markets: Kouri (1976), Blanchard, Giavazzi & Sa (2005),
Alvarez, Atkeson & Kehoe (2009), Camanho, Hau & Rey (2021), Greenwod,
Hanson, Stein & Sunderam (2020), Jiang, Krishnamurthy & Lustig (2021),
Gourinchas, Ray & Vayanos (2021), Kollmann (2005),

— Financial channel of MP: Obstfeld & Rogoff (2002), Rey (2013), Kekre &
Lenel (2021), Fanelli (2017), Hassan, Mertens & Zhang (2021), Akinci,
Kalemli-Ozcan & Queralto (2022), Fornaro (2021)

@ Optimal policy in open economy:

— Monetary policy: Obstfeld & Rogoff (1995), Clarida, Gali & Gertler (1999,
2001, 2002), Devereux & Engel (2003), Benigno & Benigno (2003), Gali &
Monacelli (2005), Engel (2011), Goldberg & Tille (2009), Corsetti, Dedola
& Leduc (2010, 2018), Egorov & Mukhin (2021)

— Capital controls: Jeanne & Korinek (2010), Bianchi (2011), Farhi &
Werning (2012, 2013, 2016, 2017), Costinot, Lorenzoni & Werning (2014),
Schmitt-Grohe & Uribe (2016),

— FX interventions: Jeanne (2013), Cavallino (2019), Amador, Bianchi,
Bocola & Perri (2016, 2020),

3/16



SETUP

4/16



@ SOE with T and NT, segmented asset markets

@ Households:

max " " [ylog Cre + (1 = 7)(log Cue — L¢)|
t=0
B
s.t. Ft + PreCre + PreCne = Be—1 + Wele + 1 + T,
t
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@ SOE with T and NT, segmented asset markets

@ Households:

max " " [ylog Cre + (1 = 7)(log Cue — L¢)|
t=0
B;
s.t. R + PTtCTt + PNtCNt Bt 1 + WtLt + nt + Tt
@ Firms:

@ tradables: exogenous endowment Y7, law of one price Pr¢

- grP:,k—t - gt
@ non-tradables: technology Yn: =

A¢Ly, fully sticky prices Py = 1

@ Financial sector: segmentation of currency market

— arbitrageurs choose zero-capital portfolio (D:, Df): £t D‘ =0

— earn carry trade returns Rt+1 R — Rtg , transfer to home h/h

w = Df
max Et[@t+1Wt+1] — —vart[Wt+1], Wt+1 = Rt+1 i
Dy 2 R;
— market clearing for bonds:
Bi =Di + N +F 4/16
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@ Financial sector: segmentation of currency market

NX,
HomeHH [<«—-———-——- > Foreign H/H

Arbitrageurs

N ¥
Foa|[|[Fy Nig| [ Ney

Government Noise Traders
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First Best

@ Social planner’s problem:

max E t[loC + (1 - IoC—L}
{Cre,Che;Le, By} ;5 7 log Cre + ( 7)(log Chi t)

B*

s.t. Fi — f 1= YTt — CTt and CNt = Atl—t
t
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First Best

@ Social planner’s problem:

E t[| C 1 — log C —L}
(CroCanLeBt) ;5 7vlog Crt + (1 — v)(log Cne — Lt)

B*

s.t. Fi — f 1= YTt — CTt and CNt = Atl—t
t

o Solution: Cne=A: and Cre st BRIE.Z CTr =1

@ Wedges: x; = log Cyy — log Cnve and  z = log C1+ — log Cre
@ Quadratic loss function:
1 o0
5 Eo Y Bz + (1 =)<
t=0

st. Bbf —b;_1=—2z
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Equilibrium Conditions

@ Goods market:

v Cne &P
1—vCr P
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Equilibrium Conditions

@ Goods market:

‘et:CNIt"i‘Xt—Zt‘

— Gy = log Cne — log Cr¢ is natural RER
— Xt = |Og(CNt/CNt) Zy = |Og(CTt/C~.Tt)
— EE + sticky prices = R; determines x;

@ Financial market:

D E©;1R ~

t tYt+1MNt41 2

e B o; = vars(Ret1)
R} woy

— carry trade returns Ry11 = R} Rt 5:+1
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Equilibrium Conditions

@ Goods market:

‘et:CNIt"i‘Xt—Zt‘

— §: = log CNt — log Crt is natural RER
— Xt = |Og(CNt/CNt) Zy = |Og(CTt/C~.Tt)
— EE + sticky prices = R; determines x;

@ Financial market:

Cre  Bf — Nf — F;
BRIE =1+ wo f—if
tCTt—i—l ‘ R;

— w is arbitrageurs' risk aversion
— o7 is the volatility of carry-trade returns
— Bf — N} — F{ is net demand of h/h, n/t, gov't = arbitrageurs’ gross position

= eg Nt = D] = Et[Rt%fR:bo = &1 = Crel
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Equilibrium Conditions

@ Goods market:

‘et:CNlt"i‘Xt—Zt‘

— §: = log CNt — log Crt is natural RER
— Xt = |Og(CNt/€Nt)u Zy = |Og(CTt/C~.Tt)
— EE + sticky prices = R; determines x;

@ Financial market:

EiAziy 1 = —@o?(bf — nf — £7) 02 = vary(Aety1)

— EiAzpq =iy — if —EiAerr1  (UIP deviations <+ RS wedge)

— first-order risk premium (X; = X(1 +vx;), w = ©/v? and v — 0)
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Ramsey Problem

@ Lemma: To the first-order approximation, the optimal policy solves

1 oo
min S E f[ 24 (1- }
{Ztyxt,er-,b:,ff*,a'?} 2 ;06 ’y t ( ,Y)
st. pbf=bf 41—z (+NPGC)
EiAzq = —@oi(bf —nf — 1), of =vary(QAe1)
& =qr+x — 2z
— Shocks:
@ macro/fundamental: (A:, Y1i, RY) — §:
@ financial/liquidity: (Nt*,ét*) — ny

@ monetary policy (MP): R, —
@ FX interventions: FF —
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Ramsey Problem

@ Lemma: To the first-order approximation, the optimal policy solves

min ;Egﬁt{vzf—i—(l—fy) }

{vavaef?b;7ft*vgg}
st. Bbf =b{_;—z (+NPGCQ)
EiAzq = —@oi(bf —nf — 1), of =vary(QAe1)

e = Gy + X — z;

— Shocks:
© macro/fundamental: (A:, Y1i, RY) — §:
@ financial/liquidity: (N7, Bf) — n;

@ monetary policy (MP): R, —
@ FX interventions: FF —

© Relaxed Trilemma: it is possible to simultaneously have (i) no capital
controls, (ii) inward-looking MP, (iii) independent ER policy (cf. Wallace'81)

— subject to country’s budget constraint and o > 0 -



TWO POLICY INSTRUMENTS
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Optimal Policy

@ Planner’s problem:

{ze,xe,b7 ,f* 02}

min

s.t.

2 ~
Oy = Vart(‘lt+1 — Zr41 + Xt+1>

@ Optimal targets: MP — inflation/output,

— implements efficient allocation
— closes UIP rather than CIP deviations

— targeting ER is suboptimal
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Optimal Policy

@ Planner’s problem:

{ze,xe,b7 ,f* 02}

min

s.t.

2 ~
Oy = Vart(‘lt+1 — Zr41 + Xt+1>

@ Optimal targets: MP — inflation/output,

— implements efficient allocation
— closes UIP rather than CIP deviations

— targeting ER is suboptimal

© Responses to shocks: FX policy offsets n} and

— unobservable §:, n{, E:Az41 (cf. potential output, NAIRU, natural rate)
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Divine Coincidence

@ Potential constraints on FX interventions:

— non-negative reserves ;" > 0 (FXI +» FX hedge)

— value-at-risk constraint o; - || < «

© Capital flows and interest hikes: monetary policy R; has no direct effect
on capital flows z;, even though it does change the exchange rate e;

EiAz = —&o? (b;k —n; — ft*)
0?2 = vary(et41)
e = — Zr + X¢
@ “Divine coincidence”: if the first-best RER is stable G; = 0, then MP fully
stabilizes NER of = 0 and ensures the first-best allocation x; = zz =0

— peg > inflation targeting due to multiple equilibria
— §: = 0 requires that i) a; = yr, ii) both follow RW, iii) r; =0

@ Optimal currency area: countries with stable RER §;, large spreads nj,
high openness ~ benefit more from a common currency (Mundell'61)

— yet, may be subject to fickle capital flows
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Monetary Peg

@ More generally, the optimal monetary rule is
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Monetary Peg

@ More generally, the optimal monetary rule is

(1=7) xp1 = =@ pe(bf — ny — 1) (et+1 - ]Etet+1)
~—
output gap >0 ER volatility

@ Crawling peg: if FXI are unconstrained at t — 1, t + 1, but not at ¢:
2@ wo?

T T 14 Bt wo?

(€z+1 —E; et+1)

— leans against the wind: er11 > Ererp1 = iep1 T = €41l Xer1 )
— closes average output gap E:x;+1 = 0, no constraint on E;Aertq
— puts more weight on ER stability when y&o?(b; — nf — £*) is large
— non-linear dynamics with time-varying volatility

@ Forward guidance:
ze = Bizep1 — @07 (0} + £ = b})
— FX forward guidance: via future E;z:41

. . 2 ~
— : via of = vars(Ger1 + Xer1 — Zeg1)

© Time consistency: optimal discretionary policy closes output gap x; =0
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[llustration

B a) trilemma ' = 0
e = gt + Xt —

EtAZtJrl = *r (b? — n;:( — f;)

—— Trilemma tradeoff
—— Endogenous fin shock
Exogenous fin shock

o, exchange rate vol.

“Puzzle

o, output gap vol.
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FX POLICY
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FX Policy

© FX policy cannot close output gap and should focus on UIP deviations
— ZLB = 0=E:Acn+1 = E; [Axt+1 + AENt+1] = x L7

— does not require commitment

@ Gains from commitment: forward guidance relaxes FX constraints
Zy = Et2t+1 + @ (b: - n: - ft*)

a) FX forward guidance (cf. Werning'2011)

— increase future imports E¢z;+1 to stimulate z
b)

— stabilize future ER er11 = §r+1 — ze41 to mitigate risk-sharing wedge
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Capital Controls

@ Add to the model

— foreign arbitrageurs and noise traders
— tax 7 on international positions of all traders

@ International risk sharing:
]EtAZt+1 =Tt _[I}O'?(b: - n: - f;*)

=
— Yy =iy — if — EtAerr1 — 7+ is carry-trade return for foreign agents

@ Capital controls 7; and FXI £ can both implement optimal risk sharing

— CC vs. FXI: state-/agent-/asset-specific, suboptimal if h/h demand

@ Loss function includes international transfers:

1 > 1 .
5 Eoq tzz(:)ﬂt [’yz? + (1 —9)x% + 253~ </_‘0_2Ut — nt) ’Z,)t:|

Wit

@ Transfers: while x; = z; = 0 can be implemented with MP and FXI at zero
costs, the optimal policy with capital controls can also extract rents

— optimal targets: x; =0, £ = —n}/2, 7= —@oin;/2 = Eilz1 = 03/ ]
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International Spillovers

@ Global equilibrium:

— continuum of SOEs trading dollar bonds

— global interest rate
ri = EiAyrei + /@Ui(b; —ni — fi7)di

— deviations from globally optimal risk sharing

E:Azi1 =i — 1/_%7 Vie = —@U,'zz(b;; - ’7?; - f::)
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International Spillovers

@ Global equilibrium:

— continuum of SOEs trading dollar bonds

— global interest rate
rt = E:Ayrei1 + /@oi(b; —nj — £7)di
— deviations from globally optimal risk sharing
EeAzei1 = i — Pe,  ie = —woy(bi — njp — i)

@ Gains from cooperation:

i) first-best policies = NE is cooperatively optimal
ii) second-best policies = negative spillovers, cooperative solution
@ Anchor currency: countries import U.S. MP under second-best policies
eir = Git + Xit — Zir—PT+

— funding currency = anchor/reserve currency
— cf. gold standard with if = 0 and p7, determined by market clearing
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Extensions

ToT + PCP/DCP

NKPC and costs of inflation

Incomplete pass-through

Risk-premium and default shocks

e H/h demand for foreign currency
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Conclusion

o New policy framework to think about exchange rate policies

i) realistic: consistent with exchange rate puzzles
ii) tractable: attains linear-quadratic representation

iii) practical: revisits classical policy questions

@ Motivates future research:
— What is the elasticity of currency demand?

(Koijen-Yogo'21, Camanho-Hau-Rey'21. . .)

— How to measure UIP deviations?
(Kalemli-@zcan-VareIa’21, Engel'16, Kollmann'05, Bekaert'95. . .)

— Financial channel in closed economy?
(Caballero-Simsek'22, Kekre-Lenel'22...)
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Mussa Puzzle Redux
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AN\ A
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(3
v ER Disconnect
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gt =e:+p; —pr
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Mussa Puzzle Redux

Peg Float
0.15
Agy: ° Gr=er+p; — Pt
-0.15
0.15
A [V AN AN~ A
-0.15
1960 1965 1970 1975 1980 1985
U U
v Mussa Redux v ER Disconnect

: % / 2
It — Iy — EtAet+1 = 'th(O'e)
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Non-Linear Policy Problem

S C
max EoZﬁt [vlog Cre+(1—7) (Iog CNt—Nt>]

{RhF;k7CTt7CNtvgth:7a'?}t20 t=0

*

B;
subject to — — B 1 =Y — Cry,

R*
Cre B — N — F?
RIE S R e S S
PReE: Crey1 ‘ R¢
C
BRE, =M =1,
Chnit+1
C
& = 7 L
1—7v CTt

&t
02 =R? -Vart<gt+1>,
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Quadratic Loss Function

@ Lemma: Let X solve max, F(x) s.t. g(x) =0. Then the second-order
approximation to the problem is given by

1 -
L(dx) o de/ [V2F(%) + AV?g(%)] dx,
where X is the steady-state values of the Lagrange multipliers.

@ Non-tradable sector (NK block):

£N = E ﬁt[log CNt + )\t (At[—t - CNt)] XX —*E 6t(CNt — E[\/t)

Xt
@ Tradable sector (portfolio choice):

o0 B* 1 o0 .
Lr=EY [log Cret A (B:_1 Yo Croe Rﬂ x3BY M enen)

t=0

@ Total welfare:
1 oo
L=~L7+(1—7)Ly x —EEZBt ['yzt2 +(1- A/)th}

t=0
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Back to Friedman (1953)

@ Flexible exchange rates “combine interdependence among countries
through trade with a maximum of internal monetary independence”

@ Nominal peg: "“if internal prices were as flexible as exchange rates, it would
make little economic difference whether adjustments were brought about by
changes in exchange rates or by equivalent changes in internal prices. But
this condition is clearly not fulfilled”

© Trade tariffs and capital controls are the most realistic way to support a
fixed exchange rate and is the least desirable one because of distortions,
loopholes, and political economy issues

(%]
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Back to Friedman (1953)

@ Flexible exchange rates “combine interdependence among countries
through trade with a maximum of internal monetary independence”

@ Nominal peg: "“if internal prices were as flexible as exchange rates, it would
make little economic difference whether adjustments were brought about by
changes in exchange rates or by equivalent changes in internal prices. But
this condition is clearly not fulfilled”

© Trade tariffs and capital controls are the most realistic way to support a
fixed exchange rate and is the least desirable one because of distortions,
loopholes, and political economy issues

Qo . “it may be that private speculation is at times destabilizing”

— ‘“this device is feasible and not undesirable, though it is largely
unnecessary since private speculative transactions will provide currency
demand with only minor movements in exchange rates

— "“the objective of smoothing out temporary fluctuations and not interfering
with fundamental adjustments

— “there should be a simple criterion of success — whether the agency

makes or loses money” 2116



Approximation O(v)

o Non-linear system:  F(X;,wo?(X;)) =0,
where X; = X(1+v&) for v =1, and X = 1: F(1,0) = 0.

@ Conventional approximation: Boxe—0
2 ‘ 2
F(Xe,wo?(Xe)) = F(1,0) + Fx(1,0) - x¢ -v + O(v°),
X; = X(1 + vx;) such that x; — % = O(v) and wo?(X;) = O(?).
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Approximation O(v)

o Non-linear system:  F(X;,wo?(X;)) =0,
where X; = X(1+v&) for v =1, and X = 1: F(1,0) = 0.

@ Conventional approximation: Boxi—0
2 ‘ 2
F(Xe,wo®(Xe)) = F(1,0) + Fx(1,0) - x¢ v + O(v*),

X; = X(1 + vx;) such that x; — % = O(v) and wo?(X;) = O(?).

@ Our approximation: w = @/v? such that wo?(X;) = @o?(x) = O(1)

F(Xe,wo?(Xe)) = F(1,002%(x¢)) + F&(1,@02%(x¢)) - x¢ - v + O(12).

o Lemma: F(1,&0%(x;)) =0, and the non-linear system

F&(l,@az(xt)) x; =0

A

has solution x; = X + O(v) with @o(x;) — wo(X:) = O(v).
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Approximation O(v)

@ Parametrize shocks and @ by v:

nf = pni_y +vo,el, e ~N(0,1)

G = pGi_y tvogel, el ~N(0,1)

o_JZJJ/y2
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Approximation O(v)

@ Parametrize shocks and @ by v:
nf = pni_y +vo,el, e ~N(0,1)
i = pli_y +vogel, el ~N(0,1)
o=/
@ Optimal policy rule:

(1 = )xe1 = —y@pe(bf — nf — ) (€41 — Eeerr)
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Approximation O(v)

@ Parametrize shocks and @ by v:
nf = pni_y +vo,el, e ~N(0,1)
i = pli_y +vogel, el ~N(0,1)
o=/
@ Optimal policy rule:
(1 = )xe1 = —y@pe(bf — nf — ) (€41 — Eeerr)

@ Substitute in e; = §r — zr + x;:

Yope(by — nf — f)

— B
1—7) +you(bf —nf — ) [Ger1 — Ze41 t(Grv1 — Ze41)]

Xt+1 = —(
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Approximation O(v)

@ Parametrize shocks and @ by v:
nf = pni_y +vo,el, e ~N(0,1)
i = pli_y +vogel, el ~N(0,1)
o=/
@ Optimal policy rule:
(1 = )xe1 = —y@pe(bf — nf — ) (€41 — Eeerr)
@ Substitute in e; = §r — zr + x;:

Yo (by — nf — f)
1—7) +ou(by — nf — fF

Xp41 = —( ) [V0q5?+1 - V5f+1]
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Approximation O(v)

@ Parametrize shocks and @ by v:
nf = pni_y +vo,el, e ~N(0,1)
i = pli_y +vogel, el ~N(0,1)
o=/
@ Optimal policy rule:
(1 = )xe1 = —y@pe(bf — nf — ) (€41 — Eeerr)

@ Substitute in e; = §r — zr + x;:

— q z
Xep1 = —0¢ [VOGET — vET 4]
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Approximation O(v)

@ Parametrize shocks and @ by v:
nf = pni_y +vo,el, e ~N(0,1)
i = pli_y +vogel, el ~N(0,1)
o=/
@ Optimal policy rule:
(1 = )xe1 = —y@pe(bf — nf — ) (€41 — Eeerr)

@ Substitute in e; = §r — zr + x;:
—_5 q _ .z
Xe+1 = 0t [VOgEip1 = Vet

@ Lemma:
i) this system is first-order approximation to the exact solution as v — 0,
i) (n}, 5, be,xe,z:) = O(v) and (6;,@02) = O(1),
i) (0¢,5¢) are time-varying with {e]_;,e] ;};>0 and thus the solution is
generally non-linear in (¢7,£7)

=> non-linear dynamics with stochastic time-varying volatility
23/16



Approximation O(v)
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Approximation O(v)

2 Yt
Yiiv

Vv, {|Og(CTt/CT) o)

[N t
v )
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Approximation O(v)

... Wo
’
v t

ve— {BCriCn)2)
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Example: Two Periods, =1

@ Planner’s problem:
) 1
min S E{(1-)x¢ (2 + D))

20,0%,{z1,x1 }
st. zp+z1=0
EAz = &o?n;

o2 = Var(c"jl —z1+ x1)
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Example: Two Periods, =1

@ Planner’s problem:

1
min 5 {EX12 —|—7yz§}

29,02, {x1}
¢ w
St. zZg=—-0"Ny
2

0% = Var(c"]l + xl)
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Example: Two Periods, =1

@ Planner’s problem:
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Example: Two Periods, =1

@ Planner’s problem:

o1 » _(@n§ 2 . 272
r{rlir}] 5 {Exl +7< > ) []E(q1+X1> ] }

@ Optimal policy: o2
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Example: Two Periods, =1

@ Planner’s problem:

. 1 o\ 2 . 2
min 3 {Ex12+,7<w20> {]E(q1+xl)2] }
{xa} ————

@ Optimal policy: o

X1 = _6(717 0=
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Example: Two Periods, =1

@ Planner’s problem:

. 1 o\ 2 . 2
min 3 {Ex12+,7<w20> {]E(q1+xl)2] }
{xa} ————

@ Optimal policy: o

X1 = _6(717 0=

@ Equilibrium volatility:

2
1
2 ~ 2 2m ~2 52
2 =EGH+x)>=01-0)FEFf=—s———| E
(61 +x) = ( ) Eqy <1+g@2n3202> 9

— unique fixed point o2
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Example: Two Periods, =1
@ Planner’s problem:
wn . 212
E(G1 + x1) ]

1 Ex12+7< >2[
0-2

min

{x}
@ Optimal policy:
322 n2 2
x =04, 0=-—2-70
S 1+ 132n3202
. 2
) Eq

@ Equilibrium volatility:
0% = E(G: + X1)2 =(1- 6)21[35]% = (

— unique fixed point o2

5 =ve" and @ = &/v?:

@ Assume G; = ve9, ng
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Example: Two Periods, =1

@ Planner’s problem:

. 1 (o’ . 2
3o () [ernr]}

X1 = _6(717 0=

@ Optimal policy:

@ Equilibrium volatility:

2
~ ~ 1 ~
o =BG +x) = (1 6EF = [ —— | EG
1+ 3
— unique fixed point o2

@ Assume §; = ve9, n§ = ve" and @ = O /v
2
2
o 1
=\ Tz | EE
v 1+ W (5 ) oz
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Example: Two Periods, =1

@ Planner’s problem:

_ 2
1 y 2
min = EX12+7y<wno> {]E(E/l +x1)2]
{a} 2 2 ~—_——
0.2

X1 = 76617 d

@ Optimal policy:

@ Equilibrium volatility:

2
~ ~ 1 ~
o? =E(G +x)? = (1 - 0)°Eq; = ( ) e
0
— unique fixed point o2

*

@ Assume §; = ve9, nj = ve" and @ = & /v

2
2 1
12 - T 2(en)2 22 E(=7)”
1% l—|—§w (6 ) 5

= 02 =0(?), ©0o?2=0(1), §=0(1), z,{x}=0()
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Numerical Algorithm

@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI

26/16



Numerical Algorithm

@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI

@ Dynamic system:
EtAzt+1 = CI)O'%”:

Bb; = bi_1 — z
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Numerical Algorithm
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@ Dynamic system:
y ¥ z = (1— B)b;_, —@o2nit
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@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI
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Numerical Algorithm

@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI

@ Dynamic system:
y ¥ z = (1— B)b;_, —@o2nit

@ Optimal policy rule x; = —3;_1(G: — z: + Et_12:) = Ex? Ez? 02
@ Planner’s problem:

oo 2
min EZBt lﬁz(l -7) (1 it(; ) o2 + y@? (Ufn:)zl

{6“0?} t=0

— * 2
s.t. m :U§+w2 Et( ”t+1) (1)
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Numerical Algorithm

@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI

@ Dynamic system:
y ¥ z = (1— B)b;_, —@o2nit

Optimal policy rule x; = —8;_1(G: — z: + E+_12:) = Ex? Ez? 0?

@ Planner’s problem:

oo 2
min EZBt lﬁz(l -7) (1 it(; ) o2 + y@? (Ufnf)zl

{(5[,0’?} t=0
_ e N2
St gy = et Bl i) (1)
@ Optimal policy:
()t (I}z Yy 1 - 2
= — |——=+6;-1(2 —d:_ N 2
= S PG o 6| ) @
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Numerical Algorithm

@ Assume: i.i.d. symmetric n} shocks, no h/h or gov't FXI

@ Dynamic system:
y ¥ z = (1— B)b;_, —@o2nit

Optimal policy rule x; = —8;_1(G: — z: + E+_12:) = Ex? Ez? 0?

@ Planner’s problem:

oo 2
min EZBt lﬁz(l -7) (1 it(; ) o2 + y@? (Ufn:)zl

{6“0?} t=0

— * 2
s.t. m :U§+w2 Et( ”t+1) (1)

Optimal policy:

O @2 v 1 . 2
— = ——— 40 1(2 — 0 ¥ 2
-5, ﬂ[lwﬁ”( ) 7o) )
— conjecture 67 = 0*(8¢—1, ni?)

— solve for o2 = (¢, ni?) from eq. (1)

— solve for §;_1 = 6_1(8¢, n?) from eq. (2)

— invert §; = 6(6:—1, n;?) and update o7 = o(6(8:—1, ni?), ni?) 26 /16



Policy Functions

05 0.03 0.4 ‘ ‘ ‘ ‘ 0.024
0.35
041 022
10.025 00
03
03 ) 0.02
‘ {002 %25 :
0.2 0.018
0.2
o 10.015
. 015 0.016
0 0.01 0.1 ‘ ‘ ‘ : 0.014
1 2 3 4 5 0 02 04 06 08 1
(ny)? i1

@ Calibration: g = 0.965, =0.2, 02 = M, @202 to x5 ER volatility
v q 12 n

@ More aggressive peg d; in response to large shocks {nﬁj

@ ER volatility is < 3% per annum even when §;_1 = n} = 0 because future
policy offsets large nj
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Discretionary Policy

@ Markov problem:

V(b*,s) = min  ~z2 4+ (1 —7)x* + BEV(b*,s)

z,x,b*’
st. Ez(b*,s') =z —wo®(b*' — n*),

Bb* = b* — z,

o2 = Var(a’ +x(b*,s) — z(b*, s')),
= path of {z, b} is independent of x;

=- optimal policy focuses on closing the output gap
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Optimal FX Policy

@ FX policy problem:

1 (o]
mn =-EY) gtz?
{zb7} 2 ; '

st. Bbl=bi_1—2z
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Optimal FX Policy

@ FX policy problem:

1 (o]
mn =-EY) gtz?
{zebr} 2 ; t
st. Bbl=bi_1—2z

@ Has standard recursive formulation:

V(b*) = ij %(b* — ﬂb*’)Z + BV(b*)

Proposition

Optimal FX policy is time consistent and implements efficient risk sharing z; = 0.
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Exchange Rate Regime
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Source: llzetzki, Reinhart, and Rogoff (2019)
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Anchor Currencies
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Capital Controls
= N;flt + N;—it

@ Assume fraction k, of arbitrageurs are foreigners and N}

@ Capital controls:
— tax on h/h deposits/loans:
— tax on bond holdings of domestic traders:

— tax on bond holdings of foreign traders:

Re |, Cne
Bl-%—‘f‘[h ECyesa !
fé* — R M7 &
Ht+1 = 14 RY €1 '
Rr . =_1 R & _
Ft+1 = 1475 R €
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Capital Controls

@ Assume fraction x, of arbitrageurs are foreigners and N = Njy, + N,

@ Capital controls:

Re |, Cne
Bl-%—‘f‘[h tCNr+1

— tax on h/h deposits/loans:

. : : . fo* — R MW7m &
tax on bond holdings of domestic traders: Ry 1 = 17 R Eon

— tax on bond holdings of foreign traders: Rf,; = ﬁ% giil
t Tt

o Efficient risk sharing requires offsetting low demand for H bonds N} > 0:

L+ 74 1 2B — Ni — F/

Cre K + wo
L+ 1+7r ‘ R;

Cres1

BRIE: =(1+7)|(1-ra)

i) FXI increase supply of dollars

ii) R: 1 offsets depreciation, while 7/ > 0 keeps x; undistorted

tax F bonds 77}, > 0 and subsidize H bonds 7 < 0 for int'l flows

)
)
iii) subsidize H bonds for all traders 7h: = 7/ < 0
iv)
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Capital Controls

@ Assume fraction x, of arbitrageurs are foreigners and N = Njy, + N,

@ Capital controls:

. R, C
— tax on h/h deposits/loans: tE, N — 1,
/ P / Bl-%—‘f‘[h ECheta
H H o _ R, 147/, &
— tax on bond holdings of domestic traders:  Rfj;.; = +¢ He et
g Ht+1 1+ RY &ip1 '
1 R &

— tax on bond holdings of foreign traders: Rf,; = T, RF Bt
t Nt

@ Collecting rents requires manipulating /%,’f—t:

B¢
R

* * E. R* *
=Bl1+ Yr— Cr— Ri, (m% - NFH>

woi g
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Capital Controls

@ Assume fraction x, of arbitrageurs are foreigners and N = Njy, + N,

@ Capital controls:

8 Re |, Cne

— tax on h/h deposits/loans: T Bega =

— R Ty &

— tax on bond holdings of domestic traders: I%,T,HI = RF Eon
t

— tax on bond holdings of foreign traders: Rf,; = ﬁ% giil -
t Tt

@ Collecting rents requires manipulating /%,’f—t:

- 2
Fre = —(1 — Ka)(Tiie — THe + TRe) — @oz (b — nf — £7)
i) FXI are effective
ii) financial repression of h/h 7! changes returns 77, only via b}
iii) uniform taxes on H bonds Tr: = 7# or int’l flows 7/, = —7r do not work
iv) taxes on inflows or outflows work if 0 < Kk, < 1
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Terms of Trade

@ Baseline model assumes T and NT:

— might be a good approximation for commodity exporters
— contrasts with OR'95, DE'03, GM'05, etc.
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Terms of Trade

@ Baseline model assumes T and NT:

— might be a good approximation for commodity exporters
— contrasts with OR'95, DE'03, GM'05, etc.

@ Allow for home and foreign goods:
G = Cl'%lt_A/CI—Yt7 Che =P &
— log-linear preferences for simplicity

— optimal steady-state production subsidies

— three shocks: nj, a:, ¢
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Terms of Trade

@ Baseline model assumes T and NT:

— might be a good approximation for commodity exporters
— contrasts with OR'95, DE'03, GM'05, etc.

@ Allow for home and foreign goods:

1— * —€ %
G = CHt A/CI—th Che = Pre ¢

— log-linear preferences for simplicity
— optimal steady-state production subsidies

— three shocks: nj, a:, ¢

@ Currency of invoicing:

@ producer (PCP) = sticky wages
@ dominant (DCP)

33/16



Optimal Policy: PCP

@ Planner’s problem under PCP:

, 1«
min fEZﬂt[ 722 4+ X }
{zex,b7 107} 2 +=—0 ~ ~

cre—Crt Ye—Jt
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Optimal Policy: PCP

@ Planner’s problem under PCP:

, 1«
min fEZﬂt[ 722 4+ X }
{zex,b7 107} 2 +=—0 ~ ~

cre—Crt Ye—Jt

e—1
s.t. Bb:( = b:—l — Zt + —X¢,
g
- 2 * * *
]EtAZt+1 = 7(4}0'1. (bt — nt — f;, )7
2 ~ - ~
O = Vart(qt+1 - Zey1 + Xt+1)7 qt = a8t — Crt
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Optimal Policy: PCP

@ Planner’s problem under PCP:

, 1«
min fEZﬂt[ 722 4+ X }
{zex,b7 107} 2 +=—0 ~ ~

cre—Crt Ye—Jt

e—1
s.t. Bb:( = b:—l — Zt + —X¢,
g
- 2 * * *
]EtAZt+1 = 7(4}0'1. (bt — nt — f;, )7
2 ~ - ~
O = Vart(qt+1 - Zey1 + Xt+1)7 qt = a8t — Crt

@ First-best policy: same as in the baseline model
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Optimal Policy: PCP

@ Planner’s problem under PCP:

, 1«
min 2E;Bt[ z2 +Xt2}

{zex,b7 107} ~~
cre—Crt Yi—¥t
" " e—1
s.t. Bbt = bt—l — Zt + —X¢,
g

- 2 * * *

]EtAZt+1 = —W0oy (bt —ny — f;, )7

2 ~ - ~
oy = Vart(qt+1 - Zep1 + Xt+1)7 qt = ar — Crt

@ First-best policy: same as in the baseline model

@ Divine coincidence: if a; = ¢/ follow a random walk, then §; = 0 and the
MP alone can implement the first-best allocation x; = zz =0
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Optimal Policy: PCP

@ Planner’s problem under PCP:

, 1«
min 2E;Bt[ z2 +Xt2}

{zex,b7 107} ~~
cre—Crt Yi—¥t
" " e—1
s.t. Bbt = bt—l — Zt + —X¢,
g

- 2 * * *

]EtAZt+1 = —W0oy (bt —ny — f;, )7

2 ~ - ~
oy = Vart(qt+1 - Zep1 + Xt+1)7 qt = ar — Crt

@ First-best policy: same as in the baseline model

@ Divine coincidence: if a; = ¢/ follow a random walk, then §; = 0 and the
MP alone can implement the first-best allocation x; = zz =0

@ Second-best policy: given x; # 0, it is not possible to implement z; = 0,
but the optimal FX policy or peg still close the UIP wedge
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Optimal Policy: DCP

@ Planner’'s problem under DCP:

1 o0
min —E f[ 2 (11— 2 +H~2}
{ze,3e,b7 f* 02} 2 ;B v zx +(1-7) X G
- Cre—Cre YHt— VHe
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Optimal Policy: DCP

@ Planner’'s problem under DCP:

min
{zt,x¢,b} £ 02}

s.t.

- .
SEY Bty 2 +(1-7) X ki)
2 =0 ~—~ ~—~

crt—Crt YHt—VHt
Bbf = b;_1 — zt+(c — 1)y,
E¢Azeyq = —@o} (bf — nf — ),

2 ~ ~ ~
op = vare (Gep1 — Zeqr + Xeq1) s Ge = ar — Cre
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Optimal Policy: DCP

@ Planner’'s problem under DCP:

min
{zt,x¢,b} £ 02}

s.t.

1 — N
2EX B & o) st
2 = ~ —~

crt—Crt YHt—VHt
Bbf = b} 1 — zt+(e — 1)§s,
E¢Azeyq = —@o} (bf — nf — ),

2 ~ ~ ~
op = vare (Gep1 — Zeqr + Xeq1) s Ge = ar — Cre

@ First-best policy: same as in the baseline model, even though leaves

export gap open
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Optimal Policy: DCP

@ Planner’'s problem under DCP:

min
{Ztaxt7b?(7ft*7o-$}

s.t.

- .
SEY By 2 +(1-7) E +n]
2 t=0

crt—Crt YHt—VHt
Bbf = b} 1 — zt+(e — 1)§s,
E¢Azeyq = —@o} (bf — nf — ),

2 ~ ~ ~
op = vare (Gep1 — Zeqr + Xeq1) s Ge = ar — Cre

@ First-best policy: same as in the baseline model, even though leaves

export gap open

@ Divine coincidence: if a; = ¢/ follow a random walk, then §; = 0 and the
MP alone can close all gaps x; =z, = §: =0

@ Second-best policy: given x; # 0, it is not possible to implement z; = 0,
but the optimal FX policy or peg still close the UIP wedge
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:
1 o0
min = IEZﬂt {'yzf + (1 =)+ aaw,z\,t)}
2 t=0
st. E:Azeq = —@o7 (b; — nf — £)
Bbi =b;_ 1 — z
e = KXe + BE:Tney1 + Ve

2 ~
oy = Vart(qt+1 — Zp41 + Xep1 + 7TNt+1)
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

I RS
min = EZBt[’yztz—l—(l—fy)(xtz—i—awﬁ,t)}
2 =

st. EiAzeq = —@of (b) — nf — )
Bb; =bi_ 1 —z
TNt = KXt =+ JﬁEt—W/\/t+1 —+ UVt

2 ~
oy = Vart(qt+1 — Zt41 + Xe41 + TNl )
—_—

Ret1
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:
min EZBt[XZ +7r,2\,}
2 — t t

sit. e = kXe + BEimNe 1 + vt

X0 + mno = Ko
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

oo

. 1 o v
min- 3 E;ﬂt[723+(1_7)5(xtT}5t)2}
st. EAzg = —o?af(b:f —nf —f})

Bb; = b;_1 —z

2 ~ A
oy = Vart(qt+1 — Zty1 + Xt+1)
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

oo

) 1 o v
min- 3 E;ﬂt[723+(1_7)5(xtT}5t)2}
st. EAzyq = —@of (b — nf — £;)

Bbi = bi_y -z

2 ~ ~
oy = Vaft(‘?tﬂ = Zp1 t Xt+1)

@ Divine Coincidence: if €/ = 0, then isomorphic to the baseline model
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

oo

min S EY 8127 + (L 1)0(% et
t=0
s.t. EtAZt+1 = _(I)O-t (b: — n: — f;*)
,Bb* _ * -z

2 ~ A
oy = Vart(qt+1 — Zty1 + Xt+1)
@ Divine Coincidence: if €/ = 0, then isomorphic to the baseline model

@ Markup shocks: the optimal policy does not result in long-term price
targeting py: - 0
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Incomplete Pass-Through

@ Extend model to allow for:
6—1

6—1
@ elasticity of substitution 8: U =~C? +(1—~)(Cy? — L)

@ pricing-to-market o Pre = (‘SfP";‘t)aPI{I;a

-+ international bonds denominated in tradable goods
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@ elasticity of substitution 8: U =~C? +(1—~)(Cy? — L)

@ pricing-to-market o Pre = (‘SfP";‘t)aPI{I;a

-+ international bonds denominated in tradable goods

@ Same optimal policy:

NS QR
min > EZBt ['yzf +(1- ,y)xﬂ
t=0
st. EAzeq = —@07 (b] — nf — £)
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Incomplete Pass-Through

@ Extend model to allow for:
6—1

6—1
@ elasticity of substitution 8: U =~C? +(1—~)(Cy? — L)

@ pricing-to-market o Pre = (‘SfP";‘t)aPI{I;a

-+ international bonds denominated in tradable goods

@ Same optimal policy:

NS QR
min > EZBt ['yzf +(1- ,y)xﬂ
t=0
st. EAzeq = —@07 (b] — nf — £)

Bb; = bi_1—z

, 1
oy = vare | e + E(XH»I — Z¢41)

@ More volatile exchange rate if 6, < 1:

1. 1
€ = — {Qt + *(Xt - Zt)]
« 0
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Risk-Premium Shocks

@ Baseline model focuses on noise-trader shocks
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Risk-Premium Shocks

@ Baseline model focuses on noise-trader shocks

@ Arbitrageurs as drivers of UIP deviations:
@ Risk-aversion shocks (Gabaix-Maggiori'15):

—  _2(x * *
EiAzi = 0oy (by — ny — £,7)
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= optimal policy remains largely unchanged

@ Expectation shocks
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Risk-Premium Shocks

@ Baseline model focuses on noise-trader shocks

@ Arbitrageurs as drivers of UIP deviations:
@ Risk-aversion shocks (Gabaix-Maggiori'15):
EeDzeyy = =G0z (b — nf — 1)

= optimal policy remains largely unchanged

@ Expectation shocks
EtAZt+1 = —(:}U?(b: — n: — ft*) + 771»

= no divine coincidence

= same optimal policy

38/16



Fickle Flows

@ Allow for exogenous default shocks

— e.g. home bonds are issued by government

@ Risk-sharing condition:

— 2( % * 2 c
EtAZt+1 = Et5t+1 — wcrt(bt —ny — ft*)’ gy = Vart(et.i,_l + ()t+1)
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Fickle Flows

@ Allow for exogenous default shocks

— e.g. home bonds are issued by government
@ Risk-sharing condition:
EtAZt+1 = Et(5t+1 — @U%(br — n;‘ — ft*)’ U? = Vart(et.i,_l + (St+1)
@ A fixed exchange rate amplifies

a) capital reversals:
— boom: ;11 20 = E:Az1 =0 = b |
— bust: 6t+1 T = EtAZt+1 > 0 = Zt J,, b;—k T
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Fickle Flows

@ Allow for exogenous default shocks

— e.g. home bonds are issued by government

@ Risk-sharing condition:
EiAzy1 = Eideq — a;af(b;: —n; — "), af = vars(err1 + 1)
@ A fixed exchange rate amplifies
a) capital reversals:

— boom: ;11 20 = E:Az1 =0 = b |
— bust: 6t+1 T = EtAZt+1 > 0 = Zt J,, b;—k T

b) effects of default shocks:
aEtAZtJr] 8b;k
3Et5t+1 ’ 8Et6t+1

o2l =

T
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Fickle Flows

@ Allow for exogenous default shocks

— e.g. home bonds are issued by government

@ Risk-sharing condition:
EiAzy1 = Eideq — a;af(b;: —n; — "), af = vars(err1 + 1)
@ A fixed exchange rate amplifies
a) capital reversals:

— boom: ;11 20 = E:Az1 =0 = b |
— bust: 6t+1 T = EtAZt+1 > 0 = Zt J,, b;—k T

b) effects of default shocks:
aEtAZtJr] 8b;k
3Et5t+1 ’ 8Et6t+1

o2l =

T

@ Policy side-effects: the capital flows and UIP spreads are more fickle under
a fixed exchange rate regime
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Preference Shocks

@ H/h can hold and enjoy utility from FC bonds:

> K
max E» 3 [v log Cre + (1= 7)(log Cye — Le)—5 (N} — w:)z]
t=0

ENF B
o L S Cre  PrneCne = ENJ | + Brq + Wil + Ny + T,

.t.
> R: R
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Preference Shocks

@ H/h can hold and enjoy utility from FC bonds:

> K
max E» 3 [v log Cre + (1= 7)(log Cye — Le)—5 (N} — w:)z]
t=0

ENF B:
o L S Cre  PrneCne = ENJ | + Brq + Wil + Ny + T,

.t.
> R: R

@ Planner’s problem:

min = EZﬂt ’yzt )Xt +x(nf — 1/’:)2]

{Ztvxtabz*v”:»ft*vog}
st. Bbf=b;_1—2z
- 2
EtAZt+1 = _OJUt (b:‘ — ni — ft*)
— 7 =k EtAzy
2 ~
o = var(Ger1 — Ze1 + Xer1)
= Optimal policy is the same when nj is driven by preference shocks
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