Effectiveness of Sterilized Foreign Exchange Intervention under Imperfect Financial Markets

Serra Pelin UC Berkeley

2nd ERSA/CEPR Workshop on Macroeconomic Policy in Emerging Markets

January 26, 2024

- FXI as a policy tool available to central banks
- selling (or buying) foreign reserves to control the movements of the exchange rate
- a consequence: decrease in the money supply, increase in the interest rates

Sterilized FXI

- FXI as a policy tool available to central banks
- selling (or buying) foreign reserves to control the movements of the exchange rate
- a consequence: decrease in the money supply, increase in the interest rates
- sterilized FXI solves this:
 - buying back (or selling) an equivalent amount of gov. issued bonds
 - keeps money supply and policy rate unchanged by intervention
 - changes the **composition of assets** held by banks

The interest rate parity (UIP):

$$\Delta \mathbb{E}_t Q_{t+1} = r_t - r_t^* \tag{1}$$

A divine coincidence of monetary policy. Targeting the domestic variables alone is welfare maximizing.

The interest rate parity (UIP):

$$\Delta \mathbb{E}_t Q_{t+1} = r_t - r_t^* \tag{1}$$

A divine coincidence of monetary policy. Targeting the domestic variables alone is welfare maximizing. **In reality:**

$$\Delta \mathbb{E}_t Q_{t+1} = r_t - r_t^* + \mu_t^* \tag{2}$$

A large literature on the UIP puzzle starting with [Fama, 1984], [Froot and Frankel, 1989]... Violations of UIP matter for the implications of FXI on welfare!

- Empirical literature finds sizable spillover effects of U.S. monetary shocks on EM variables
 - deviations from uncovered interest parity [Giovanni et al., 2017], [Kalemli-Özcan, 2019]

 $r_t - (r_t^* + \mathbb{E}_t \{ \Delta Q_{t+1} \}) > 0$ countercyclical, \uparrow when US tightens

- Empirical literature finds sizable spillover effects of U.S. monetary shocks on EM variables
 - deviations from uncovered interest parity [Giovanni et al., 2017], [Kalemli-Özcan, 2019]

 $r_t - (r_t^* + \mathbb{E}_t \{ \Delta Q_{t+1} \}) > 0$ countercyclical, \uparrow when US tightens

• Theoretical literature on financial imperfections and international effects on exchange rates [Akinci and Queralto, 2018], [Gabaix and Maggiori, 2015], [Itskhoki and Mukhin, 2021]

- Empirical literature finds sizable spillover effects of U.S. monetary shocks on EM variables
 - deviations from uncovered interest parity [Giovanni et al., 2017], [Kalemli-Özcan, 2019]

 $r_t - (r_t^* + \mathbb{E}_t \{ \Delta Q_{t+1} \}) > 0$ countercyclical, \uparrow when US tightens

- Theoretical literature on financial imperfections and international effects on exchange rates [Akinci and Queralto, 2018], [Gabaix and Maggiori, 2015], [Itskhoki and Mukhin, 2021]
- The global financial cycle and amplifying effects of U.S. monetary shocks [Miranda-Agrippino and Rey, 2020], [Akinci et al., 2022]

- Empirical literature finds sizable spillover effects of U.S. monetary shocks on EM variables
 - deviations from uncovered interest parity [Giovanni et al., 2017], [Kalemli-Özcan, 2019]

 $r_t - (r_t^* + \mathbb{E}_t \{ \Delta Q_{t+1} \}) > 0$ countercyclical, \uparrow when US tightens

- Theoretical literature on financial imperfections and international effects on exchange rates [Akinci and Queralto, 2018], [Gabaix and Maggiori, 2015], [Itskhoki and Mukhin, 2021]
- The global financial cycle and amplifying effects of U.S. monetary shocks [Miranda-Agrippino and Rey, 2020], [Akinci et al., 2022]
- Widespread use of sterilized FXI in EMs [Fratzscher et al., 2019]
- Are the actions of policymakers justified? Is intervention effective?
 - **Theory:** Sterilized FXI has no real macroeconomic effects [Backus and Kehoe, 1988], [Gali and Monacelli, 2005]
 - Practice: Sterilized FXI common practice

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - spillback to the US?

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - spillback to the US?
- The Model
 - Two-country asymmetric model with financial frictions and sterilized FXI
 - EM borrowers issue both domestic and dollar-denom. debt

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - spillback to the US?
- The Model
 - Two-country asymmetric model with financial frictions and sterilized FXI
 - EM borrowers issue both domestic and dollar-denom. debt
- Findings of Sterilized FXI (relative to no FXI):
 - (Positive)
 - welfare gains and reduced macroeconomic volatility
 - less currency depreciation, and UIP spread in the medium/long run

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - spillback to the US?
- The Model
 - Two-country asymmetric model with financial frictions and sterilized FXI
 - EM borrowers issue both domestic and dollar-denom. debt
- Findings of Sterilized FXI (relative to no FXI):
 - (Positive)
 - welfare gains and reduced macroeconomic volatility
 - less currency depreciation, and UIP spread in the medium/long run
 - (Neutral) no changes to prices, echoing results from [Backus and Kehoe, 1988], [Gali and Monacelli, 2005]

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - spillback to the US?
- The Model
 - Two-country asymmetric model with financial frictions and sterilized FXI
 - EM borrowers issue both domestic and dollar-denom. debt
- Findings of Sterilized FXI (relative to no FXI):
 - (Positive)
 - welfare gains and reduced macroeconomic volatility
 - less currency depreciation, and UIP spread in the medium/long run
 - (Neutral) no changes to prices, echoing results from [Backus and Kehoe, 1988], [Gali and Monacelli, 2005]
 - (Negative)
 - more currency depreciation, and UIP spread on impact
 - Reduced long term net exports
 - permanent fall in foreign reserves

- Can Sterilized FXI be an effective policy for controlling domestic prices/volatility?
 - dollar dependency, countercyclical UIP premium
 - at what cost?
 - o spillback to the US?
- The Model
 - Two-country asymmetric model with financial frictions and sterilized FXI
 - EM borrowers issue both domestic and dollar-denom. debt
- Findings of Sterilized FXI (relative to no FXI):
 - (Positive)
 - welfare gains and reduced macroeconomic volatility
 - less currency depreciation, and UIP spread in the medium/long run
 - (Neutral) no changes to prices, echoing results from [Backus and Kehoe, 1988], [Gali and Monacelli, 2005]
 - (Negative)
 - more currency depreciation, and UIP spread on impact
 - Reduced long term net exports
 - permanent fall in foreign reserves
 - (Spill-back) US incurs deeper recession (short run), US welfare loss (slightly)

The Model: Overview

- A New Keynesian 2-country Open-Economy model: Home (EM) and Foreign (US)
- Home Agents: Households, Capital Producers, Private Bank, Central Bank
- Foreign Agents: Households, Capital Producers, Central Bank (complete markets)
- Trade in goods and financial flows
- Prices sticky a la Calvo
- Home banks have a default risk agency friction and cross-border institution friction (θ_r, γ)
- Sterilized FXI in Home

Central Bank

- Foreign Reserve Accumulation
- Sterilization Equation
- Taylor Rule

The Home central bank accumulates foreign reserves as follows:

$$\boldsymbol{R}^{\$}_{t} = \left(\boldsymbol{R}^{\$}_{t-1}\right)^{\eta} \left(\frac{1}{\boldsymbol{E}^{\gamma_{\theta}}_{t}}\right)^{1-\eta}, \eta \in (0,1)$$

where E_t is the nominal exchange rate, $R_t^{\$}$ dollar reserves held by the Home central bank. η - the sensitivity of reserve levels to previous levels γ_e - the response in reserve levels to nominal exchange rate The Home central bank sterilizes changes in FXI, in real terms, as follows:

$$Q_t(R_t^{\$} - R_t^* R_{t-1}^{\$}) = S_t^b - R_t S_{t-1}^b$$

where Q_t is the real exchange rate (price of foreign currency), S_t^b is the sterilized bonds issued by the central bank to Home banks, and R_t^* real return rate on Foreign assets¹.

¹The return rates R_{t-1} and R_{t-1}^* are set at time t - 1 and are realized at time t

Taylor Rule

The central bank engages in a Taylor rule and sets the nominal interest rate, R^n with inflation targeting defined as follows:

$$\boldsymbol{R}_{t+1}^{n} = (\boldsymbol{R}_{t}^{n})^{\gamma_{r}} \left(\beta^{-1} \pi_{t}^{\gamma_{\pi}}\right)^{1-\gamma_{r}}$$

where γ_{π} is the response to producer price inflation, $\pi_t = \frac{P_{Ht}}{P_{Ht-1}}$.

Private Bank

- Balance Sheet
- Budget Constraint
- Agency Friction

Balance Sheet

The banks' Balance Sheet (BS) identity is:

$$q_t S_t + S_t^b = D_t + Q_t D_t^* + N_t$$

Dt- Deposits from Home households

- D_t^* Deposits from Foreign households
- q_t price of capital
- Nt- Bank's Net Worth
- S_{t} Capital Purchases financed by the bank

Budget Constraint

The budget constraint (BC), in real domestic currency:

 $q_t S_t + S_t^b + R_t D_{t-1} + R_t^* Q_t D_{t-1}^* \le R_{Kt} q_{t-1} S_{t-1} + R_t S_{t-1}^b + D_t + Q_t D_t^*$

where the left-hand side is banks' uses of funds and the right-hand size is the banks' source of funds.

 R_t - Home real interest rate R_t^* - Foreign real interest rate R_{Kt} - real return on capital assets

Agency Friction

- Moral Hazard [Gertler and Kiyotaki, 2010] after issuing deposits in period t, bank chooses to
 - operate honestly: meet deposit obligations at time t + 1 or
 - divert funds for personal use
- if divert, bank obtains:

$$\theta_r \left(D_t + (1+\gamma)Q_t D_t^* \right)$$

and creditors force bankruptcy in t + 1 and recover remaining funds

- $\gamma > 0$: foreign loans harder to enforce than domestic loans
- θ_r : exogenous default risk prob.

• endogenous net worth evolution

$$N_{t} = (R_{Kt} - R_{t})q_{t-1}S_{t-1} + \left(R_{t} - R_{t}^{*}\frac{Q_{t}}{Q_{t-1}}\right)Q_{t-1}D_{t-1}^{*} + R_{t}N_{t-1}$$
(3)

• s.t. incentive compatibility (IC)

 $N_t \geq \Theta(x_t)(q_t S_t + S_t^b)$

$$\begin{aligned} x_t &= \frac{Q_t D_t^*}{q_t S_t + S_t^b} \\ \Lambda_{t,t+1} &= \text{household's SDF} \\ \Theta(x_t) &= \theta_r \left(1 + \frac{\gamma}{2} x_t^2\right) \end{aligned}$$

• Defining the credit and UIP spread ²

$$\mu_{t} = \mathbb{E}_{t} \left[\Lambda_{t,t+1} \Omega_{t+1} (R_{Kt+1} - R_{t+1}) \right]$$

$$\mu_{t}^{*} = \mathbb{E}_{t} \left[\Lambda_{t,t+1} \Omega_{t+1} (R_{t+1} - R_{t+1}^{*} \frac{Q_{t+1}}{Q_{t}}) \right]$$
(5)

• Optimal solution when (IC) binds:

$$\mu_t^* = y_t \mu_t \left(\frac{\Theta(x_t)}{\Theta'(x_t)} - x_t \right)^{-1}$$

 $\mu_t^* \text{ - UIP spread}$ $\mu_t \text{ - Credit spread}$ $y_t \text{ - Asset choice in capital}$ $= \frac{q_t S_t}{q_t S_t + S_t^b}$

 $^{{}^{2}\}Lambda_{t,t+1}\Omega_{t+1}$ is the augmented SDF accounting for the marginal value of funds.

Market Clearing, BOP

• Market clearing for home good:

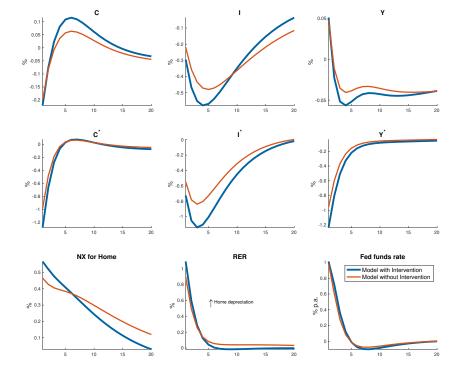
$$Y = (C_H + I_H) + \frac{1 - n}{n}(C_H^* + I_H^*) + \frac{\psi_I}{2}\left(\frac{I_t}{I_{t-1}} - 1\right)^2 I_t$$

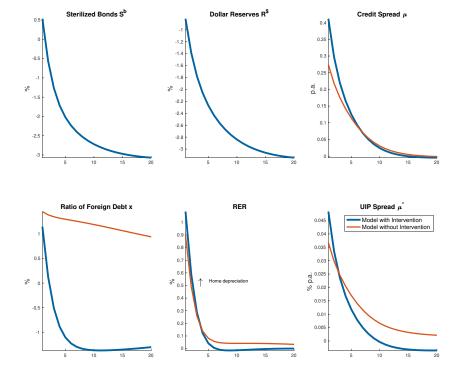
• Evolution of capital stock:

$$K_{t+1} = (1 - \delta)K_t + I_t$$
$$= S_t$$

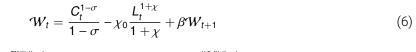
• Balance of payments (BOP):

$$Q_t(D_t^* - R_t^* D_{t-1}^* - (R_t^{\$} - R_t^* R_{t-1}^{\$})) = C_t + I_t + p_H \frac{\psi_I}{2} \left(\frac{I_t}{I_{t-1}} - 1\right)^2 I_t - p_H Y_t$$




Assumptions

- financial market segmentation that violates the UIP
- banks forced to hold sterilized bonds (e.g. a reserve requirement)
- $\beta < \beta^*$: US more patient (incentive to invest overseas)
- $\gamma > 0$: financial contracts less enforceable across borders


calibration

Simulations and Results

What about Welfare Implications?

• dominant currency pricing (DCP), turning off the expenditure switching channel

Capital Producers

The representative capital producer solves:

$$\max_{\{I_{t+j}\}_{j=0}^{\infty}} \mathbb{E}_t \left\{ \sum_{j=0}^{\infty} \Lambda_{t,t+j} \left[\boldsymbol{q}_{t+j} \boldsymbol{I}_{t+j} - \frac{\boldsymbol{P}_{Ht+j}}{\boldsymbol{P}_{t+j}} \phi_{It+j} \right] \right\}$$

where

$$\phi_{lt} = \frac{\psi_l}{2} \left(\frac{l_t}{l_{t-1}} - 1 \right)^2 l_t$$
$$I = \left[\omega^{\frac{1}{\theta}} l_H^{\frac{\theta-1}{\theta}} + (1-\omega)^{\frac{1}{\theta}} l_F^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

▶ back

Calibration

Parameter	Description	Value	
α	output elasticity of capital	0.33	
β	Home consumer's discount rate	0.9970	
β^*	Foreign consumer's discount rate	0.9975	
x	inverse labor supply elasticity	3.79	Justiniano et al. '10
δ	capital depreciation rate	0.025	
η	\$ reserve inflexibility to nominal exchange rate	0.82	
γ	Home bias in bank funding	2.58	Akinci-Queralto '18
Ye	response in reserve accumulation to nominal exchange rate	2.09	
γ^{π}	response in taylor rule to inflation	2.09	
Υr Yr	Foreign Taylor rule inertia coefficient	0.82	Justiniano et al. '10
n	Home country size ratio	1/3	
ω	weight given to Home good in Home consumption	0.80	Akinci-Queralto '18, Blanchard et al. '16
ω*	weight given to Home good in Foreign consumption	0.20/3	Akinci-Queralto '18, Blanchard et al. '16
ψ_1	investment adjustment cost	2.85	Justiniano et al. '10
ρ _r	persistence of Foreign monetary shock	0.25	Akinci-Queralto '18
σ	inverse elasticity of substitution	1.00	
σ_b	banks' survival rate	0.95	Akinci-Queralto '18
σ_r	standard deviation of Foreign monetary shock	0.20/100	Akinci-Queralto '18
θ	trade price elasticity	0.90	
θρ	net price markup	0.20	
θr	banks' default probability	0.41	Akinci-Queralto '18
ξ _b	transfer rate to entering banks	0.07	Akinci-Queralto '18
ξp	price stickiness	0.84	Justiniano et al. '10

References

Akinci, O., Benigno, G., Pelin, S., and Turek, J. (2022).

The Dollarâs Imperial Circle. Staff Reports 1045, Federal Reserve Bank of New York.

Akinci, O. and Queralto, A. (2018).

Exchange rate dynamics and monetary spillovers with imperfect financial markets. Staff Reports 849, Federal Reserve Bank of New York.

Backus, D. K. and Kehoe, P. J. (1988).

On the denomination of government debt: a critique of the portfolio balance approach. Staff Report 116, Federal Reserve Bank of Minneapolis.

Fama, E. F. (1984).

Forward and spot exchange rates. Journal of Monetary Economics, 14(3):319–338.

Fratzscher, M., Gloede, O., Menkhoff, L., Sarno, L., and Stöhr, T. (2019). When is foreign exchange intervention effective? evidence from 33 countries. *American Economic Journal: Macroeconomics*, 11(1):132–56.

Froot, K. and Frankel, J. (1989).

Forward discount bias: Is it an exchange risk premium? The Quarterly Journal of Economics, 104(1):139–161.

Gabaix, X. and Maggiori, M. (2015). International Liquidity and Exchange Rate Dynamics.