Optimal Exchange Rate Policy OLEG ITSKHOKI itskhoki@econ.UCLA.edu DMITRY MUKHIN d.mukhin@LSE.ac.uk 2nd ERSA/CEPR Workshop on Macroeconomic Policy in Emerging Markets January 26, 2024 ## Motivation - What is the optimal exchange rate policy? - exchange rate as a target - trilemma vs. fear of floating - 2 exchange rate is not a policy instrument - what mix of monetary policy, FX interventions, capital controls? ### Motivation - What is the optimal exchange rate policy? - exchange rate as a target - trilemma vs. fear of floating - exchange rate is not a policy instrument - what mix of monetary policy, FX interventions, capital controls? - Build on a realistic GE model of exchange rates consistent with - PPP, UIP, Backus-Smith, Meese-Rogoff puzzles \Rightarrow UIP shock ψ_t - Mussa puzzle ightharpoonupshow $\Rightarrow \psi_t = \psi_t(\sigma_e^2)$ - Dual role of exchange rates: - a) expenditure switching in goods markets - b) risk sharing in financial markets ## Motivation - What is the optimal exchange rate policy? - exchange rate as a target - trilemma vs. fear of floating - 2 exchange rate is not a policy instrument - what mix of monetary policy, FX interventions, capital controls? - Build on a realistic GE model of exchange rates consistent with - PPP, UIP, Backus-Smith, Meese-Rogoff puzzles \Rightarrow UIP shock ψ_t - Mussa puzzle \Rightarrow $\psi_t = \psi_t(\sigma_e^2)$ - Dual role of exchange rates: - a) expenditure switching in goods markets - b) risk sharing in financial markets - Develop a rich framework for policy analysis - intuitive linear-quadratic Ramsey problem (cf. CGG'99, GM'05) - optimal targets, pecking order of instruments, divine coincidence, time consistency, forward guidance, gains from cooperation ### Main Results - First best: - one-to-one mapping between instruments, targets, shocks - exchange rate targeting is suboptimal - Divine coincidence in an open economy - requires that the frictionless real exchange rate is stable - peg can implement the first-best - More generally, optimal MP partially stabilizes exchange rate - Capital controls are required when foreign traders - Gains from international cooperation under second-best policies ## Relation to the Literature #### Portfolio models: - Segmented markets: Kouri (1976), Blanchard, Giavazzi & Sa (2005), Alvarez, Atkeson & Kehoe (2009), Camanho, Hau & Rey (2021), Greenwod, Hanson, Stein & Sunderam (2020), Jiang, Krishnamurthy & Lustig (2021), Gourinchas, Ray & Vayanos (2021), Kollmann (2005), Jeanne & Rose (2002), Gabaix & Maggiori (2015), Itskhoki & Mukhin (2021a,b) - Financial channel of MP: Obstfeld & Rogoff (2002), Rey (2013), Kekre & Lenel (2021), Fanelli (2017), Hassan, Mertens & Zhang (2021), Akinci, Kalemli-Ozcan & Queralto (2022), Fornaro (2021) ## Optimal policy in open economy: - Monetary policy: Obstfeld & Rogoff (1995), Clarida, Gali & Gertler (1999, 2001, 2002), Devereux & Engel (2003), Benigno & Benigno (2003), Gali & Monacelli (2005), Engel (2011), Goldberg & Tille (2009), Corsetti, Dedola & Leduc (2010, 2018), Egorov & Mukhin (2021) - Capital controls: Jeanne & Korinek (2010), Bianchi (2011), Farhi & Werning (2012, 2013, 2016, 2017), Costinot, Lorenzoni & Werning (2014), Schmitt-Grohe & Uribe (2016), Basu, Boz, Gopinath, Roch & Unsal (2020) - FX interventions: Jeanne (2013), Cavallino (2019), Amador, Bianchi, Bocola & Perri (2016, 2020), Fanelli & Straub (2021) # **SETUP** - SOE with T and NT, segmented asset markets - Households: max $$\mathbb{E}\sum_{t=0}^{\infty} \beta^t \Big[\gamma \log C_{Tt} + (1-\gamma)(\log C_{Nt} - L_t) \Big]$$ s.t. $\frac{B_t}{R_t} + P_{Tt}C_{Tt} + P_{Nt}C_{Nt} = B_{t-1} + W_tL_t + \Pi_t + T_t$ - SOE with T and NT, segmented asset markets - Households: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) \Big]$$ s.t. $$\frac{B_{t}}{R_{t}} + P_{Tt}C_{Tt} + P_{Nt}C_{Nt} = B_{t-1} + W_{t}L_{t} + \Pi_{t} + T_{t}$$ - Firms: - **1** tradables: exogenous endowment Y_{Tt} , law of one price $P_{Tt} = \mathcal{E}_t P_{Tt}^* = \mathcal{E}_t$ - 2 non-tradables: technology $Y_{Nt} = A_t L_t$, fully sticky prices $P_{Nt} = 1$ - SOE with T and NT, segmented asset markets - Households: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) \Big]$$ s.t. $$\frac{B_{t}}{R_{t}} + P_{Tt}C_{Tt} + P_{Nt}C_{Nt} = B_{t-1} + W_{t}L_{t} + \Pi_{t} + T_{t}$$ - Firms: - **1** tradables: exogenous endowment Y_{Tt} , law of one price $P_{Tt} = \mathcal{E}_t P_{Tt}^* = \mathcal{E}_t$ - 2 non-tradables: technology $Y_{Nt} = A_t L_t$, fully sticky prices $P_{Nt} = 1$ - Financial sector: segmentation of currency market - SOE with T and NT, segmented asset markets - Households: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) \Big]$$ s.t. $$\frac{B_{t}}{R_{t}} + P_{Tt}C_{Tt} + P_{Nt}C_{Nt} = B_{t-1} + W_{t}L_{t} + \Pi_{t} + T_{t}$$ - Firms: - **1** tradables: exogenous endowment Y_{Tt} , law of one price $P_{Tt} = \mathcal{E}_t P_{Tt}^* = \mathcal{E}_t$ - ② non-tradables: technology $Y_{Nt} = A_t L_t$, fully sticky prices $P_{Nt} = 1$ - Financial sector: segmentation of currency market - arbitrageurs choose zero-capital portfolio (D_t, D_t^*) : $\frac{D_t}{R_t} + \frac{\mathcal{E}_t D_t^*}{R_t^*} = 0$ - earn carry trade returns $\tilde{R}_{t+1} \equiv R_t^* R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}$, transfer to home h/h $$\max_{D_{t}^{*}} \mathbb{E}_{t}[\Theta_{t+1} \mathcal{W}_{t+1}] - \frac{\omega}{2} \mathrm{var}_{t}[\mathcal{W}_{t+1}], \qquad \mathcal{W}_{t+1} = \tilde{R}_{t+1} \frac{D_{t}^{*}}{R_{t}^{*}}$$ — market clearing for bonds: $$B_t^* = D_t^* + N_t^* + F_t^*$$ - SOE with T and NT, segmented asset markets - Households: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) \Big]$$ s.t. $$\frac{B_{t}}{R_{t}} + P_{Tt}C_{Tt} + P_{Nt}C_{Nt} = B_{t-1} + W_{t}L_{t} + \Pi_{t} + T_{t}$$ - Firms: - **1** tradables: exogenous endowment Y_{Tt} , law of one price $P_{Tt} = \mathcal{E}_t P_{Tt}^* = \mathcal{E}_t$ - ② non-tradables: technology $Y_{Nt} = A_t L_t$, fully sticky prices $P_{Nt} = 1$ - Financial sector: segmentation of currency market Social planner's problem: $$\max_{\{C_{T_t}, C_{N_t}, L_t, B_t^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \log C_{T_t} + (1 - \gamma)(\log C_{N_t} - L_t) \Big]$$ s.t. $$\frac{B_t^*}{R_t^*} - B_{t-1}^* = Y_{T_t} - C_{T_t} \quad \text{and} \quad C_{N_t} = A_t L_t$$ Social planner's problem: $$\max_{\{C_{Tt}, C_{Nt}, L_t, B_t^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \log C_{Tt} + (1 - \gamma)(\log C_{Nt} - L_t) \Big]$$ s.t. $$\frac{B_t^*}{R_t^*} - B_{t-1}^* = Y_{Tt} - C_{Tt} \quad \text{and} \quad C_{Nt} = A_t L_t$$ • Solution: $\tilde{C}_{Nt} = A_t$ and \tilde{C}_{Tt} s.t. $\beta R_t^* \mathbb{E}_t \frac{\tilde{C}_{Tt}}{\tilde{C}_{Tt+1}} = 1$ Social planner's problem: $$\max_{\{C_{\mathcal{T}_t}, C_{\mathcal{N}_t}, L_t, B_t^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \log C_{\mathcal{T}_t} + (1 - \gamma) (\log C_{\mathcal{N}_t} - L_t) \Big]$$ s.t. $$\frac{B_t^*}{R_t^*} - B_{t-1}^* = Y_{\mathcal{T}_t} - C_{\mathcal{T}_t} \quad \text{and} \quad C_{\mathcal{N}_t} = A_t L_t$$ - $\bullet \ \, \mathsf{Solution:} \quad \, \tilde{C}_{\mathit{Nt}} = A_t \quad \ \, \mathsf{and} \quad \, \, \tilde{C}_{\mathit{Tt}} \ \, \mathsf{s.t.} \, \, \beta R_t^* \mathbb{E}_t \frac{\tilde{C}_{\mathit{Tt}}}{\tilde{C}_{\mathit{Tt}+1}} = 1$ - Wedges: $x_t \equiv \log C_{Nt} \log \tilde{C}_{Nt}$ and $z_t \equiv \log C_{Tt} \log \tilde{C}_{Tt}$ Social planner's problem: $$\max_{\{C_{Tt}, C_{Nt}, L_t, B_t^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \log C_{Tt} + (1 - \gamma)(\log C_{Nt} - L_t) \Big]$$ s.t. $$\frac{B_t^*}{R_t^*} - B_{t-1}^* = Y_{Tt} - C_{Tt} \quad \text{and} \quad C_{Nt} = A_t L_t$$ - $\bullet \ \ \, \text{Solution:} \quad \, \tilde{C}_{Nt} = A_t \quad \ \, \text{and} \quad \, \tilde{C}_{Tt} \ \, \text{s.t.} \, \, \beta R_t^* \mathbb{E}_t \frac{\tilde{C}_{Tt}}{\tilde{C}_{Tt+1}} = 1$ - Wedges: $x_t \equiv \log C_{Nt} \log \tilde{C}_{Nt}$ and $z_t \equiv \log C_{Tt} \log \tilde{C}_{Tt}$ ▶ proof • Quadratic loss function: $$\frac{1}{2} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\gamma z_t^2 + (1 - \gamma) x_t^2 \right]$$ s.t. $\beta b_t^* - b_{t-1}^* = -z_t$ Goods market: $$\frac{\gamma}{1-\gamma}\frac{C_{Nt}}{C_{Tt}} = \frac{\mathcal{E}_t P_{Tt}^*}{P_{Nt}} = \mathcal{E}_t$$ ### Goods market: $$e_t = \tilde{q}_t + x_t - z_t$$ - $\tilde{q}_t = \log \tilde{C}_{Nt} \log \tilde{C}_{Tt}$ is natural RER - $-x_t \equiv \log(C_{Nt}/\tilde{C}_{Nt}), \quad z_t \equiv \log(C_{Tt}/\tilde{C}_{Tt})$ - EE + sticky prices $\Rightarrow R_t$ determines x_t ▶ NKPC #### Goods market: $$e_t = \tilde{q}_t + x_t - z_t$$ - $\tilde{q}_t = \log \tilde{C}_{Nt} \log \tilde{C}_{Tt}$ is natural RER - $-x_t \equiv \log(C_{Nt}/\tilde{C}_{Nt}), \quad z_t \equiv \log(C_{Tt}/\tilde{C}_{Tt})$ - EE + sticky prices $\Rightarrow R_t$ determines x_t ▶ PT ► NKPC #### • Financial market: $$\max_{D_t^*} \mathbb{E}_t[\Theta_{t+1} \mathcal{W}_{t+1}] - \frac{\omega}{2} \operatorname{var}_t[\mathcal{W}_{t+1}], \qquad \mathcal{W}_{t+1} = \tilde{R}_{t+1} \frac{D_t^*}{R_t^*}$$ #### Goods market: $$e_t = \tilde{q}_t + x_t - z_t$$ - $\tilde{q}_t = \log \tilde{C}_{Nt} \log \tilde{C}_{Tt}$ is natural RER - $-x_t \equiv \log(C_{Nt}/\tilde{C}_{Nt}), \quad z_t \equiv \log(C_{Tt}/\tilde{C}_{Tt})$ - EE + sticky prices $\Rightarrow R_t$ determines x_t → PT → NKPC #### • Financial market: $$rac{D_t^*}{R_t^*} = rac{\mathbb{E}_t \Theta_{t+1} ilde{R}_{t+1}}{\omega \sigma_t^2}, \qquad \sigma_t^2 \equiv \mathrm{var}_t (ilde{R}_{t+1})$$ — carry trade returns $\tilde{R}_{t+1} \equiv R_t^* - R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}$ #### Goods market: $$e_t = \tilde{q}_t + x_t - z_t$$ - $\tilde{q}_t = \log \tilde{C}_{Nt} \log
\tilde{C}_{Tt}$ is natural RER - $-x_t \equiv \log(C_{Nt}/\tilde{C}_{Nt}), \quad z_t \equiv \log(C_{Tt}/\tilde{C}_{Tt})$ - EE + sticky prices $\Rightarrow R_t$ determines x_t ### ▶ PT → NKPC #### • Financial market: $$\beta R_t^* \mathbb{E}_t \frac{C_{Tt}}{C_{Tt+1}} = 1 + \omega \sigma_t^2 \frac{B_t^* - N_t^* - F_t^*}{R_t^*}$$ - ω is arbitrageurs' risk aversion - σ_t^2 is the volatility of carry-trade returns - $B_t^* N_t^* F_t^*$ is net demand of h/h, n/t, gov't = arbitrageurs' gross position $$\Rightarrow \text{ e.g. } N_t^* \uparrow \Rightarrow D_t^* \downarrow \Rightarrow \mathbb{E}_t \big[R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} - R_t^* \big] > 0 \ \Rightarrow \ \mathcal{E}_t \uparrow \Rightarrow \ C_{\mathcal{T}t} \downarrow$$ #### Goods market: $$e_t = \tilde{q}_t + x_t - z_t$$ - $\tilde{q}_t = \log \tilde{C}_{Nt} \log \tilde{C}_{Tt}$ is natural RER - $-x_t \equiv \log(C_{Nt}/\tilde{C}_{Nt}), \quad z_t \equiv \log(C_{Tt}/\tilde{C}_{Tt})$ - EE + sticky prices $\Rightarrow R_t$ determines x_t #### ▶ PT → NKPC #### Financial market: $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ $$\sigma_t^2 = \operatorname{var}_t(\Delta e_{t+1})$$ - $\mathbb{E}_t \Delta z_{t+1} = i_t i_t^* \mathbb{E}_t \Delta e_{t+1}$ (UIP deviations \leftrightarrow RS wedge) - first-order risk premium $(X_t = \bar{X}(1 + \nu x_t), \ \omega = \bar{\omega}/\nu^2 \ \text{and} \ \nu \to 0)$ # Ramsey Problem • Lemma: To the first-order approximation, the optimal policy solves $$\begin{aligned} \min_{\{z_t, x_t, e_t, b_t^*, f_t^*, \sigma_t^2\}} & & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) x_t^2 \Big] \\ \text{s.t.} & & \beta b_t^* = b_{t-1}^* - z_t & (+ \text{NPGC}) \\ & & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), & & \sigma_t^2 = \text{var}_t (\Delta e_{t+1}) \\ & & e_t = \tilde{q}_t + x_t - z_t \end{aligned}$$ - Shocks: - **1** macro/fundamental: $(A_t, Y_{Tt}, R_t^*) \longrightarrow \tilde{q}_t$ - 2 financial/liquidity: $(N_t^*, \tilde{B}_t^*) \longrightarrow n_t^*$ - Instruments: - **1** monetary policy (MP): $R_t \longrightarrow x_t$ - 2 FX interventions: $F_t^* \longrightarrow f_t^*$ non-linear # Ramsey Problem • Lemma: To the first-order approximation, the optimal policy solves $$\begin{aligned} \min_{\{z_t, x_t, e_t, b_t^*, f_t^*, \sigma_t^2\}} & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) x_t^2 \Big] \\ \text{s.t.} & \beta b_t^* = b_{t-1}^* - z_t & (+ \text{NPGC}) \\ \mathbb{E}_t \Delta z_{t+1} &= -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), & \sigma_t^2 &= \text{var}_t (\Delta e_{t+1}) \\ e_t &= \tilde{q}_t + x_t - z_t \end{aligned}$$ - Shocks: - ② financial/liquidity: $(N_t^*, \tilde{B}_t^*) \longrightarrow n_t^*$ - Instruments: - **1** monetary policy (MP): $R_t \longrightarrow x_t$ - ② FX interventions: $F_t^* \longrightarrow f_t^*$ non-linear - Relaxed Trilemma: it is possible to simultaneously have (i) no capital controls, (ii) inward-looking MP, (iii) independent ER policy (cf. Wallace'81) - subject to country's budget constraint and $\sigma_t^2 > 0$ # TWO POLICY INSTRUMENTS # **Optimal Policy** Planner's problem: $$\min_{\{z_{t}, x_{t}, b_{t}^{*}, f_{t}^{*}, \sigma_{t}^{2}\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\gamma z_{t}^{2} + (1 - \gamma) x_{t}^{2} \right]$$ s.t. $$\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$$ $$\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} \left(b_{t}^{*} - n_{t}^{*} - f_{t}^{*} \right)$$ $$\sigma_{t}^{2} = \text{var}_{t} \left(\tilde{q}_{t+1} - z_{t+1} + x_{t+1} \right)$$ - **Q Optimal targets**: $MP \rightarrow inflation/output$, FX policy $\rightarrow UIP$ deviations - implements efficient allocation - closes UIP rather than CIP deviations - targeting ER is suboptimal # **Optimal Policy** Planner's problem: $$\min_{\{z_{t}, x_{t}, b_{t}^{*}, f_{t}^{*}, \sigma_{t}^{2}\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\gamma z_{t}^{2} + (1 - \gamma) x_{t}^{2} \right]$$ s.t. $$\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$$ $$\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} \left(b_{t}^{*} - n_{t}^{*} - f_{t}^{*} \right)$$ $$\sigma_{t}^{2} = \text{var}_{t} \left(\tilde{q}_{t+1} - z_{t+1} + x_{t+1} \right)$$ - **Optimal targets**: $MP \rightarrow inflation/output$, FX policy $\rightarrow UIP$ deviations - implements efficient allocation - closes UIP rather than CIP deviations - targeting ER is suboptimal - **3** Responses to shocks: FX policy offsets n_t^* and accommodates \tilde{q}_t - unobservable \tilde{q}_t , n_t^* , $\mathbb{E}_t \Delta z_{t+1}$ (cf. potential output, NAIRU, natural rate) → BiU # **MONETARY POLICY** - Potential constraints on FX interventions: - non-negative reserves $f_t^* \ge 0$ (FXI \leftrightarrow FX hedge) - Potential constraints on FX interventions: - non-negative reserves $f_t^* \ge 0$ (FXI \leftrightarrow FX hedge) - value-at-risk constraint $\sigma_t \cdot |f_t^*| \leq \alpha$ - Potential constraints on FX interventions: - non-negative reserves $f_t^* \ge 0$ (FXI \leftrightarrow FX hedge) - value-at-risk constraint $\sigma_t \cdot |f_t^*| \leq \alpha$ - **Quantization** Capital flows and interest hikes: monetary policy R_t has no direct effect on capital flows z_t , even though it does change the exchange rate e_t $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ $$\sigma_t^2 = \text{var}_t(e_{t+1})$$ $$e_t = \tilde{q}_t - z_t + x_t$$ - Potential constraints on FX interventions: - non-negative reserves $f_t^* \ge 0$ (FXI \leftrightarrow FX hedge) - value-at-risk constraint $\sigma_t \cdot |f_t^*| \leq \alpha$ - **Quantification Capital flows and interest hikes**: monetary policy R_t has **no** direct effect on capital flows z_t , even though it does change the exchange rate e_t $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ $$\sigma_t^2 = \operatorname{var}_t(e_{t+1})$$ $$e_t = \tilde{q}_t - z_t + x_t$$ - ****Divine coincidence****: if the first-best RER is stable $\tilde{q}_t = 0$, then MP fully stabilizes NER $\sigma_t^2 = 0$ and ensures the first-best allocation $x_t = z_t = 0$ - peg ≻ inflation targeting due to multiple equilibria - $\tilde{q}_t = 0$ requires that i) $a_t = y_{Tt}$, ii) both follow RW, iii) $r_t^* = 0$ - Potential constraints on FX interventions: - non-negative reserves $f_t^* \ge 0$ (FXI \leftrightarrow FX hedge) - value-at-risk constraint $\sigma_t \cdot |f_t^*| \leq \alpha$ - **Quantization** Capital flows and interest hikes: monetary policy R_t has no direct effect on capital flows z_t , even though it does change the exchange rate e_t $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ $$\sigma_t^2 = \text{var}_t(e_{t+1})$$ $$e_t = \tilde{q}_t - z_t + x_t$$ - **'Divine coincidence'**: if the first-best RER is stable $\tilde{q}_t=0$, then MP fully stabilizes NER $\sigma_t^2=0$ and ensures the first-best allocation $x_t=z_t=0$ - peg ≻ inflation targeting due to multiple equilibria - $ilde{q}_t = 0$ requires that i) $a_t = y_{Tt}$, ii) both follow RW, iii) $r_t^* = 0$ - **Optimal currency area**: countries with stable RER \tilde{q}_t , large spreads n_t^* , high openness γ benefit more from a common currency (Mundell'61) - yet, may be subject to fickle capital flows ## Monetary Peg • More generally, the optimal monetary rule is $$(1 - \gamma) \underbrace{\mathbf{x}_{t+1}}_{\text{output gap}} = -\gamma \bar{\omega} \underbrace{\mu_t (b_t^* - \textit{n}_t^* - f_t^*)}_{\geq 0} \left(\underbrace{e_{t+1} - \mathbb{E}_t e_{t+1}}_{\text{ER volatility}} \right)$$ # Monetary Peg More generally, the optimal monetary rule is $$(1-\gamma)\underbrace{x_{t+1}}_{\text{output gap}} = -\gamma \bar{\omega} \underbrace{\mu_t \big(b_t^* - \textit{n}_t^* - \textit{f}_t^*\big)}_{\geq 0} \big(\underbrace{e_{t+1} - \mathbb{E}_t e_{t+1}}_{\text{ER volatility}}\big)$$ **Orawling peg:** if FXI are unconstrained at t-1, t+1, but not at t: $$x_{t+1} = -\frac{2\gamma\bar{\omega}}{1-\gamma}\frac{\bar{\omega}\sigma_t^2}{1+\beta+\bar{\omega}\sigma_t^2}(b_t^* - n_t^* - f_t^*)^2(e_{t+1} - \mathbb{E}_t e_{t+1})$$ - leans against the wind: $e_{t+1} > \mathbb{E}_t e_{t+1} \Rightarrow i_{t+1} \uparrow \Rightarrow e_{t+1} \downarrow, x_{t+1} \downarrow$ - closes average output gap $\mathbb{E}_t x_{t+1} = 0$, no constraint on $\mathbb{E}_t \Delta e_{t+1}$ - puts more weight on ER stability when $\gamma \bar{\omega} \sigma_t^2 (b_t^* n_t^* f_t^*)$ is large - non-linear dynamics with time-varying volatility # Monetary Peg More generally, the optimal monetary rule is $$(1-\gamma)\underbrace{x_{t+1}}_{\text{output gap}} = -\gamma \bar{\omega} \underbrace{\mu_t \big(b_t^* - \textit{n}_t^* - \textit{f}_t^*\big)}_{\geq 0} \big(\underbrace{e_{t+1} - \mathbb{E}_t e_{t+1}}_{\text{ER volatility}}\big)$$ **Orawling peg:** if FXI are unconstrained at t-1, t+1, but not at t: $$x_{t+1} = -\frac{2\gamma\bar{\omega}}{1-\gamma} \frac{\bar{\omega}\sigma_{t}^{2}}{1+\beta+\bar{\omega}\sigma_{t}^{2}} (b_{t}^{*} - n_{t}^{*} - f_{t}^{*})^{2} (e_{t+1} - \mathbb{E}_{t}e_{t+1})$$ - leans against the wind: $e_{t+1} > \mathbb{E}_t e_{t+1} \ \Rightarrow \ i_{t+1} \uparrow \ \Rightarrow \ e_{t+1} \downarrow, \ x_{t+1} \downarrow$ - closes average output gap $\mathbb{E}_t x_{t+1} = 0$, no constraint on $\mathbb{E}_t \Delta e_{t+1}$ - puts more weight on ER stability when $\gamma \bar{\omega} \sigma_t^2 (b_t^* n_t^* f_t^*)$ is large - non-linear dynamics with time-varying volatility #### ▶ show ### Forward guidance: $$z_t = \mathbb{E}_t z_{t+1} - \bar{\omega} \sigma_t^2 \left(n_t^* + f_t^* - b_t^* \right)$$ - FX forward guidance: via future $\mathbb{E}_t z_{t+1}$ - ER forward guidance: via $\sigma_t^2 = \text{var}_t(\tilde{q}_{t+1} + x_{t+1} z_{t+1})$ #### Monetary Peg More generally, the optimal
monetary rule is $$(1-\gamma)\underbrace{x_{t+1}}_{\text{output gap}} = -\gamma \bar{\omega} \underbrace{\mu_t \big(b_t^* - \textit{n}_t^* - \textit{f}_t^*\big)}_{\geq 0} \big(\underbrace{e_{t+1} - \mathbb{E}_t e_{t+1}}_{\text{ER volatility}}\big)$$ **Orawling peg**: if FXI are unconstrained at t-1, t+1, but not at t: $$\mathsf{x}_{t+1} = -\frac{2\gamma\bar{\omega}}{1-\gamma} \frac{\bar{\omega}\sigma_t^2}{1+\beta+\bar{\omega}\sigma_t^2} (b_t^* - n_t^* - f_t^*)^2 (\mathbf{e}_{t+1} - \mathbb{E}_t \mathbf{e}_{t+1})$$ - leans against the wind: $e_{t+1} > \mathbb{E}_t e_{t+1} \Rightarrow i_{t+1} \uparrow \Rightarrow e_{t+1} \downarrow, x_{t+1} \downarrow$ - closes average output gap $\mathbb{E}_t x_{t+1} = 0$, no constraint on $\mathbb{E}_t \Delta e_{t+1}$ - puts more weight on ER stability when $\gamma \bar{\omega} \sigma_t^2 (b_t^* n_t^* f_t^*)$ is large - non-linear dynamics with time-varying volatility #### Forward guidance: $$z_t = \mathbb{E}_t z_{t+1} - \bar{\omega} \sigma_t^2 (n_t^* + f_t^* - b_t^*)$$ - FX forward guidance: via future $\mathbb{E}_t z_{t+1}$ - ER forward guidance: via $\sigma_t^2 = \operatorname{var}_t(\tilde{q}_{t+1} + x_{t+1} z_{t+1})$ - **Time consistency**: optimal discretionary policy closes output gap $x_t = 0$ #### Illustration a) trilemma $\Gamma \approx 0$ $$e_t = ilde{q}_t + x_t - z_t$$ $$\mathbb{E}_t \Delta z_{t+1} = -\Gamma \left(b_t^* - n_t^* - f_t^* \right)$$ #### Illustration $$\begin{aligned} e_t &= \tilde{q}_t + x_t - z_t \\ \mathbb{E}_t \Delta z_{t+1} &= -\Gamma \left(b_t^* - n_t^* - f_t^* \right) \end{aligned}$$ a) trilemma $\Gamma \approx 0$ \Rightarrow b) our model $\Gamma = \bar{\omega}\sigma_t^2$ #### Illustration $$e_t = \tilde{q}_t + x_t - z_t$$ $$\mathbb{E}_t \Delta z_{t+1} = -\Gamma \left(b_t^* - n_t^* - f_t^* \right)$$ a) trilemma $\Gamma \approx 0$ b) our model $\Gamma = \bar{\omega}\sigma_t^2$ c) exogenous Γ ## **FX POLICY** ## **FX** Policy - FX policy cannot close output gap and should focus on UIP deviations - ZLB \Rightarrow 0 = $\mathbb{E}_t \Delta c_{Nt+1} = \mathbb{E}_t \left[\Delta x_{t+1} + \Delta \tilde{c}_{Nt+1} \right] \Rightarrow x_t \perp f_t^*$ - does not require commitment - Gains from commitment: forward guidance relaxes FX constraints $$z_t = \mathbb{E}_t z_{t+1} + \bar{\omega} \sigma_t^2 \left(b_t^* - n_t^* - f_t^* \right)$$ - a) FX forward guidance (cf. Werning'2011) - increase future imports $\mathbb{E}_t z_{t+1}$ to stimulate z_t - b) ER forward guidance - stabilize future ER $e_{t+1} = \tilde{q}_{t+1} z_{t+1}$ to mitigate risk-sharing wedge ## **CAPITAL CONTROLS** - Add to the model - foreign arbitrageurs and noise traders - $tax \tau_t$ on international positions of all traders - Add to the model - **foreign** arbitrageurs and noise traders - $tax \tau_t$ on international positions of all traders International risk sharing: $$\mathbb{E}_t \Delta z_{t+1} = \tau_t \underbrace{-\bar{\omega}\sigma_t^2(b_t^* - n_t^* - f_t^*)}_{=\psi_t}$$ — $\psi_t \equiv \emph{i}_t - \emph{i}_t^* - \mathbb{E}_t \Delta \emph{e}_{t+1} - au_t$ is carry-trade return for foreign agents - Add to the model - foreign arbitrageurs and noise traders - $tax \tau_t$ on international positions of all traders ▶ details • International risk sharing: $$\mathbb{E}_t \Delta z_{t+1} = \tau_t \underbrace{-\bar{\omega}\sigma_t^2 (b_t^* - n_t^* - f_t^*)}_{=\psi_t}$$ - $\psi_t \equiv i_t i_t^* \mathbb{E}_t \Delta e_{t+1} \tau_t$ is carry-trade return for foreign agents - **Q** Capital controls τ_t and FXI f_t^* can both implement optimal risk sharing - CC vs. FXI: state-/agent-/asset-specific, suboptimal if h/h demand - Add to the model - foreign arbitrageurs and noise traders - $tax \tau_t$ on international positions of all traders ▶ details International risk sharing: $$\mathbb{E}_t \Delta z_{t+1} = \tau_t \underbrace{-\bar{\omega}\sigma_t^2(b_t^* - n_t^* - f_t^*)}_{=\psi_t}$$ - $\psi_t \equiv i_t i_t^* \mathbb{E}_t \Delta e_{t+1} \tau_t$ is carry-trade return for foreign agents - **Q** Capital controls τ_t and FXI f_t^* can both implement optimal risk sharing - CC vs. FXI: state-/agent-/asset-specific, suboptimal if h/h demand Loss function includes international transfers: $$\frac{1}{2} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\gamma z_t^2 + (1-\gamma) x_t^2 + 2\beta \gamma \left(\frac{1}{\overline{\omega} \sigma_t^2} \psi_t - n_t^* \right) \psi_t \right]$$ - Add to the model - foreign arbitrageurs and noise traders - $tax \tau_t$ on international positions of all traders International risk sharing: $$\mathbb{E}_t \Delta z_{t+1} = \tau_t \underbrace{-\bar{\omega}\sigma_t^2(b_t^* - n_t^* - f_t^*)}_{=\psi_t}$$ - $\psi_t \equiv i_t i_t^* \mathbb{E}_t \Delta e_{t+1} \tau_t$ is carry-trade return for foreign agents - **Q** Capital controls τ_t and FXI f_t^* can both implement optimal risk sharing - CC vs. FXI: state-/agent-/asset-specific, suboptimal if h/h demand - Loss function includes international transfers: $$\frac{1}{2} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\gamma z_t^2 + (1 - \gamma) x_t^2 + 2\beta \gamma \left(\frac{1}{\bar{\omega} \sigma_t^2} \psi_t - n_t^* \right) \psi_t \right]$$ - **Transfers**: while $x_t = z_t = 0$ can be implemented with MP and FXI at zero costs, the optimal policy with capital controls can also extract rents - optimal targets: $x_t=0$, $f_t^*=-n_t^*/2$, $\tau_t=-\bar{\omega}\sigma_t^2n_t^*/2$ \Rightarrow $\mathbb{E}_t\Delta z_{t+1}=0$ ## INTERNATIONAL SPILLOVERS ### International Spillovers - Global equilibrium: - continuum of SOEs trading dollar bonds - global interest rate $$r_t^* = \mathbb{E}_t \Delta y_{Tt+1} + \int \bar{\omega} \sigma_{it}^2 (b_{it}^* - n_{it}^* - f_{it}^*) di$$ deviations from globally optimal risk sharing $$\mathbb{E}_t \Delta z_{t+1} = \psi_{it} - \bar{\psi}_t, \quad \psi_{it} \equiv -\bar{\omega} \sigma_{it}^2 (b_{it}^* - n_{it}^* - f_{it}^*)$$ ### International Spillovers - Global equilibrium: - continuum of SOEs trading dollar bonds - global interest rate $$r_t^* = \mathbb{E}_t \Delta y_{T_{t+1}} + \int \bar{\omega} \sigma_{it}^2 (b_{it}^* - n_{it}^* - f_{it}^*) di$$ deviations from globally optimal risk sharing $$\mathbb{E}_{t}\Delta z_{t+1} = \psi_{it} - \bar{\psi}_{t}, \quad \psi_{it} \equiv -\bar{\omega}\sigma_{it}^{2}(b_{it}^{*} - n_{it}^{*} - f_{it}^{*})$$ - Gains from cooperation: - i) first-best policies \Rightarrow NE is cooperatively optimal - ii) second-best policies $\;\Rightarrow\;$ negative spillovers, cooperative solution $\psi_{it}=ar{\psi}_t$ ### International Spillovers - Global equilibrium: - continuum of SOEs trading dollar bonds - global interest rate $$r_t^* = \mathbb{E}_t \Delta y_{Tt+1} + \int \bar{\omega} \sigma_{it}^2 (b_{it}^* - n_{it}^* - f_{it}^*) \mathrm{d}i$$ deviations from globally optimal risk sharing $$\mathbb{E}_{t}\Delta z_{t+1} = \psi_{it} - \bar{\psi}_{t}, \quad \psi_{it} \equiv -\bar{\omega}\sigma_{it}^{2}(b_{it}^{*} - n_{it}^{*} - f_{it}^{*})$$ - Gains from cooperation: - i) first-best policies \Rightarrow NE is cooperatively optimal - ii) second-best policies $\;\Rightarrow\;$ negative spillovers, cooperative solution $\psi_{it}=ar{\psi}_t$ - Anchor currency: countries import U.S. MP under second-best policies $$e_{it} = \hat{q}_{it} + x_{it} - z_{it} - p_{Tt}^*$$ - funding currency ⇒ anchor/reserve currency → IRR'2019 - cf. gold standard with $i_t^* = 0$ and p_{Tt}^* determined by market clearing #### **Extensions** #### Conclusion - New policy framework to think about exchange rate policies - i) realistic: consistent with exchange rate puzzles - ii) tractable: attains linear-quadratic representation - iii) practical: revisits classical policy questions - Motivates future research: - What is the elasticity of currency demand? (Koijen-Yogo'21, Camanho-Hau-Rey'21...) - How to measure UIP deviations?(Kalemli-Özcan-Varela'21, Engel'16, Kollmann'05, Bekaert'95...) - Financial channel in closed economy? (Caballero-Simsek'22, Kekre-Lenel'22...) ## **APPENDIX** #### Mussa Puzzle Redux Δc_t : $i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1} = \psi_t$ #### Mussa Puzzle Redux #### Mussa Puzzle Redux #### Non-Linear Policy Problem $$\begin{split} \max_{\{R_t, F_t^*, C_{Tt}, C_{Nt}, \mathcal{E}_t, B_t^*, \sigma_t^2\}_{t \geq 0}} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left[\gamma \log C_{Tt} + (1-\gamma) \left(\log C_{Nt} - \frac{C_{Nt}}{A_t} \right) \right] \\ \text{subject to} \qquad & \frac{B_t^*}{R_t^*} - B_{t-1}^* = Y_{Tt} - C_{Tt}, \\ & \beta R_t^* \mathbb{E}_t \frac{C_{Tt}}{C_{Tt+1}} = 1 + \omega \sigma_t^2 \frac{B_t^* - N_t^* - F_t^*}{R_t^*}, \\ & \beta R_t \mathbb{E}_t \frac{C_{Nt}}{C_{Nt+1}} = 1, \\ & \mathcal{E}_t = \frac{\gamma}{1-\gamma} \frac{C_{Nt}}{C_{Tt}}, \\ & \sigma_t^2 = R_t^2 \cdot \text{var}_t \left(\frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} \right), \end{split}$$ #### Quadratic Loss Function • **Lemma**: Let \tilde{x} solve $\max_x F(x)$ s.t. g(x) = 0. Then the second-order approximation to the problem is given by $$\mathcal{L}(dx) \propto \frac{1}{2} dx' \left[abla^2 F(\tilde{x}) + \bar{\lambda} abla^2 g(\tilde{x}) \right] dx,$$ where $\bar{\lambda}$ is the steady-state values of the Lagrange multipliers. Non-tradable sector (NK block): $$\mathcal{L}_{N} = \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\log C_{Nt} + \lambda_{t} \left(A_{t} L_{t} - C_{Nt} \right) \right] \propto -\frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left(\underbrace{c_{Nt} - \tilde{c}_{Nt}}_{X} \right)^{2}$$ • Tradable sector (portfolio choice): $$\mathcal{L}_{T} = \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\log C_{Tt} + \lambda_{t} \left(B_{t-1}^{*} + Y_{t} - C_{Tt} - \frac{B_{t}^{*}}{R^{*}} \right) \right] \propto -\frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left(\underbrace{c_{Tt} - \tilde{c}_{Tt}}_{t} \right)^{2}$$ Total welfare: $$\mathcal{L} = \gamma \mathcal{L}_T + (1 - \gamma) \mathcal{L}_N \propto -\frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) x_t^2
\Big]$$ ### Back to Friedman (1953) - Flexible exchange rates "combine interdependence among countries through trade with a maximum of internal monetary independence" - Nominal peg: "if internal prices were as flexible as exchange rates, it would make little economic difference whether adjustments were brought about by changes in exchange rates or by equivalent changes in internal prices. But this condition is clearly not fulfilled" - Trade tariffs and capital controls are the most realistic way to support a fixed exchange rate and is the least desirable one because of distortions, loopholes, and political economy issues - 4 FX ## Back to Friedman (1953) - Flexible exchange rates "combine interdependence among countries through trade with a maximum of internal monetary independence" - Nominal peg: "if internal prices were as flexible as exchange rates, it would make little economic difference whether adjustments were brought about by changes in exchange rates or by equivalent changes in internal prices. But this condition is clearly not fulfilled" - Trade tariffs and capital controls are the most realistic way to support a fixed exchange rate and is the least desirable one because of distortions, loopholes, and political economy issues - FXI: "it may be that private speculation is at times destabilizing" - "this device is feasible and not undesirable, though it is largely unnecessary since private speculative transactions will provide currency demand with only minor movements in exchange rates - "the objective of smoothing out **temporary fluctuations** and not interfering with fundamental adjustments - "there should be a simple criterion of success whether the agency makes or loses money" - Non-linear system: $F(\hat{X}_t, \omega \sigma^2(\hat{X}_t)) = 0$, where $\hat{X}_t = \bar{X}(1 + \nu \hat{x}_t)$ for $\nu = 1$, and $\bar{X} = 1$: F(1,0) = 0. - Conventional approximation: $F(X_t, \omega\sigma^2(X_t)) = F(1,0) + \overbrace{F_X'(1,0) \cdot x_t}^{B \cdot x_t = 0} \cdot \nu + \mathcal{O}(\nu^2),$ $X_t = \bar{X}(1 + \nu x_t) \text{ such that } x_t \hat{x}_t = \mathcal{O}(\nu) \text{ and } \omega\sigma^2(X_t) = \mathcal{O}(\nu^2).$ • Non-linear system: $F(\hat{X}_t, \omega \sigma^2(\hat{X}_t)) = 0$, where $\hat{X}_t = \bar{X}(1 + \nu \hat{x}_t)$ for $\nu = 1$, and $\bar{X} = 1$: F(1,0) = 0. Conventional approximation: $$F(X_t, \omega \sigma^2(X_t)) = F(1,0) + \overbrace{F_X'(1,0) \cdot x_t}^{B \cdot x_t = 0} \cdot \nu + \mathcal{O}(\nu^2),$$ $$X_t = \bar{X}(1 + \nu x_t) \text{ such that } x_t - \hat{x}_t = \mathcal{O}(\nu) \text{ and } \omega \sigma^2(X_t) = \mathcal{O}(\nu^2).$$ - Our approximation: $\omega = \bar{\omega}/\nu^2$ such that $\omega \sigma^2(X_t) = \bar{\omega}\sigma^2(x_t) = \mathcal{O}(1)$ $F(X_t, \omega \sigma^2(X_t)) = F(1, \bar{\omega}\sigma^2(x_t)) + F'_X(1, \bar{\omega}\sigma^2(x_t)) \cdot x_t \cdot \nu + \mathcal{O}(\nu^2).$ - Lemma: $F(1, \bar{\omega}\sigma^2(x_t)) = 0$, and the non-linear system $$F_X'(1, \bar{\omega}\sigma^2(x_t)) \cdot x_t = 0$$ has solution $x_t = \hat{x}_t + \mathcal{O}(\nu)$ with $\bar{\omega}\sigma(x_t) - \omega\sigma(\hat{X}_t) = \mathcal{O}(\nu)$. • Parametrize shocks and $\bar{\omega}$ by ν : $$egin{aligned} n_t^* &= ho n_{t-1}^* + u \sigma_n arepsilon_t^n, & arepsilon_t^n &\sim \mathcal{N}(0,1) \ & ilde{q}_t^* &= ho ilde{q}_{t-1}^* + u \sigma_q arepsilon_t^q, & arepsilon_t^q &\sim \mathcal{N}(0,1) \ &ar{\omega} &= ilde{\omega}/ u^2 \end{aligned}$$ • Parametrize shocks and $\bar{\omega}$ by ν : $$egin{aligned} n_t^* &= ho n_{t-1}^* + u \sigma_n arepsilon_t^n, & arepsilon_t^n &\sim \mathcal{N}(0,1) \ & ilde{q}_t^* &= ho ilde{q}_{t-1}^* + u \sigma_q arepsilon_t^q, & arepsilon_t^q &\sim \mathcal{N}(0,1) \ & ar{\omega} &= ilde{\omega}/ u^2 \end{aligned}$$ Optimal policy rule: $$(1-\gamma)x_{t+1} = -\gamma \bar{\omega}\mu_t(b_t^* - n_t^* - f_t^*)(e_{t+1} - \mathbb{E}_t e_{t+1})$$ • Parametrize shocks and $\bar{\omega}$ by ν : $$\begin{split} & \textit{n}_{t}^{*} = \rho \textit{n}_{t-1}^{*} + \nu \sigma_{\textit{n}} \varepsilon_{t}^{\textit{n}}, \qquad \varepsilon_{t}^{\textit{n}} \sim \mathcal{N}(0, 1) \\ & \tilde{q}_{t}^{*} = \rho \tilde{q}_{t-1}^{*} + \nu \sigma_{\textit{q}} \varepsilon_{t}^{\textit{q}}, \qquad \varepsilon_{t}^{\textit{q}} \sim \mathcal{N}(0, 1) \\ & \bar{\omega} = \tilde{\omega} / \nu^{2} \end{split}$$ Optimal policy rule: $$(1-\gamma)x_{t+1} = -\gamma \bar{\omega}\mu_t (b_t^* - n_t^* - f_t^*)(e_{t+1} - \mathbb{E}_t e_{t+1})$$ • Substitute in $e_t = \tilde{q}_t - z_t + x_t$: $$x_{t+1} = -\frac{\gamma \bar{\omega} \mu_t (b_t^* - n_t^* - f_t^*)}{(1 - \gamma) + \gamma \bar{\omega} \mu_t (b_t^* - n_t^* - f_t^*)} \left[\tilde{q}_{t+1} - z_{t+1} - \mathbb{E}_t (\tilde{q}_{t+1} - z_{t+1}) \right]$$ • Parametrize shocks and $\bar{\omega}$ by ν : $$\begin{split} &\boldsymbol{n}_{t}^{*} = \rho \boldsymbol{n}_{t-1}^{*} + \nu \sigma_{n} \varepsilon_{t}^{n}, & \varepsilon_{t}^{n} \sim \mathcal{N}(0, 1) \\ &\tilde{\boldsymbol{q}}_{t}^{*} = \rho \tilde{\boldsymbol{q}}_{t-1}^{*} + \nu \sigma_{q} \varepsilon_{t}^{q}, & \varepsilon_{t}^{q} \sim \mathcal{N}(0, 1) \\ &\bar{\omega} = \tilde{\omega}/\nu^{2} \end{split}$$ Optimal policy rule: $$(1-\gamma)x_{t+1} = -\gamma \bar{\omega}\mu_t (b_t^* - n_t^* - f_t^*)(e_{t+1} - \mathbb{E}_t e_{t+1})$$ • Substitute in $e_t = \tilde{q}_t - z_t + x_t$: $$x_{t+1} = -\frac{\gamma \bar{\omega} \mu_t (b_t^* - n_t^* - f_t^*)}{(1 - \gamma) + \gamma \bar{\omega} \mu_t (b_t^* - n_t^* - f_t^*)} \left[\nu \sigma_q \varepsilon_{t+1}^q - \nu \varepsilon_{t+1}^z \right]$$ • Parametrize shocks and $\bar{\omega}$ by ν : $$egin{aligned} n_t^* &= ho n_{t-1}^* + u \sigma_n arepsilon_t^n, & arepsilon_t^n &\sim \mathcal{N}(0,1) \ & ilde{q}_t^* &= ho ilde{q}_{t-1}^* + u \sigma_q arepsilon_t^q, & arepsilon_t^q &\sim \mathcal{N}(0,1) \ & ar{\omega} &= ilde{\omega}/ u^2 \end{aligned}$$ Optimal policy rule: $$(1-\gamma)x_{t+1} = -\gamma \bar{\omega}\mu_t (b_t^* - n_t^* - f_t^*)(e_{t+1} - \mathbb{E}_t e_{t+1})$$ • Substitute in $e_t = \tilde{q}_t - z_t + x_t$: $$x_{t+1} = -\delta_t \left[\nu \sigma_q \varepsilon_{t+1}^q - \nu \varepsilon_{t+1}^z \right]$$ • Parametrize shocks and $\bar{\omega}$ by ν : $$n_t^* = \rho n_{t-1}^* + \nu \sigma_n \varepsilon_t^n, \qquad \varepsilon_t^n \sim \mathcal{N}(0, 1)$$ $\tilde{q}_t^* = \rho \tilde{q}_{t-1}^* + \nu \sigma_q \varepsilon_t^q, \qquad \varepsilon_t^q \sim \mathcal{N}(0, 1)$ Optimal policy rule: $$(1-\gamma)x_{t+1} = -\gamma \bar{\omega}\mu_t(b_t^* - n_t^* - f_t^*)(e_{t+1} - \mathbb{E}_t e_{t+1})$$ • Substitute in $e_t = \tilde{q}_t - z_t + x_t$: $$x_{t+1} = -\delta_t \left[\nu \sigma_q \varepsilon_{t+1}^q - \nu \varepsilon_{t+1}^z \right]$$ - Lemma: - i) this system is first-order approximation to the exact solution as $\nu \to 0$, - ii) $(n_t^*, \tilde{a}_t^*, b_t, x_t, z_t) = \mathcal{O}(\nu)$ and $(\delta_t, \bar{\omega}\sigma_t^2) = \mathcal{O}(1)$, $\bar{\omega} = \tilde{\omega}/\nu^2$ - iii) (δ_t, ς_t) are time-varying with $\{\varepsilon_{t-i}^n, \varepsilon_{t-i}^q\}_{i>0}$ and thus the solution is generally non-linear in $(\varepsilon_{+}^{n}, \varepsilon_{+}^{q})$ - non-linear dynamics with stochastic time-varying volatility $$Y_t = \left\{ \frac{\log(C_{Tt}/\bar{C}_T)}{\nu}, \dots \omega \sigma_t^2 \right\}$$ # Approximation $\mathcal{O}(\nu)$ $$Y_t = \left\{ \frac{\log(C_{Tt}/\bar{C}_T)}{\nu}, \dots \omega \sigma_t^2 \right\}$$ • Planner's problem: $$\begin{aligned} \min_{z_0, \sigma^2, \{z_1, x_1\}} & \quad \frac{1}{2} \, \mathbb{E} \Big\{ (1 - \gamma) x_1^2 + \gamma \big(z_0^2 + z_1^2 \big) \Big\} \\ \text{s.t.} & \quad z_0 + z_1 = 0 \\ & \quad \mathbb{E} \Delta z_1 = \bar{\omega} \sigma^2 n_0^* \\ & \quad \sigma^2 = \text{var} \big(\tilde{q}_1 - z_1 + x_1 \big) \end{aligned}$$ • Planner's problem: $$\begin{aligned} \min_{z_0,\sigma^2,\{x_1\}} \quad & \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} z_0^2 \right\} \\ \text{s.t.} \quad & z_0 = -\frac{\bar{\omega}}{2} \sigma^2 n_0^* \\ & \sigma^2 = \mathrm{var} \big(\tilde{q}_1 + x_1 \big) \end{aligned}$$ • Planner's problem: $$\min_{\{x_1\}} \quad \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} \big(\tilde{q}_1 + x_1 \big)^2}_{\sigma^2} \right]^2 \right\}$$ Planner's problem: $$\min_{\{x_1\}} \quad \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} (\tilde{q}_1 + x_1)^2}_{\sigma^2} \right]^2 \right\}$$ • Optimal policy: $$x_1 + 2\bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2}\right)^2 \sigma^2 \underbrace{\left(\tilde{q}_1 + x_1\right)}_{e_1 = \mathbb{E}_{e_1}} = 0$$ Planner's problem: $$\min_{\{x_1\}} \quad \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} \left(\tilde{q}_1 + x_1 \right)^2}_{\sigma^2} \right]^2 \right\}$$ • Optimal policy: $$x_1 = -\delta \tilde{q}_1, \qquad \delta = \frac{\frac{\bar{\gamma}}{2}\bar{\omega}^2 n_0^{*2}\sigma^2}{1 + \frac{\bar{\gamma}}{2}\bar{\omega}^2 n_0^{*2}\sigma^2}$$ • Planner's problem: $$\min_{\{x_1\}} \quad \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} \left(\tilde{q}_1 + x_1 \right)^2}_{\sigma^2} \right]^2 \right\}$$ Optimal policy: $$x_1 = -\delta \tilde{q}_1, \qquad \delta = \frac{\frac{\bar{\gamma}}{2}\bar{\omega}^2 n_0^{*2}\sigma^2}{1 + \frac{\bar{\gamma}}{2}\bar{\omega}^2 n_0^{*2}\sigma^2}$$ • Equilibrium volatility: $$\sigma^2 = \mathbb{E}(\tilde{q}_1 + x_1)^2 = (1 - \delta)^2 \mathbb{E} \tilde{q}_1^2 = \left(\frac{1}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2}\right)^2 \mathbb{E} \tilde{q}_1^2$$ — unique fixed point σ^2 Planner's problem: $$\begin{aligned} & \underset{\{x_1\}}{\text{min}} & \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2
\left[\underbrace{\mathbb{E} \left(\tilde{q}_1 + x_1 \right)^2}_{\sigma^2} \right]^2 \right\} \\ & x_1 = -\delta \tilde{q}_1, \qquad \delta = \frac{\frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2} \end{aligned}$$ Optimal policy: $$x_1 = -\delta \tilde{q}_1, \qquad \delta = rac{ rac{ ilde{\gamma}}{2} ar{\omega}^2 n_0^{*2} \sigma^2}{1 + rac{ ilde{\gamma}}{2} ar{\omega}^2 n_0^{*2} \sigma^2}$$ Equilibrium volatility: $$\sigma^{2} = \mathbb{E}(\tilde{q}_{1} + x_{1})^{2} = (1 - \delta)^{2} \mathbb{E} \tilde{q}_{1}^{2} = \left(\frac{1}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^{2} n_{0}^{*2} \sigma^{2}}\right)^{2} \mathbb{E} \tilde{q}_{1}^{2}$$ — unique fixed point σ^2 • Assume $\tilde{q}_1 = \nu \varepsilon^q$, $n_0^* = \nu \varepsilon^n$ and $\bar{\omega} = \tilde{\omega}/\nu^2$: $$\sigma^2 = \left(\frac{1}{1 + \frac{\bar{\gamma}}{2} \frac{\tilde{\omega}^2}{\nu^4} (\nu \varepsilon^n)^2 \sigma^2}\right)^2 \mathbb{E}(\nu \varepsilon^q)^2$$ Planner's problem: $$\begin{aligned} & \underset{\{x_1\}}{\text{min}} & \frac{1}{2} \left\{ \mathbb{E} x_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} \left(\tilde{q}_1 + x_1 \right)^2}_{\sigma^2} \right]^2 \right\} \\ & x_1 = -\delta \tilde{q}_1, \qquad \delta = \frac{\frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2} \end{aligned}$$ Optimal policy: $$x_1 = -\delta \tilde{q}_1, \qquad \delta = rac{ rac{ ilde{\gamma}}{2} ar{\omega}^2 n_0^{*2} \sigma^2}{1 + rac{ ilde{\gamma}}{2} ar{\omega}^2 n_0^{*2} \sigma^2}$$ Equilibrium volatility: $$\sigma^2 = \mathbb{E}(\tilde{q}_1 + x_1)^2 = (1 - \delta)^2 \mathbb{E}\tilde{q}_1^2 = \left(\frac{1}{1 + \frac{\bar{\gamma}}{2}\bar{\omega}^2 n_0^{*2}\sigma^2}\right)^2 \mathbb{E}\tilde{q}_1^2$$ — unique fixed point σ^2 • Assume $\tilde{q}_1 = \nu \varepsilon^q$, $n_0^* = \nu \varepsilon^n$ and $\bar{\omega} = \tilde{\omega}/\nu^2$: $$\frac{\sigma^2}{\nu^2} = \left(\frac{1}{1 + \frac{\tilde{\gamma}}{2} \tilde{\omega}^2(\varepsilon^n)^2 \frac{\sigma^2}{\nu^2}}\right)^2 \mathbb{E}(\varepsilon^q)^2$$ Planner's problem: $$\begin{aligned} & \min_{\{\mathbf{x}_1\}} & & \frac{1}{2} \left\{ \mathbb{E} \mathbf{x}_1^2 + \bar{\gamma} \left(\frac{\bar{\omega} n_0^*}{2} \right)^2 \left[\underbrace{\mathbb{E} \left(\tilde{q}_1 + \mathbf{x}_1 \right)^2}_{\sigma^2} \right]^2 \right\} \\ & & \mathbf{x}_1 = -\delta \tilde{q}_1, \qquad \delta = \frac{\frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2} \end{aligned}$$ Optimal policy: $$\epsilon_1 = -\delta ilde{q}_1, \qquad \delta = rac{ rac{\gamma}{2}ar{\omega}^2 extsf{n}_0^{*2}\sigma^2}{1+ rac{ar{\gamma}}{2}ar{\omega}^2 extsf{n}_0^{*2}\sigma}$$ Equilibrium volatility: $$\sigma^2 = \mathbb{E}(\tilde{q}_1 + x_1)^2 = (1 - \delta)^2 \mathbb{E} \tilde{q}_1^2 = \left(\frac{1}{1 + \frac{\bar{\gamma}}{2} \bar{\omega}^2 n_0^{*2} \sigma^2}\right)^2 \mathbb{E} \tilde{q}_1^2$$ — unique fixed point σ^2 • Assume $\tilde{q}_1 = \nu \varepsilon^q$, $n_0^* = \nu \varepsilon^n$ and $\bar{\omega} = \tilde{\omega}/\nu^2$: $$\frac{\sigma^2}{\nu^2} = \left(\frac{1}{1 + \frac{\tilde{\gamma}}{2}\tilde{\omega}^2(\varepsilon^n)^2 \frac{\sigma^2}{\nu^2}}\right)^2 \mathbb{E}(\varepsilon^q)^2$$ $$\Rightarrow \sigma^2 = \mathcal{O}(\nu^2), \quad \bar{\omega}\sigma^2 = \mathcal{O}(1), \quad \delta = \mathcal{O}(1), \quad z_0, \{x_1\} = \mathcal{O}(\nu)$$ • Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI ullet Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI Dynamic system: $$\mathbb{E}_t \Delta z_{t+1} = \bar{\omega} \sigma_t^2 n_t^*$$ $$\beta b_t^* = b_{t-1}^* - z_t$$ - ullet Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI - ▶ back Dynamic system: $$z_t = (1 - \beta)b_{t-1}^* - \bar{\omega}\sigma_t^2 n_t^* t$$ - Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI - ▶ back • Dynamic system: $$z_t = (1 - \beta)b_{t-1}^* - \bar{\omega}\sigma_t^2 n_t^* t$$ • Optimal policy rule $x_t = -\delta_{t-1}(\tilde{q}_t - z_t + \mathbb{E}_{t-1}z_t) \quad \Rightarrow \quad \mathbb{E} x_t^2, \mathbb{E} z_t^2, \sigma_t^2$ ullet Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI ▶ back • Dynamic system: $$z_t = (1 - \beta)b_{t-1}^* - \bar{\omega}\sigma_t^2 n_t^* t$$ - Optimal policy rule $x_t = -\delta_{t-1}(\tilde{q}_t z_t + \mathbb{E}_{t-1}z_t) \quad \Rightarrow \quad \mathbb{E}x_t^2, \mathbb{E}z_t^2, \sigma_t^2$ - Planner's problem: $$\min_{\{\delta_t, \sigma_t^2\}} \qquad \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\beta^2 (1 - \gamma) \left(\frac{\delta_t}{1 - \delta_t} \right)^2 \sigma_t^2 + \gamma \bar{\omega}^2 (\sigma_t^2 n_t^*)^2 \right] \text{s.t.} \qquad \frac{\sigma_t^2}{(1 - \delta_t)^2} = \sigma_q^2 + \bar{\omega}^2 \, \mathbb{E}_t \left(\sigma_{t+1}^2 n_{t+1}^* \right)^2 \tag{1}$$ • Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI ▶ back • Dynamic system: $$z_t = (1 - \beta)b_{t-1}^* - \bar{\omega}\sigma_t^2 n_t^* t$$ - Optimal policy rule $x_t = -\delta_{t-1}(\tilde{q}_t z_t + \mathbb{E}_{t-1}z_t) \quad \Rightarrow \quad \mathbb{E}x_t^2, \mathbb{E}z_t^2, \sigma_t^2$ - Planner's problem: $$\min_{\{\delta_t, \sigma_t^2\}} \qquad \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\beta^2 (1 - \gamma) \left(\frac{\delta_t}{1 - \delta_t} \right)^2 \sigma_t^2 + \gamma \bar{\omega}^2 (\sigma_t^2 n_t^*)^2 \right] \text{s.t.} \qquad \frac{\sigma_t^2}{(1 - \delta_t)^2} = \sigma_q^2 + \bar{\omega}^2 \, \mathbb{E}_t \left(\sigma_{t+1}^2 n_{t+1}^* \right)^2 \tag{1}$$ Optimal policy: $$\frac{\delta_t}{1-\delta_t} = \frac{\bar{\omega}^2}{\beta} \left[\frac{\gamma}{1-\gamma} \frac{1}{\beta} + \delta_{t-1} (2-\delta_{t-1}) \right] \sigma_t^2 (n_t^*)^2 \tag{2}$$ • Assume: i.i.d. symmetric n_t^* shocks, no h/h or gov't FXI ▶ back 26 / 16 • Dynamic system: system: $$z_t = (1-eta) b_{t-1}^* - ar{\omega} \sigma_t^2 \emph{n}_t^* t$$ • Optimal policy rule $x_t = -\delta_{t-1}(\tilde{q}_t - z_t + \mathbb{E}_{t-1}z_t) \quad \Rightarrow \quad \mathbb{E}x_t^2, \mathbb{E}z_t^2, \sigma_t^2$ Planner's problem: $$\min_{\{\delta_t, \sigma_t^2\}} \qquad \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\beta^2 (1 - \gamma) \left(\frac{\delta_t}{1 - \delta_t} \right)^2 \sigma_t^2 + \gamma \bar{\omega}^2 (\sigma_t^2 n_t^*)^2 \right] \text{s.t.} \qquad \frac{\sigma_t^2}{(1 - \delta_t)^2} = \sigma_q^2 + \bar{\omega}^2 \, \mathbb{E}_t (\sigma_{t+1}^2 n_{t+1}^*)^2 \tag{1}$$ Optimal policy: $$\frac{\delta_t}{1-\delta_t} = \frac{\bar{\omega}^2}{\beta} \left[\frac{\gamma}{1-\gamma} \frac{1}{\beta} + \delta_{t-1} (2-\delta_{t-1}) \right] \sigma_t^2 (n_t^*)^2 \tag{2}$$ — conjecture $$\sigma_t^2 = \sigma^2(\delta_{t-1}, n_t^{*2})$$ — solve for $\sigma_t^2 = \sigma^2(\delta_t, n_t^{*2})$ from eq. (1) — solve for $$\delta_{t-1} = \delta_{-1}(\delta_t, n_t^{*2})$$ from eq. (2) — invert $\delta_t = \delta(\delta_{t-1}, n_t^{*2})$ and update $\sigma_t^2 = \sigma^2(\delta(\delta_{t-1}, n_t^{*2}), n_t^{*2})$ ## **Policy Functions** - Calibration: $\beta=0.96^{\frac{1}{12}}$, $\gamma=0.2$, $\sigma_q^2=\frac{0.02^2}{12}$, $\bar{\omega}^2\sigma_n^2$ to $\times 5$ ER volatility - ullet More aggressive peg δ_t in response to large shocks $\{n_{t-j}^{*2}\}$ - ER volatility is < 3% per annum even when $\delta_{t-1} = n_t^* = 0$ because future policy offsets large n_t^* ## Discretionary Policy • Markov problem: $$V(b^*, s) = \min_{z, x, b^{*'}} \quad \gamma z^2 + (1 - \gamma) x^2 + \beta \mathbb{E} V(b^{*'}, s')$$ s.t. $$\mathbb{E} z(b^{*'}, s') = z - \omega \sigma^2 (b^{*'} - n^*),$$ $$\beta b^{*'} = b^* - z,$$ $$\sigma^2 = \text{var} (\tilde{q}' + x(b^{*'}, s') - z(b^{*'}, s')),$$ - \Rightarrow path of $\{z_t, b_t^*\}$ is independent of x_t - \Rightarrow optimal policy focuses on closing the output gap ## Optimal FX Policy • FX policy problem: $$\min_{\{z_t, b_t^*\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t z_t^2$$ s.t. $$\beta b_t^* = b_{t-1}^* - z_t$$ ## Optimal FX Policy FX policy problem: $$\min_{\{z_t,b_t^*\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t z_t^2$$ s.t. $$\beta b_t^* = b_{t-1}^* - z_t$$ • Has standard recursive formulation: $$V(b^*) = \min_{b^{*'}} \frac{1}{2} (b^* - \beta b^{*'})^2 + \beta V(b^{*'})$$ #### Proposition Optimal FX policy is time consistent and implements efficient risk sharing $z_t = 0$. # Exchange Rate Regime Source: Ilzetzki, Reinhart, and Rogoff (2019) ### **Anchor Currencies** Source: Ilzetzki, Reinhart, and Rogoff (2019) - ullet Assume fraction κ_a of arbitrageurs are foreigners and $N_t^* = N_{Ht}^* + N_{Ft}^*$ - Capital controls: — tax on h/h deposits/loans: $$\beta \frac{R_t}{1+\tau_t^h} \mathbb{E}_t \, \frac{C_{Nt}}{C_{Nt+1}} = 1,$$ - tax on bond holdings of domestic traders: $\tilde{R}^*_{Ht+1} \equiv \frac{R_t}{1+ au_{Ht}} \, \frac{1+ au_{Ht}^*}{R_t^*} \, \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$, - tax on bond holdings of foreign traders: $\tilde{R}^*_{Ft+1} \equiv \frac{1}{1+ au_{Ft}} \frac{R_t}{R_t^*} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$ - ullet Assume fraction κ_a of arbitrageurs are foreigners and $N_t^* = N_{Ht}^* + N_{Ft}^*$ - Capital controls: - tax on h/h deposits/loans: $\beta \frac{R_t}{1+\tau_t^h} \mathbb{E}_t \frac{C_{Nt}}{C_{Nt+1}} = 1,$ - tax on bond holdings of domestic traders: $\tilde{R}^*_{Ht+1} \equiv \frac{R_t}{1+\tau_{th}} \frac{1+\tau^*_{ht}}{R^*_t} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$, - tax on bond holdings of foreign traders: $\tilde{R}^*_{Ft+1} \equiv \frac{1}{1+ au_{Ft}} \frac{R_t}{R_t^*} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$ - ullet Efficient **risk sharing** requires offsetting low demand for H bonds $N_t^* > 0$: $$\beta R_t^* \mathbb{E}_t \frac{C_{Tt}}{C_{Tt+1}} = \left(1 + \tau_t^h\right) \left[\left(1 - \kappa_{\boldsymbol{\theta}}\right) \frac{1 + \tau_{Ht}^*}{1 + \tau_{Ht}} +
\kappa_{\boldsymbol{\theta}} \frac{1}{1 + \tau_{Ft}} \right] + \omega \sigma_t^2 \frac{B_t^* - N_t^* - F_t^*}{R_t^*}$$ - i) FXI increase supply of dollars - ii) $R_t \uparrow$ offsets depreciation, while $\tau_t^h > 0$ keeps x_t undistorted - iii) subsidize H bonds for all traders $\tau_{Ht} = \tau_{Ft} < 0$ - iv) tax F bonds $au_{Ht}^* > 0$ and subsidize H bonds $au_{Ft} < 0$ for int'l flows - ullet Assume fraction κ_a of arbitrageurs are foreigners and $N_t^* = N_{Ht}^* + N_{Ft}^*$ - Capital controls: - tax on h/h deposits/loans: $\beta \frac{R_t}{1+\tau_t^h} \mathbb{E}_t \frac{C_{Nt}}{C_{Nt+1}} = 1,$ - tax on bond holdings of domestic traders: $\tilde{R}^*_{Ht+1} \equiv \frac{R_t}{1+\tau_{Ht}} \, \frac{1+\tau_{Ht}^*}{R_t^*} \, \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1,$ - tax on bond holdings of foreign traders: $\tilde{R}^*_{\mathit{Ft}+1} \equiv \frac{1}{1+\tau_{\mathit{Ft}}} \frac{R_t}{R_t^*} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$ - \bullet Collecting \mathbf{rents} requires manipulating $\tilde{R}_{\mathit{Ft}}^*$: $$\frac{B_{t}^{*}}{R_{t}^{*}} = B_{t-1}^{*} + Y_{Tt} - C_{Tt} - \tilde{R}_{Ft}^{*} \left(\kappa_{a} \frac{\mathbb{E}_{t-1} \tilde{R}_{Ft}^{*}}{\omega \sigma_{t-1}^{2}} - N_{Ft-1}^{*} \right)$$ - ullet Assume fraction κ_a of arbitrageurs are foreigners and $N_t^* = N_{Ht}^* + N_{Ft}^*$ - Capital controls: - tax on h/h deposits/loans: $\beta \frac{R_t}{1+\tau_t^h} \mathbb{E}_t \frac{C_{Nt}}{C_{Nt+1}} = 1,$ - tax on bond holdings of domestic traders: $\tilde{R}^*_{Ht+1} \equiv \frac{R_t}{1+\tau_{Ht}} \frac{1+\tau_{Ht}^*}{R_t^*} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$, - tax on bond holdings of foreign traders: $\tilde{R}^*_{Ft+1} \equiv \frac{1}{1+\tau_{Ft}} \frac{R_t}{R_t^*} \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}} 1$ - \bullet Collecting \mathbf{rents} requires manipulating \tilde{R}_{Ft}^* : $$\tilde{\textit{r}}^*_{\textit{Ft}} = -(1-\kappa_{\textit{a}})(\tau^*_{\textit{Ht}} - \tau_{\textit{Ht}} + \tau_{\textit{Ft}}) - \bar{\omega}\sigma_t^2\big(b_t^* - \textit{n}_t^* - \textit{f}_t^*\big)$$ - i) FXI are effective - ii) financial repression of h/h au_t^h changes returns $ilde{r}_{Ft}^*$ only via b_t^* - iii) uniform taxes on H bonds $\tau_{Ht} = \tau_{Ft}$ or int'l flows $\tau_{Ht}^* = -\tau_{Ft}$ do not work - iv) taxes on inflows or outflows work if $0 < \kappa_{\mathsf{a}} < 1$ #### Terms of Trade - Baseline model assumes T and NT: - might be a good approximation for commodity exporters - contrasts with OR'95, DE'03, GM'05, etc. #### Terms of Trade - Baseline model assumes T and NT: - might be a good approximation for commodity exporters - contrasts with OR'95, DE'03, GM'05, etc. - Allow for home and foreign goods: $$C_t = C_{Ht}^{1-\gamma} C_{Ft}^{\gamma}, \qquad C_{Ht}^* = P_{Ht}^{-\varepsilon} C_t^*$$ - log-linear preferences for simplicity - optimal steady-state production subsidies - three shocks: n_t^* , a_t , c_t^* #### Terms of Trade - Baseline model assumes T and NT: - might be a good approximation for commodity exporters - contrasts with OR'95, DE'03, GM'05, etc. - Allow for home and foreign goods: $$C_t = C_{Ht}^{1-\gamma} C_{Ft}^{\gamma}, \qquad C_{Ht}^* = P_{Ht}^{-\varepsilon} C_t^*$$ - log-linear preferences for simplicity - optimal steady-state production subsidies - three shocks: n_t^* , a_t , c_t^* - Currency of invoicing: - producer (PCP) = sticky wages - dominant (DCP) • Planner's problem under PCP: $$\min_{\{z_t, \mathbf{x}_t, b_t^*, f_t^*, \sigma_t^2\}} \quad \frac{1}{2} \, \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\kappa \underbrace{z_t^2}_{c_{\mathit{Ft}} - \tilde{c}_{\mathit{Ft}}} + \underbrace{x_t^2}_{y_t - \tilde{y}_t} \Big]$$ • Planner's problem under PCP: $$\begin{aligned} \min_{\{z_t, \mathsf{x}_t, b_t^*, f_t^*, \sigma_t^2\}} \quad & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\kappa \underbrace{z_t^2}_{c_{\mathsf{F}t} - \tilde{c}_{\mathsf{F}t}} + \underbrace{x_t^2}_{y_t - \tilde{y}_t} \Big] \\ \text{s.t.} \quad & \beta b_t^* = b_{t-1}^* - z_t + \frac{\varepsilon - 1}{\varepsilon} \mathsf{x}_t, \\ & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), \\ & \sigma_t^2 = \mathrm{var}_t \big(\tilde{q}_{t+1} - (1 - \bar{\gamma}) z_{t+1} + x_{t+1} \big), \quad \tilde{q}_t \equiv a_t - \tilde{c}_{\mathsf{F}t} \end{aligned}$$ Planner's problem under PCP: $$\begin{aligned} & \min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\kappa \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + \underbrace{x_t^2}_{y_t - \tilde{y}_t} \right] \\ & \text{s.t.} & \beta b_t^* = b_{t-1}^* - z_t + \frac{\varepsilon - 1}{\varepsilon} x_t, \\ & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \left(b_t^* - n_t^* - f_t^* \right), \\ & \sigma_t^2 = \text{var}_t \left(\tilde{q}_{t+1} - (1 - \bar{\gamma}) z_{t+1} + x_{t+1} \right), \quad \tilde{q}_t \equiv a_t - \tilde{c}_{Ft} \end{aligned}$$ • First-best policy: same as in the baseline model • Planner's problem under PCP: $$\min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\kappa \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + \underbrace{x_t^2}_{y_t - \tilde{y}_t} \right]$$ s.t. $$\beta b_t^* = b_{t-1}^* - z_t + \frac{\varepsilon - 1}{\varepsilon} x_t,$$ $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \left(b_t^* - n_t^* - f_t^* \right),$$ $$\sigma_t^2 = \operatorname{var}_t \left(\tilde{q}_{t+1} - \left(1 - \bar{\gamma} \right) z_{t+1} + x_{t+1} \right), \quad \tilde{q}_t \equiv a_t - \tilde{c}_{Ft}$$ - First-best policy: same as in the baseline model - Divine coincidence: if $a_t = c_t^*$ follow a random walk, then $\tilde{q}_t = 0$ and the MP alone can implement the first-best allocation $x_t = z_t = 0$ • Planner's problem under PCP: $$\begin{aligned} & \min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\kappa \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + \underbrace{x_t^2}_{y_t - \tilde{y}_t} \Big] \\ & \text{s.t.} & \beta b_t^* = b_{t-1}^* - z_t + \frac{\varepsilon - 1}{\varepsilon} x_t, \\ & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), \\ & \sigma_t^2 = \mathrm{var}_t \big(\tilde{q}_{t+1} - (1 - \bar{\gamma}) z_{t+1} + x_{t+1} \big), \quad \tilde{q}_t \equiv a_t - \tilde{c}_{Ft} \end{aligned}$$ - First-best policy: same as in the baseline model - **Divine coincidence**: if $a_t = c_t^*$ follow a random walk, then $\tilde{q}_t = 0$ and the MP alone can implement the first-best allocation $x_t = z_t = 0$ - **Second-best policy**: given $x_t \neq 0$, it is not possible to implement $z_t = 0$, but the optimal FX policy or peg still close the UIP wedge • Planner's problem under DCP: $$\min_{\{z_t, \mathbf{x}_t, b_t^*, f_t^*, \sigma_t^2\}} \quad \frac{1}{2} \ \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \underbrace{z_t^2}_{c_{\mathit{Ft}} - \tilde{c}_{\mathit{Ft}}} + (1 - \gamma) \underbrace{x_t^2}_{y_{\mathit{Ht}} - \tilde{y}_{\mathit{Ht}}} + \kappa \tilde{q}_t^2 \Big]$$ ## Optimal Policy: DCP • Planner's problem under DCP: $$\begin{aligned} \min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} \quad & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\gamma \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + (1 - \gamma) \underbrace{x_t^2}_{y_{Ht} - \tilde{y}_{Ht}} + \kappa \tilde{q}_t^2 \right] \\ \text{s.t.} \quad & \beta b_t^* = b_{t-1}^* - z_t + (\varepsilon - 1) \tilde{q}_t, \\ \mathbb{E}_t \Delta z_{t+1} &= -\bar{\omega} \sigma_t^2 \left(b_t^* - n_t^* - f_t^* \right), \\ \sigma_t^2 &= \operatorname{var}_t \left(\tilde{q}_{t+1} - z_{t+1} + x_{t+1} \right), \quad \tilde{q}_t = a_t - \tilde{c}_{Ft} \end{aligned}$$ ## Optimal Policy: DCP • Planner's problem under DCP: $$\begin{aligned} \min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} \quad & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + (1 - \gamma) \underbrace{x_t^2}_{y_{Ht} - \tilde{y}_{Ht}} + \kappa \tilde{q}_t^2 \Big] \\ \text{s.t.} \quad & \beta b_t^* = b_{t-1}^* - z_t + (\varepsilon - 1) \tilde{q}_t, \\ & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), \\ & \sigma_t^2 = \text{var}_t \left(\tilde{q}_{t+1} - z_{t+1} + x_{t+1} \right), \quad \tilde{q}_t = a_t - \tilde{c}_{Ft} \end{aligned}$$ • First-best policy: same as in the baseline model, even though leaves export gap open # Optimal Policy: DCP Planner's problem under DCP: $$\begin{aligned} \min_{\{z_t, x_t, b_t^*, f_t^*, \sigma_t^2\}} \quad & \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma \underbrace{z_t^2}_{c_{Ft} - \tilde{c}_{Ft}} + (1 - \gamma) \underbrace{x_t^2}_{y_{Ht} - \tilde{y}_{Ht}} + \kappa \tilde{q}_t^2 \Big] \\ \text{s.t.} \quad & \beta b_t^* = b_{t-1}^* - z_t + (\varepsilon - 1) \tilde{q}_t, \\ & \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big), \\ & \sigma_t^2 = \text{var}_t \left(\tilde{q}_{t+1} - z_{t+1} + x_{t+1} \right), \quad \tilde{q}_t = a_t - \tilde{c}_{Ft} \end{aligned}$$ - First-best policy: same as in the baseline model, even though leaves export gap open - Divine coincidence: if $a_t = c_t^*$ follow a random walk, then $\tilde{q}_t = 0$ and the MP alone can close all gaps $x_t = z_t = \tilde{q}_t = 0$ - Second-best policy: given $x_t \neq 0$, it is not possible to implement $z_t = 0$, but the optimal FX policy or peg still close the UIP wedge • Replace fully sticky prices with Calvo friction - Replace fully sticky prices with Calvo friction - Planner's problem: min $$\frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma z_{t}^{2} + (1 - \gamma)(x_{t}^{2} + \alpha \pi_{Nt}^{2}) \Big]$$ s.t. $$\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} (b_{t}^{*} - n_{t}^{*} - f_{t}^{*})$$ $$\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$$ $$\pi_{Nt} = \kappa x_{t} + \beta \mathbb{E}_{t} \pi_{Nt+1} +
\nu_{t}$$ $$\sigma_{t}^{2} = \text{var}_{t} (\tilde{q}_{t+1} - z_{t+1} + x_{t+1} + \pi_{Nt+1})$$ - Replace fully sticky prices with Calvo friction - Planner's problem: $$\min \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) (x_t^2 + \alpha \pi_{Nt}^2) \Big]$$ s.t. $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ $$\beta b_t^* = b_{t-1}^* - z_t$$ $$\pi_{Nt} = \kappa x_t + \beta \mathbb{E}_t \pi_{Nt+1} + \nu_t$$ $$\sigma_t^2 = \operatorname{var}_t (\tilde{q}_{t+1} - z_{t+1} + \underbrace{x_{t+1} + \pi_{Nt+1}}_{\hat{x}_{t+1}})$$ - Replace fully sticky prices with Calvo friction - Planner's problem: $$\begin{aligned} & \min \quad \frac{1}{2} \, \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[x_t^2 + \pi_{Nt}^2 \Big] \\ & \text{s.t.} \quad \pi_{Nt} = \kappa x_t + \beta \mathbb{E}_t \pi_{Nt+1} + \nu_t \\ & \quad x_0 + \pi_{N0} = \hat{\mathbf{x}}_0 \end{aligned}$$ - Replace fully sticky prices with Calvo friction - Planner's problem: $$\min \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\gamma z_t^2 + (1 - \gamma) \delta(\hat{\mathbf{x}}_t - \eta \varepsilon_t^{\nu})^2 \right]$$ s.t. $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \left(b_t^* - n_t^* - f_t^* \right)$$ $$\beta b_t^* = b_{t-1}^* - z_t$$ $$\sigma_t^2 = \operatorname{var}_t \left(\tilde{q}_{t+1} - z_{t+1} + \hat{\mathbf{x}}_{t+1} \right)$$ - Replace fully sticky prices with Calvo friction - Planner's problem: $$\min \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) \delta(\hat{\mathbf{x}}_t - \eta \varepsilon_t^{\nu})^2 \Big]$$ s.t. $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big)$$ $$\beta b_t^* = b_{t-1}^* - z_t$$ $$\sigma_t^2 = \operatorname{var}_t \big(\tilde{q}_{t+1} - z_{t+1} + \hat{\mathbf{x}}_{t+1} \big)$$ • Divine Coincidence: if $\varepsilon_t^{\nu} = 0$, then isomorphic to the baseline model - Replace fully sticky prices with Calvo friction - Planner's problem: $$\begin{aligned} & \min \quad \frac{1}{2} \, \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big[\gamma z_t^2 + (1 - \gamma) \delta(\hat{\mathbf{x}}_t - \eta \varepsilon_t^{\nu})^2 \Big] \\ & \text{s.t.} \quad \mathbb{E}_t \Delta z_{t+1} = -\bar{\omega} \sigma_t^2 \big(b_t^* - n_t^* - f_t^* \big) \\ & \beta b_t^* = b_{t-1}^* - z_t \\ & \sigma_t^2 = \text{var}_t \big(\tilde{q}_{t+1} - z_{t+1} + \hat{\mathbf{x}}_{t+1} \big) \end{aligned}$$ - Divine Coincidence: if $\varepsilon_t^{\nu}=0$, then isomorphic to the baseline model - Markup shocks: the optimal policy does not result in long-term price targeting $p_{Nt} \rightarrow 0$ ## Incomplete Pass-Through - Extend model to allow for: - **1** elasticity of substitution θ : $U = \gamma C_{T_t}^{\frac{\theta-1}{\theta}} + (1-\gamma)(C_{N_t}^{\frac{\theta-1}{\theta}} L_t)$ - 2 pricing-to-market α : $P_{Tt} = (\mathcal{E}_t P_{Tt}^*)^{\alpha} P_{Nt}^{1-\alpha}$ - + international bonds denominated in tradable goods # Incomplete Pass-Through - Extend model to allow for: - **1** elasticity of substitution θ : $U = \gamma C_{T_t}^{\frac{\theta-1}{\theta}} + (1-\gamma)(C_{N_t}^{\frac{\theta-1}{\theta}} L_t)$ - ② pricing-to-market α : $P_{Tt} = (\mathcal{E}_t P_{Tt}^*)^{\alpha} P_{Nt}^{1-\alpha}$ + international bonds denominated in tradable goods - Same optimal policy: min $$\frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma z_{t}^{2} + (1 - \gamma) x_{t}^{2} \Big]$$ s.t. $\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} \Big(b_{t}^{*} - n_{t}^{*} - f_{t}^{*} \Big)$ $\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$ $\sigma_{t}^{2} = \operatorname{var}_{t} \left(\tilde{q}_{t+1} + \frac{1}{\theta} (x_{t+1} - z_{t+1}) \right)$ # Incomplete Pass-Through - Extend model to allow for: - **1** elasticity of substitution θ : $U = \gamma C_{T_t}^{\frac{\theta-1}{\theta}} + (1-\gamma)(C_{N_t}^{\frac{\theta-1}{\theta}} L_t)$ - 2 pricing-to-market α : $P_{Tt} = (\mathcal{E}_t P_{Tt}^*)^{\alpha} P_{Nt}^{1-\alpha}$ + international bonds denominated in tradable goods - Same optimal policy: $$\min \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma z_{t}^{2} + (1 - \gamma) x_{t}^{2} \Big]$$ s.t. $$\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} \Big(b_{t}^{*} - n_{t}^{*} - f_{t}^{*} \Big)$$ $$\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$$ $$\sigma_{t}^{2} = \operatorname{var}_{t} \left(\tilde{q}_{t+1} + \frac{1}{\theta} (x_{t+1} - z_{t+1}) \right)$$ • More volatile exchange rate if $\theta, \alpha < 1$: $$e_t = rac{1}{lpha} \left[ilde{q}_t + rac{1}{ heta} (x_t - z_t) ight]$$ • Baseline model focuses on noise-trader shocks - Baseline model focuses on noise-trader shocks - Arbitrageurs as drivers of UIP deviations: - 1 Risk-aversion shocks (Gabaix-Maggiori'15): $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega}_t \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ - Baseline model focuses on noise-trader shocks - Arbitrageurs as drivers of UIP deviations: - Risk-aversion shocks (Gabaix-Maggiori'15): $$\mathbb{E}_t \Delta z_{t+1} = -\overline{\omega}_t \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ ⇒ optimal policy remains largely unchanged - Baseline model focuses on noise-trader shocks - Arbitrageurs as drivers of UIP deviations: - Risk-aversion shocks (Gabaix-Maggiori'15): $$\mathbb{E}_t \Delta z_{t+1} = -\overline{\omega}_t \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ - ⇒ optimal policy remains largely unchanged - Expectation shocks $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega}\sigma_t^2 (b_t^* - n_t^* - f_t^*) + \psi_t$$ - Baseline model focuses on noise-trader shocks - Arbitrageurs as drivers of UIP deviations: - Risk-aversion shocks (Gabaix-Maggiori'15): $$\mathbb{E}_t \Delta z_{t+1} = -\overline{\omega}_t \sigma_t^2 (b_t^* - n_t^* - f_t^*)$$ - ⇒ optimal policy remains largely unchanged - Expectation shocks $$\mathbb{E}_t \Delta z_{t+1} = -\bar{\omega}\sigma_t^2 (b_t^* - n_t^* - f_t^*) + \psi_t$$ - ⇒ no divine coincidence - ⇒ same optimal policy - Allow for exogenous default shocks δ_t - e.g. home bonds are issued by government - Risk-sharing condition: $$\mathbb{E}_t \Delta z_{t+1} = \mathbb{E}_t \delta_{t+1} - \bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*), \quad \sigma_t^2 = \operatorname{var}_t (e_{t+1} + \delta_{t+1})$$ - Allow for exogenous default shocks δ_t - e.g. home bonds are issued by government - Risk-sharing condition: $$\mathbb{E}_t \Delta z_{t+1} = \mathbb{E}_t \delta_{t+1} - \bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*), \quad \sigma_t^2 = \text{var}_t (e_{t+1} + \delta_{t+1})$$ - A fixed exchange rate amplifies - a) capital reversals: - boom: $\delta_{t+1} \approx 0 \Rightarrow \mathbb{E}_t \Delta z_{t+1} = 0 \Rightarrow b_t^* \downarrow$ - bust: $\delta_{t+1} \uparrow \Rightarrow \mathbb{E}_t \Delta z_{t+1} > 0 \Rightarrow z_t \downarrow, b_t^* \uparrow$ - ullet Allow for exogenous default shocks δ_t - e.g. home bonds are issued by government - Risk-sharing condition: $$\mathbb{E}_t \Delta z_{t+1} = \mathbb{E}_t \delta_{t+1} - \bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*), \quad \sigma_t^2 = \text{var}_t (e_{t+1} + \delta_{t+1})$$ - A fixed exchange rate amplifies - a) capital reversals: — boom: $$\delta_{t+1} \approx 0 \Rightarrow \mathbb{E}_t \Delta z_{t+1} = 0 \Rightarrow b_t^* \downarrow$$ — bust: $\delta_{t+1} \uparrow \Rightarrow \mathbb{E}_t \Delta z_{t+1} > 0 \Rightarrow z_t \downarrow, b_t^* \uparrow$ b) effects of default shocks: $$\sigma_t^2 \downarrow \Rightarrow \frac{\partial \mathbb{E}_t \Delta z_{t+1}}{\partial \mathbb{E}_t \delta_{t+1}}, \frac{\partial b_t^*}{\partial \mathbb{E}_t \delta_{t+1}} \uparrow$$ - ullet Allow for exogenous default shocks δ_t - e.g. home bonds are issued by government - Risk-sharing condition: $$\mathbb{E}_t \Delta z_{t+1} = \mathbb{E}_t \delta_{t+1} - \bar{\omega} \sigma_t^2 (b_t^* - n_t^* - f_t^*), \quad \sigma_t^2 = \text{var}_t (e_{t+1} + \delta_{t+1})$$ - A fixed exchange rate amplifies - a) capital reversals: - boom: $$\delta_{t+1} \approx 0 \Rightarrow \mathbb{E}_t \Delta z_{t+1} = 0 \Rightarrow b_t^* \downarrow$$ - bust: $\delta_{t+1} \uparrow \Rightarrow \mathbb{E}_t \Delta z_{t+1} > 0 \Rightarrow z_t \downarrow, b_t^* \uparrow$ b) effects of default shocks: $$\sigma_t^2 \downarrow \Rightarrow \frac{\partial \mathbb{E}_t \Delta z_{t+1}}{\partial \mathbb{E}_t \delta_{t+1}}, \frac{\partial b_t^*}{\partial \mathbb{E}_t \delta_{t+1}} \uparrow$$ Policy side-effects: the capital flows and UIP spreads are more fickle under a fixed exchange rate regime #### Preference Shocks • H/h can hold and enjoy utility from FC bonds: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) - \frac{\kappa}{2} (N_{t}^{*} - \Psi_{t}^{*})^{2} \right]$$ s.t. $$\frac{\mathcal{E}_{t} N_{t}^{*}}{R_{t}^{*}} + \frac{B_{t}}{R_{t}} + \mathcal{E}_{t} C_{Tt} + P_{Nt} C_{Nt} = \mathcal{E}_{t} N_{t-1}^{*} + B_{t-1} + W_{t} L_{t} + \Pi_{t} + T_{t}$$ #### Preference Shocks H/h can hold and enjoy utility from FC bonds: $$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \Big[\gamma \log C_{Tt} + (1 - \gamma) (\log C_{Nt} - L_{t}) - \frac{\kappa}{2} (N_{t}^{*} - \Psi_{t}^{*})^{2} \Big]$$ s.t. $$\frac{\mathcal{E}_{t} N_{t}^{*}}{R_{t}^{*}} + \frac{B_{t}}{R_{t}} + \mathcal{E}_{t} C_{Tt} + P_{Nt} C_{Nt} = \mathcal{E}_{t} N_{t-1}^{*} + B_{t-1} + W_{t} L_{t} + \Pi_{t} + T_{t}$$ Planner's problem: $$\min_{\{z_{t},x_{t},b_{t}^{*},n_{t}^{*},f_{t}^{*},\sigma_{t}^{2}\}} \quad \frac{1}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[\gamma z_{t}^{2} + (1-\gamma)x_{t}^{2} + \chi (n_{t}^{*} - \psi_{t}^{*})^{2} \right]$$ s.t. $$\beta b_{t}^{*} = b_{t-1}^{*} - z_{t}$$ $$\mathbb{E}_{t} \Delta z_{t+1} = -\bar{\omega} \sigma_{t}^{2} \left(b_{t}^{*} - n_{t}^{*} - f_{t}^{*} \right)$$ $$n_{t}^{*} - \psi_{t}^{*} = \bar{\kappa} \mathbb{E}_{t} \Delta z_{t+1}$$ $$\sigma_{t}^{2} = \operatorname{var}_{t} \left(\tilde{q}_{t+1} - z_{t+1} +
x_{t+1} \right)$$ \Rightarrow Optimal policy is the same when n_t^* is driven by preference shocks