Navigating Geopolitical Crises for Energy Security: Evaluating Optimal Subsidy Policies via a Markov Switching DSGE Model

Ying Tung Chan, Maria Teresa Punzi, Hong Zhao

July 26, 2024

Table of contents

Motivation
 Main results
 Literature review

4 Model setup5 Results6 Conclusion

- ▶ The recent geopolitical crisis between Russia and Ukraine has highlighted the vulnerability and dependence of European countries on a single energy supplier.
 - Russia, which supplied 34% of the gas consumed by the European Union countries (EU27) plus Great Britain (GB) in 2019.
- ▶ This study focuses specifically on the dimension of energy self-sufficiency. →Energy resilience
- Bolstering energy resilience enables countries to improve their capacity to withstand and recover from disruptions from geopolitical conflicts, natural disasters, cyberattacks, or infrastructure failures.

- ▶ A disruption in energy imports causes a significant decrease in output, social welfare, and energy consumption.
- ▶ Furthermore, the mere expectation or anticipation of an energy crisis can impact household consumption and saving behavior, making households more conservative.
- ▶ By solving a Ramsey planner problem in each economic regime, we find that the optimal subsidy policy should be responsive to positive supply shocks while reducing its responsiveness to positive demand shocks.
- In situations where the probability of an energy supply termination is high, the government should adopt a subsidy policy with lower sensitivity to ongoing economic shocks.

DSGE: Heutel (2012); Fischer and Springborn (2011); Punzi (2019); Annicchiarico and Di Dio (2015).

RS: Sims and Zha (2006); Liu et al. (2011); Choi and Hur (2015); Bianchi (2013).

Energy resilience: Jasiunas et al. (2021); Thomas and Kerner (2010); Sharifi and Yamagata (2016); Gatto and Drago (2020a); Gatto and Drago (2020b).

Our focus is to explore how countries can enhance energy resilience in preparation for potential geopolitical conflicts.

$$Y_t = A_t K_t^{\alpha_K} E_t^{\alpha_E} L_t^{1-\alpha_K-\alpha_E}.$$
(1)

$$\log(A_t) = (1 - \rho_A)\log(A) + \rho_A\log(A_{t-1}) + \varepsilon_{A,t}.$$
(2)

$$E_t = E^M(s_t) + E_t^D. aga{3}$$

We categorize energy based solely on its origin - whether it is domestically produced or imported from foreign countries - without differentiation by energy source.

Firm II

Figure: The demand and supply curves of energy market.

The normal regime: the energy import is E_1^M . The crisis regime: the energy import is E_2^M , with $E_2^M < E_1^M$.

The variable $E^{M}(s_t)$ follows a first-order discrete Markov process with two states, $\{E_1^{M}, E_2^{M}\}$. The transition matrix for this process is given by:

$$p = \begin{bmatrix} p_{11} & 1 - p_{11} \\ 1 - p_{22} & p_{22} \end{bmatrix}.$$
 (4)

The cost of energy production is:

$$\mathscr{C}(E_t^D) = \phi_1(E_t^D)^{\phi_2}, \phi_1 > 0, \phi_2 > 1.$$
(5)

Househoulds & goods mkts equilibrium

$$\mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^t a_t \left(\frac{C_t^{1-\sigma_c}}{1-\sigma_c} - \mu_L \frac{L_t^{1+\phi}}{1+\phi} \right).$$
(6)

$$\log(a_t) = \rho_a \log(a_{t-1}) + \varepsilon_{A,t}.$$
(7)

$$C_t + I_t \le w_t L_t + r_t K_t + \pi_t - T_t.$$

$$\tag{8}$$

$$K_{t+1} = (1 - \delta_K)K_t + I_t.$$
 (9)

$$Y_t - p_t^E E_t^M = I_t + C_t + \phi_1(E_t^D)^{\phi_2}.$$
 (10)

Calibration

Table: Parameter values.

Parameters	Value	Description
α_{κ}	0.3	Share of capital in production
α_E	0.1	Share of energy in production
$\tilde{\phi_1}$	0.0065	Parameter in cost functions of energy production
ϕ_2	2	Parameter in cost functions of energy production
δ_{κ}^{2}	0.025	Capital depreciation rate
ρ	0.01	discount factor rate
σ_{c}	1	Risk aversion
ϕ	1	Inverse of Frisch elasticity
μ_L	1	Scale of labor disutility
Ă	1	Steady-state value of TFP level
$ ho_{\scriptscriptstyle A}$	0.95	TFP shock persistence
σ_A	1	TFP shock standard deviation
ρ_a	0.194	Preference shock persistence
σ_a	1	Preference shock standard deviation

Long-term impacts in the two regimes I

Long-term impacts

Figure: The long run effects of TFP level in the two regimes.

Short-term impacts in the two regimes I

Short-term impacts

Figure: Regime-specific dynamic responses of energy, social welfare and economic variables to positive TFP shocks. *Notes: The responses are shows in percent.*

Short-term impacts in the two regimes II

Short-term impacts

Figure: Regime-specific dynamic responses of energy, social welfare and economic variables to positive preference shocks. *Notes: The responses are shows in percent*.

The importance of transition probability I

Figure: The accumulated responses of energy, welfare and economic variables to positive TFP shocks with different values of regime-switching probability p_{12} .

The importance of transition probability II

Figure: The accumulated responses of energy, welfare and economic variables to positive preference shocks with different values of regime-switching probability p_{12} .

The importance of transition probability III

Figure: The simulated series of energy, social welfare, and output. *Notes: The shaped areas are the 95% confidence interval of the series. The regime switches from regime 1 to regime 2 in period 100. The blue lines from period 100 to 200 are the counterfactual paths of the series if the regime does not shift.*

The optimal subsidy policy I

Figure: The steady-state optimal subsidy against the TFP level and imported energy.

The optimal subsidy policy II

Figure: Regime-specific dynamic response of the optimal subsidy level to positive TFP and preference shocks. *Notes: The responses are shows in percent.*

The optimal subsidy policy III

Figure: The accumulated responses of the optimal subsidy levels to positive TFP and preference shocks with different values of regime-switching probability p_{12} .

- An interruption in energy supply from foreign countries leads to a significant reduction in output, social welfare, and energy consumption.
 - During an energy crisis, energy consumption becomes more sensitive to economic shocks in the short run.
 - ▶ Household behavior adjusts in response to the anticipation of an energy crisis, mitigating potential negative effects and reducing volatility in energy, output, and household consumption.
- Our findings indicate that a well-designed subsidy policy must take into account the variations in productivity levels and energy imports.
- ▶ When the economy faces a significant risk of energy imports disruption, the optimal approach for the government is to select a subsidy policy that is less responsive to current economic shocks.

Thank you!