Capital Flows and Exchange Rates

A QUANTITATIVE ASSESSMENT OF THE DILEMMA HYPOTHESIS *

Ambrogio Cesa-Bianchi

Bank of England, CEPR, and CfM

Andrea Ferrero

University of Oxford

Shangshang Li University of Liverpool

Emerging Markets Workshop - Pretoria 26 January 2024

*The views expressed in this paper are those of the authors and do not necessarily represent the views of the Bank of England or its committees.

Question and Motivation

Monetary policy tightening cycle in advanced economies

* Renewed interest on cross-country transmission of monetary policy (shocks)

Question and Motivation

Monetary policy tightening cycle in advanced economies

- * Renewed interest on cross-country transmission of monetary policy (shocks)
- ► Global Financial Cycle [Rey, 2013] → From Trilemma to Dilemma?
 - * Does a flexible exchange rate regime provide enough insulation?
 - * Are additional instruments necessary for domestic monetary policy independence?

Question and Motivation

Monetary policy tightening cycle in advanced economies

- * Renewed interest on cross-country transmission of monetary policy (shocks)
- ▶ Global Financial Cycle [Rey, 2013] \rightarrow From Trilemma to Dilemma?
 - * Does a flexible exchange rate regime provide enough insulation?
 - * Are additional instruments necessary for domestic monetary policy independence?

 \blacktriangleright Our contribution \rightarrow Revisit these questions in an estimated open economy DSGE model

- * Dominant currency paradigm in finance and trade
- * Consistent with Global Financial Cycle (GFC) evidence

What We Do and What We Find

- 1. **Panel VAR** \rightarrow Response of financial and macro variables to US monetary policy shock
 - * Typical (small) open economy with flexible exchange rates
 - * Demand/financial channel dominates over expenditure-switching effect

What We Do and What We Find

- 1. **Panel VAR** \rightarrow Response of financial and macro variables to US monetary policy shock
 - * Typical (small) open economy with flexible exchange rates
 - * Demand/financial channel dominates over expenditure-switching effect
- 2. **<u>Two-country DSGE model</u>** \rightarrow Estimated to match VAR impulse responses
 - * Frictions in international financial intermediation and trade pricing frictions
 - * Necessary to replicate empirical evidence

What We Do and What We Find

- 1. **Panel VAR** \rightarrow Response of financial and macro variables to US monetary policy shock
 - * Typical (small) open economy with flexible exchange rates
 - * Demand/financial channel dominates over expenditure-switching effect
- 2. **<u>Two-country DSGE model</u>** \rightarrow Estimated to match VAR impulse responses
 - * Frictions in international financial intermediation and trade pricing frictions
 - * Necessary to replicate empirical evidence
- 3. <u>Policy analysis</u> \rightarrow Counterfactuals
 - * Exchange rate targeting increases domestic macroeconomic volatility
 - * Additional instruments (tax on capital flows / total credit) mitigate consequences of GFC
 - * Taxes can limit volatility of economic activity under peg but with disinflationary side effect

Related Literature

Empirical studies of global financial cycle and its drivers

Rey (2013); Dedola, Rivolta and Stracca (2017); Cesa-Bianchi, Ferrero and Rebucci (2018); Cerutti, Claessens and Rose (2019); Corman and Lloyd (2019); Obstfeld, Ostry and Qureshi (2019); Miranda-Agrippino and Rey (2020); Degasperi, Hong and Ricco (2021); Ilzetzki and Jin (2021); Georgiadis, Muller, Schumann (2023a,b), Georgiadis and Jarocinski (2023)

Financial frictions in open economy

Farhi and Werning (2014); Gabaix and Maggiori (2015); Aoki, Benigno and Kiyotaki (2020); Gourinchas (2020); Adrian et al. (2020); Casas et al. (2020); Corsetti, Dedola, and Leduc (2020); Itskhoki and Mukhin (2021); Akinci and Queralto (2022)

LCP and dominant currency paradigm

Devereux and Engel (2003); Cook and Devereux (2006); Corsetti, Dedola and Leduc (2010); Engel (2011); Fujiwara and Wang (2017); Gopinath et al. (2020); Chen et al. (2021); Gopinath and Stein (2021)

Data

> Panel of macro-financial variables for 15 countries with flexible exchange rate

- * Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
- * Robustness with a larger set of countries (24)

Data

> Panel of macro-financial variables for 15 countries with flexible exchange rate

- * Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
- * Robustness with a larger set of countries (24)

Variables

- * US: Monetary policy surprise, excess bond premium, real GDP
- * Domestic: Real GDP, CPI, exports, policy rate, nominal exch. rate (LC/USD), corporate bond spreads

Data

> Panel of macro-financial variables for 15 countries with flexible exchange rate

- * Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
- * Robustness with a larger set of countries (24)

Variables

- * US: Monetary policy surprise, excess bond premium, real GDP
- * Domestic: Real GDP, CPI, exports, policy rate, nominal exch. rate (LC/USD), corporate bond spreads

▶ Monthly frequency → 1997:M1–2019:M12 (subject to availability)

- * Corporate spreads constrain earlier starting date (robustness from 1985 without spreads)
- * Macro series interpolated from quarterly to monthly frequency [Miranda-Agrippino and Rey, 2020]

- ► High frequency monetary policy surprises [Jarocinski and Karadi, 2020]
- Internal instrument [Plagborg-Moeller and Wolf, 2021]

$$x_{it} = a_i + b_i t + \sum_{p=1}^{p} F_{i,p} x_{i,t-p} + u_{it}$$

where

$$\mathbf{x}_{it} = \begin{bmatrix} \epsilon_t^m & EBP_t^{US} & \mathbf{Y}_t^{US} & \mathbf{Y}_{it} & CPI_{it} & EX_{it} & i_{it} & FX_{it} & CS_{it} \end{bmatrix}$$

- ► High frequency monetary policy surprises [Jarocinski and Karadi, 2020]
- Internal instrument [Plagborg-Moeller and Wolf, 2021]

$$x_{it} = a_i + b_i t + \sum_{p=1}^{p} F_{i,p} x_{i,t-p} + u_{it}$$

where

$$\mathbf{x}_{it} = \begin{bmatrix} \boldsymbol{\varepsilon}_{t}^{m} & \boldsymbol{EBP}_{t}^{\boldsymbol{US}} & \boldsymbol{Y}_{t}^{\boldsymbol{US}} \end{bmatrix} \underbrace{\mathbf{Y}_{it} \quad \boldsymbol{CPI}_{it} \quad \boldsymbol{EX}_{it} \quad \boldsymbol{i}_{it} \quad \boldsymbol{FX}_{it} \quad \boldsymbol{CS}_{it} \end{bmatrix}$$

- ► High frequency monetary policy surprises [Jarocinski and Karadi, 2020]
- Internal instrument [Plagborg-Moeller and Wolf, 2021]

$$x_{it} = a_i + b_i t + \sum_{p=1}^{p} F_{i,p} x_{i,t-p} + u_{it}$$

where

$$\mathbf{x}_{it} = \begin{bmatrix} \boldsymbol{e}_{t}^{m} & \boldsymbol{EBP}_{t}^{US} & \mathbf{Y}_{t}^{US} \end{bmatrix} \underbrace{\mathbf{Y}_{it} & \boldsymbol{CPI}_{it} & \boldsymbol{EX}_{it} & \boldsymbol{i}_{it} & \boldsymbol{FX}_{it} & \boldsymbol{CS}_{it} \end{bmatrix}$$

Mean group estimator [Pesaran and Smith, 1995]

- * Dynamic panel with heterogeneous slope coefficients
- * Estimate country-by-country VARs with OLS
- * Take average IRFs across countries ightarrow Response of typical country

Introduction

Panel VAR

Two-Country DSGE Mode

Policy Analysis

nclusions

Panel VAR

Two-Country DSGE Mode

Introduction

Panel VAR

Two-Country DSGE Mode

Policy Analysis

nclusions

Introduction

Panel VAR

Two-Country DSGE Mode

Policy Analysis

nclusions

Introduction

Panel VAR

Two-Country DSGE Mode

Introduction

Panel VAR

Two-Country DSGE Mode

Policy Analysis

Summary of the VAR Evidence & Robustness

Evidence consistent with Global Financial Cycle hypothesis

* Demand/financial channel dominates over expenditure-switching

Summary of the VAR Evidence & Robustness

Evidence consistent with Global Financial Cycle hypothesis

* Demand/financial channel dominates over expenditure-switching

Robustness

- * Larger sample of countries
- * Longer sample period (no spreads)
- * Alternative lag length criteria, drop linear trend
- * Additional variables (US variables, oil price, SOE equity prices)

Go to robustness

Two-Country DSGE Model

Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (*H* small and *F* large)
- Asymmetric international financial structure
 - * Foreign banks raise funds domestically, lend both domestically and internationally
 - * Home banks raise funds domestically and internationally, lend only domestically

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)
- Asymmetric international financial structure
 - * Foreign banks raise funds domestically, lend both domestically and internationally
 - * Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - * Local currency pricing: Home exporters price in Foreign currency
 - * Imperfect pass-through: Law of one price for Home imported goods holds at the dock

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)
- Asymmetric international financial structure
 - * Foreign banks raise funds domestically, lend both domestically and internationally
 - * Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - * Local currency pricing: Home exporters price in Foreign currency
 - * Imperfect pass-through: Law of one price for Home imported goods holds at the dock
- **Dominant currency paradigm** in international goods and financial markets

Financial Flows

Financial Flows

		Two-Country DSGE Model			# 12
--	--	------------------------	--	--	------

Financial Flows

Financial Frictions

► Foreign banks

- * Standard Gertler and Karadi (2011), balance sheet fully in USD
- * Issue deposits to F households, lend to F firms and H banks

Financial Frictions

► Foreign banks

- * Standard Gertler and Karadi (2011), balance sheet fully in USD
- * Issue deposits to F households, lend to F firms and H banks

Home banks

* Balance sheet currency mis-match

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$

* Moral hazard: Banker can divert fraction of assets

$$\Theta(\mathbf{x}_t) = \theta\left(\mathbf{1} + \frac{\gamma}{2}\mathbf{x}_t^2\right)$$

with $\gamma > 0$, where $x_t = s_t b_t^* / (q_t z_t)$ (foreign funds harder to recover than domestic funds)

Financial Frictions

► Foreign banks

- * Standard Gertler and Karadi (2011), balance sheet fully in USD
- * Issue deposits to F households, lend to F firms and H banks

Home banks

* Balance sheet currency mis-match

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$

* Moral hazard: Banker can divert fraction of assets

$$\Theta(\mathbf{x}_t) = \theta\left(\mathbf{1} + \frac{\gamma}{2}\mathbf{x}_t^2\right)$$

with $\gamma > 0$, where $x_t = s_t b_t^* / (q_t z_t)$ (foreign funds harder to recover than domestic funds)

* Financial friction ightarrow Endogenous UIP wedge

Production Structure (Home)

Production Structure (Home)

Policy

Monetary policy rule

$$\frac{R_{t}}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_{R}} \left[\Pi_{t}^{\phi_{\pi}} \left(\frac{y_{t}}{y_{t-1}}\right)^{\phi_{y}} \left(\frac{\mathcal{E}_{t}}{\mathcal{E}_{t-1}}\right)^{\phi_{\mathcal{E}}}\right]^{1-\rho_{R}}$$

- * Foreign $\phi_{\mathcal{E}} = \mathsf{o} o$ Flexible exchange rate
- * Home $\phi_{\mathcal{E}} \ge o \rightarrow$ From fully flexible, to managed float, to peg (i.e. $\phi_{\mathcal{E}} \rightarrow \infty$)

Policy

Monetary policy rule

$$\frac{R_{t}}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_{R}} \left[\Pi_{t}^{\phi_{\pi}} \left(\frac{y_{t}}{y_{t-1}}\right)^{\phi_{y}} \left(\frac{\mathcal{E}_{t}}{\mathcal{E}_{t-1}}\right)^{\phi_{\mathcal{E}}}\right]^{1-\rho_{R}}$$

- * Foreign $\phi_{\mathcal{E}} = \mathsf{o} o$ Flexible exchange rate
- * Home $\phi_{\mathcal{E}} \ge o \to$ From fully flexible, to managed float, to peg (i.e. $\phi_{\mathcal{E}} \to \infty$)

Additional instruments (in Home country only)

- * Tax on foreign liabilities (capital flows management tool)
- * Tax on total credit (domestic macro-prudential tool)

Calibrated Parameters

Parameter	Description	Home	Foreign
n	Relative size of country H	0.1	0.9
β	Individual discount factor	0.9926	0.9975
ĥ	Habits in consumption	-	0.71
σ	Relative risk aversion	-	1.38
χ	Relative weight on disutility of labor	28	49
ζ	Inverse Frisch elasticity	1	1
Q	Elasticity of substitution among goods varieties	6	6
a	Home bias in consumption	0.66	0.96
ϵ	Elasticity of substitution between H and F goods	1.5	1.5
ν	Elasticity of substitution among labor varieties	6	6
ξw	Wage rigidity	0.66	0.66
ξp	Price rigidity	-	0.66
α	Capital share	0.33	0.33
δ	Depreciation rate	0.025	0.025
φ_i	Investment adjustment cost	-	5.74
ω	Bank survival rate	0.97	0.97
θ	Proportion of divertible funds	-	0.51
ξь	Bank transfer rate	-	0.002

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Conclusions	# 1

Impulse Response Matching

Estimated Parameters

_

_

Parameter	Prior			Posterior			
	Distribution	Mean	SD	Mode	Median	5%	95%
h	Beta	0.650	0.1	0.715	0.709	0.558	0.841
σ	Gamma	1	0.375	1.126	1.260	0.765	1.811
λ	Gamma	5	1	4.727	4.831	3.429	6.293
х	Beta	0.240	0.15	0.110	0.168	0.022	0.323
φ_i	Gamma	2.850	2	0.589	0.726	0.167	1.596
ξ_p	Beta	0.660	0.15	0.833	0.777	0.544	0.957
ξ _{im}	Beta	0.660	0.15	0.697	0.665	0.410	0.873
ρ_R	Beta	0.750	0.1	0.769	0.769	0.603	0.913
ϕ_π	Gamma	1.500	0.25	1.485	1.518	1.158	1.881
ϕ_y	Gamma	0.125	0.05	0.110	0.120	0.047	0.202
$\phi_{\mathcal{E}}$	Gamma	0.100	0.05	0.074	0.093	0.022	0.168
$ ho_{R}^{*}$	Beta	0.750	0.1	0.798	0.742	0.613	0.853
ϕ^*_π	Gamma	1.500	0.25	1.466	1.518	1.162	1.900
ϕ_y^*	Gamma	0.125	0.05	0.107	0.119	0.044	0.204

The Role of Financial Frictions

--Baseline - - No Financial Frictions No Financial Frictions in Foreign

The Role of LCP

The Role of Imperfect Pass-Through

Summary of DSGE Results

- Estimated DSGE model can match VAR evidence
- Three key frictions
 - * <u>Financial</u> \rightarrow Amplification
 - * Dominant currency paradigm \rightarrow Sign of exports response
 - * Imperfect pass-through \rightarrow Inflation and interest rate response

Policy Analysis

Monetary Policy Response to the Exchange Rate

Exchange rate regime not irrelevant

* Macroeconomic volatility increasing with weight on exchange rate in monetary policy rule

Additional Instruments

► Tax on total credit

$$n_{t} = (1 - \tau_{t-1}^{k})r_{kt}q_{t-1}z_{t-1} - \frac{R_{t-1}d_{t-1}}{\Pi_{t}} - (1 + \tau_{t-1}^{b})\frac{R_{bt-1}^{*}}{\Pi_{t}^{*}}s_{t}b_{t-1}^{*}$$

* Directly impacts credit spreads

$$\mu_{kt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[(1 - \tau_{t+1}^k) r_{kt+1} - \frac{R_t}{\Pi_{t+1}} \right] \right\}$$

Additional Instruments

Tax on foreign borrowing

$$n_{t} = (1 - \tau_{t-1}^{k})r_{kt}q_{t-1}z_{t-1} - \frac{R_{t-1}d_{t-1}}{\Pi_{t}} - (1 + \tau_{t-1}^{b})\frac{R_{bt-1}^{*}}{\Pi_{t}^{*}}s_{t}b_{t-1}^{*}$$

* Directly impacts UIP wedge

$$\mu_{bt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[\frac{R_{t+1}}{\Pi_{t+1}} - (\mathbf{1} + \tau_{t+1}^b) \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{\mathbf{s}_{t+1}}{\mathbf{s}_t} \right] \right\}$$

Additional Instruments

Tax on foreign borrowing

$$n_{t} = (1 - \tau_{t-1}^{k})r_{kt}q_{t-1}z_{t-1} - \frac{R_{t-1}d_{t-1}}{\Pi_{t}} - (1 + \tau_{t-1}^{b})\frac{R_{bt-1}^{*}}{\Pi_{t}^{*}}s_{t}b_{t-1}^{*}$$

* Directly impacts UIP wedge

$$\mu_{bt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[\frac{R_{t+1}}{\Pi_{t+1}} - (1 + \tau_{t+1}^b) \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{\mathbf{s}_{t+1}}{\mathbf{s}_t} \right] \right\}$$

Policy rule for both taxes is

$$\tau_t^j = \phi_j \ln\left(\frac{q_t z_t}{q z}\right)$$

for $j = \{b, k\}$ [Borio and Lowe (2002)]

Macroprudential policy

Tax on total credit reduces macroeconomic volatility

* Subsidize total credit ightarrow Reduce credit spread ightarrow Smaller GDP contraction ightarrow Slightly higher inflation

Capital Flows Managament

> Tax on foreign borrowing has very similar effects to those of tax on total credit

* Subsidize USD borrowing ightarrow Reduce UIP ightarrow Smaller ER depreciation ightarrow Smaller increase in inflation

Peg + Macroprudential Policy

Tax on total credit alleviates negative consequences of peg

* Can partly substitute for lack of monetary policy stabilization

- $\blacktriangleright\,$ Panel VAR $\rightarrow\,$ Consistent with idea of Global Financial Cycle
 - * Contractionary US monetary policy shock leads to a domestic recession
 - * Despite domestic currency depreciation

- $\blacktriangleright\,$ Panel VAR $\rightarrow\,$ Consistent with idea of Global Financial Cycle
 - * Contractionary US monetary policy shock leads to a domestic recession
 - * Despite domestic currency depreciation

► Estimated two-country DSGE → Can match empirical evidence

* Key role of financial frictions in banking sector and pricing frictions in international trade

- $\blacktriangleright\,$ Panel VAR $\rightarrow\,$ Consistent with idea of Global Financial Cycle
 - * Contractionary US monetary policy shock leads to a domestic recession
 - * Despite domestic currency depreciation

► Estimated two-country DSGE → Can match empirical evidence

* Key role of financial frictions in banking sector and pricing frictions in international trade

Policy analysis

- * Peg exacerbates macroeconomic volatility (exchange rate regime not irrelevant)
- * Tax on foreign borrowing decreases macroeconomic volatility
- * Tax on domestic credit can achieve similar result
- * Both taxes can substitute for lack of monetary policy stabilization under a peg

Appendix

A1: VAR Robustness

VAR Robustness Back

Larger sample of 24 countries

VAR Robustness (Back) No trend

VAR Robustness Back

Longer sample (1985-2019, no data on credit spreads)

Short-term market interest rates

VAR Robustness (Back Alternative lag length (3 lags)

VAR Robustness (Back) Adding US inflation

Controlling for Home equity prices

VAR Robustness Back

Controlling for oil prices

A2: Model

Households

• Representative household in Home country keeps wage fixed with probability ξ_w

$$\max \mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} \left[\ln(c_{t+j} - h\bar{c}_{t+j-1}) - \frac{\chi}{1+\zeta} \int_{0}^{n} \ell_{t+j}(i)^{1+\zeta} di \right]$$

subject to

$$P_t c_t + D_t = \int_0^n W_t(i) \ell_t(i) di + R_{t-1} D_{t-1} + T_t,$$

and

$$\ell_t(i) = \frac{1}{n} \left[\frac{W_t(i)}{W_t} \right]^{-\nu} \ell_t$$

where

$$c_t \equiv \left[a^{\frac{1}{\varepsilon}}c_{Ht}^{\frac{\varepsilon-1}{\varepsilon}} + (1-a)^{\frac{1}{\varepsilon}}c_{Ft}^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Home Banks

Lend to H firms, issue deposits to H households, and borrow from F banks

Home Banks

- Lend to H firms, issue deposits to H households, and borrow from F banks
- Balance sheet currency mismatch

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$
Home Banks

- Lend to H firms, issue deposits to H households, and borrow from F banks
- Balance sheet currency mismatch

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$

Can divert fraction of assets

$$\Theta(\mathbf{x}_t) = \theta\left(\mathbf{1} + \frac{\gamma}{2}\mathbf{x}_t^2\right)$$

where $x_t = s_t b_t^* / (q_t z_t)$

- * Foreign funds harder to recover than domestic funds
- * Incentive compatibility constraint

 $V(n_t) \geq \Theta(x_t) q_t z_t$

Home Banks' Problem

• Choose loans (z_t) , deposits (d_t) , and interbank borrowing (b_t^*) to solve

$$V(n_t) = \max \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1}[(1-\omega)n_{t+1} + \omega V(n_{t+1})] \right\}$$

subject to

$$q_t z_t = d_t + s_t b_t^* + n_t$$

$$V(n_t) \ge \Theta(x_t) q_t z_t$$

$$n_{t+1} = r_{kt+1} q_t z_t - \frac{R_t}{\Pi_{t+1}} d_t - \frac{R_{bt}^*}{\Pi_{t+1}^*} s_{t+1} b_t^*$$

where

$$\Theta(\mathbf{x}_t) = \theta\left(\mathbf{1} + \frac{\gamma}{2}\mathbf{x}_t^2\right)$$

and $x_t = s_t b_t^* / (q_t z_t)$

Solution of Local Banks' Problem

> All bankers choose same leverage and same ratio of foreign liabilities

Solution of Local Banks' Problem

- All bankers choose same leverage and same ratio of foreign liabilities
- Binding incentive compatibility constraint pins down leverage

$$\phi_t = \frac{\mu_{dt}}{\Theta(x_t) - (\mu_{kt} + \mu_{bt}x_t)}$$

- * $\mu_{dt}
 ightarrow$ Discounted return of domestic deposits
- * $\mu_{kt}
 ightarrow$ Discounted excess return of capital over domestic deposits
- * $\mu_{bt}
 ightarrow$ Discounted excess return of domestic deposits over international interbank borrowing

Solution of Local Banks' Problem

- All bankers choose same leverage and same ratio of foreign liabilities
- Binding incentive compatibility constraint pins down leverage

$$\phi_t = \frac{\mu_{dt}}{\Theta(x_t) - (\mu_{kt} + \mu_{bt} x_t)}$$

- * $\mu_{dt}
 ightarrow$ Discounted return of domestic deposits
- * μ_{kt} ightarrow Discounted excess return of capital over domestic deposits
- * $\mu_{bt}
 ightarrow$ Discounted excess return of domestic deposits over international interbank borrowing
- Optimal portfolio allocation pins down share of foreign liabilities

$$\frac{\mu_{kt}}{\mu_{bt}} = \frac{\Theta(\mathbf{x}_t)}{\Theta'(\mathbf{x}_t)} - \mathbf{x}_t$$

Endogenous UIP Wedge

Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

Endogenous UIP Wedge

Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

> Financial frictions create endogenous wedge between domestic and foreign interest rate

$$\mu_{bt} = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

* Since Foreign funds harder to recover, domestic currency must pay a premium

* Consistent with empirical evidence since Fama (1984)

Foreign Banks' Problem

No currency mismatch on their balance sheet

• Choose loans (z_t^*) , deposits (d_t^*) , and interbank lending (b_t^*) to solve

$$V(n_t^*) = \max \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1}^* [(1-\omega)n_{t+1}^* + \omega V(n_{t+1}^*)] \right\}$$

subject to

$$\begin{aligned} q_t^* z_t^* + b_t^* &= d_t^* + n_t^* \\ V(n_t^*) &\geq \theta^* q_t^* z_t^* \\ n_{t+1}^* &= r_{kt+1}^* q_t^* z_t^* + \frac{R_{bt}^*}{\Pi_{t+1}^*} b_t^* - \frac{R_t^*}{\Pi_{t+1}^*} d_t \end{aligned}$$

Capital Producers

Capital producers transform final goods into capital goods

$$\mathbb{E}_{t}\sum_{j=0}^{\infty}\mathcal{M}_{t,t+j}\left[q_{t+j}-1-\frac{\varphi_{i}}{2}\left(\frac{i_{t+j}}{i_{t+j-1}}-1\right)^{2}\right]i_{t+j}$$

Capital Producers and Intermediate Goods Producers

Capital producers transform final goods into capital goods

$$\mathbb{E}_{t}\sum_{j=0}^{\infty}\mathcal{M}_{t,t+j}\left[q_{t+j}-1-\frac{\varphi_{i}}{2}\left(\frac{i_{t+j}}{i_{t+j-1}}-1\right)^{2}\right]i_{t+j}$$

Intermediate goods producers use standard Cobb-Douglas technology

 $y_t = A_t k_{t-1}^{\alpha} \ell_t^{1-\alpha}$

Subsequent period (balance sheet $\rightarrow q_t z_t = q_t k_t$)

* Sell undepreciated capital on open market after production takes place

Profits

$$\mathcal{P}_{t} = p_{mt}y_{t} - w_{t}\ell_{t} - r_{kt}q_{t-1}z_{t-1} + (1-\delta)q_{t}k_{t-1}$$

Retailers

Firms in *H* set export prices in foreign currency (**local currency pricing**)

$$\max_{\widetilde{P}_{t}(h),\widetilde{P}_{t}^{*}(h)} \mathbb{E}_{t} \sum_{j=0}^{\infty} \widetilde{\zeta}_{H}^{j} \mathcal{M}_{t,t+j} \left\{ \left[\frac{\widetilde{P}_{t}(h)}{P_{t+j}} - p_{mt+j} \right] y_{t,t+j}(h) + \left[\frac{\mathcal{E}_{t}\widetilde{P}_{t}^{*}(h)}{P_{t+j}} - p_{mt+j} \right] y_{t,t+j}^{*}(h) \right\}$$

subject to

$$y_{t,t+j}(h) = \left[\frac{\widetilde{P}_t(h)}{P_{Ht+j}}\right]^{-\varrho} y_{Ht+j} \quad \text{and} \quad y_{t,t+j}^*(h) = \left[\frac{\widetilde{P}_t^*(h)}{P_{Ht+j}^*}\right]^{-\varrho} y_{Ht+j}^*$$

where

$$y_{Ht} = a \left(\frac{P_{Ht}}{P_t}\right)^{-\epsilon} \left[c_t + i_t + \frac{\varphi_i}{2} \left(\frac{i_t}{i_{t-1}} - 1\right)^2 i_t\right] \quad \text{and} \quad y_{Ht}^* = a^* \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\epsilon} \left[c_t^* + i_t^* + \frac{\varphi_i}{2} \left(\frac{i_t^*}{i_{t-1}^*} - 1\right)^2 i_t^*\right]$$

Retailers

Firms in *H* set export prices in foreign currency (local currency pricing)

$$\max_{\widetilde{P}_{t}(h),\widetilde{P}_{t}^{*}(h)} \mathbb{E}_{t} \sum_{j=0}^{\infty} \widetilde{\xi}_{H}^{j} \mathcal{M}_{t,t+j} \left\{ \left[\frac{\widetilde{P}_{t}(h)}{P_{t+j}} - p_{mt+j} \right] y_{t,t+j}(h) + \left[\frac{\mathcal{E}_{t}\widetilde{P}_{t}^{*}(h)}{P_{t+j}} - p_{mt+j} \right] y_{t,t+j}^{*}(h) \right\}$$

subject to

$$y_{t,t+j}(h) = \left[\frac{\widetilde{P}_t(h)}{P_{Ht+j}}\right]^{-\varrho} y_{Ht+j} \quad \text{and} \quad y_{t,t+j}^*(h) = \left[\frac{\widetilde{P}_t^*(h)}{P_{Ht+j}^*}\right]^{-\varrho} y_{Ht+j}^*$$

where

$$y_{Ht} = a \left(\frac{P_{Ht}}{P_t}\right)^{-\epsilon} \left[c_t + i_t + \frac{\varphi_i}{2} \left(\frac{i_t}{i_{t-1}} - 1\right)^2 i_t\right] \quad \text{and} \quad y_{Ht}^* = a^* \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\epsilon} \left[c_t^* + i_t^* + \frac{\varphi_i}{2} \left(\frac{i_t^*}{i_{t-1}^*} - 1\right)^2 i_t^*\right]$$

Producer currency pricing in country F

Importers

Law of One Price holds at the dock but not for consumers

Importers reset price in local currency infrequently (imperfect pass-through)

$$\max_{\widetilde{P}_{t}(f)} \mathbb{E}_{t} \sum_{j=0}^{\infty} \widetilde{\zeta}_{F}^{j} \mathcal{M}_{t,t+j} \left[\frac{\widetilde{P}_{t}(f)}{P_{t+j}} - \frac{\mathcal{E}_{t} P_{t}^{*}(f)}{P_{t+j}} \right] \mathbf{y}_{t,t+j}(f)$$

subject to

$$\mathbf{y}_{t,t+j}(f) = \left[\frac{\widetilde{\mathbf{P}}_t(f)}{\mathbf{P}_{Ft+j}}\right]^{-\varrho} \mathbf{y}_{Ft+j},$$

where

$$y_{Ft} = (1-a) \left(\frac{P_{Ft}}{P_t}\right)^{-\epsilon} \left[c_t + i_t + \frac{\varphi_i}{2} \left(\frac{i_t}{i_{t-1}} - 1\right)^2 i_t\right].$$

Welfare Analysis

Table Welfare and volatilities.

Regime	Welfare change	Std. of real GDP	Std. of inflation
Fully flexible exchange rate	-0.01	0.20	0.03
Baseline	0.00	0.25	0.02
Baseline + tax on domestic credit	0.69	0.01	0.03
Baseline + tax on foreign borrowing	0.27	0.08	0.01
Peg	-13.27	12.87	0.33
Peg + tax on domestic credit	1.14	0.66	0.29
Peg + tax on foreign borrowing	-0.02	1.00	0.15

NOTE: The second column of the table reports the consumption equivalent (in percent) of each policy regime (first column) relative to the baseline. The third and fourth columns report the standard deviation of real GDP and inflation (also in percent) under each policy regime.