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Motivation

▶ The recent geopolitical crisis between Russia and Ukraine has highlighted the vulnerability
and dependence of European countries on a single energy supplier.
▶ Russia, which supplied 34% of the gas consumed by the European Union countries (EU27) plus

Great Britain (GB) in 2019.
▶ This study focuses specifically on the dimension of energy self-sufficiency. →Energy resilience
▶ Bolstering energy resilience enables countries to improve their capacity to withstand and

recover from disruptions from geopolitical conflicts, natural disasters, cyberattacks, or
infrastructure failures.
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Main results

▶ A disruption in energy imports causes a significant decrease in output, social welfare, and
energy consumption.

▶ Furthermore, the mere expectation or anticipation of an energy crisis can impact household
consumption and saving behavior, making households more conservative.

▶ By solving a Ramsey planner problem in each economic regime, we find that the optimal
subsidy policy should be responsive to positive supply shocks while reducing its
responsiveness to positive demand shocks.

▶ In situations where the probability of an energy supply termination is high, the government
should adopt a subsidy policy with lower sensitivity to ongoing economic shocks.
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Literature review

DSGE: Heutel (2012); Fischer and Springborn (2011); Punzi (2019); Annicchiarico and
Di Dio (2015).

RS: Sims and Zha (2006); Liu et al. (2011); Choi and Hur (2015); Bianchi (2013).
Energy resilience: Jasiunas et al. (2021); Thomas and Kerner (2010); Sharifi and Yamagata

(2016); Gatto and Drago (2020a); Gatto and Drago (2020b).
Our focus is to explore how countries can enhance energy resilience in preparation for potential
geopolitical conflicts.
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Firm I

𝑌𝑡 =𝐴𝑡𝐾
𝛼𝐾
𝑡 𝐸𝛼𝐸

𝑡 𝐿1−𝛼𝐾−𝛼𝐸
𝑡 . (1)

log(𝐴𝑡) = (1−𝜌𝐴) log(𝐴)+𝜌𝐴 log(𝐴𝑡−1)+𝜀𝐴,𝑡. (2)

𝐸𝑡 =𝐸𝑀(𝑠𝑡)+𝐸𝐷
𝑡 . (3)

We categorize energy based solely on its origin - whether it is domestically produced or imported
from foreign countries - without differentiation by energy source.
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Firm II

Figure: The demand and supply curves of energy market.

The normal regime: the energy import is 𝐸𝑀
1 . The crisis regime: the energy import is 𝐸𝑀

2 , with
𝐸𝑀
2 <𝐸𝑀

1 .
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Firm III

The variable 𝐸𝑀(𝑠𝑡) follows a first-order discrete Markov process with two states, {𝐸𝑀
1 ,𝐸𝑀

2 }. The
transition matrix for this process is given by:

𝑝 =
[

𝑝11 1−𝑝11
1−𝑝22 𝑝22 ]

. (4)

The cost of energy production is:

𝒞(𝐸𝐷
𝑡 ) = 𝜙1(𝐸

𝐷
𝑡 )

𝜙2 ,𝜙1 >0,𝜙2 >1. (5)
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Househoulds & goods mkts equilibrium

𝔼𝑡0

∞

∑
𝑡=𝑡0

𝛽𝑡𝑎𝑡
(

𝐶1−𝜎𝑐
𝑡

1−𝜎𝑐
−𝜇𝐿

𝐿1+𝜙
𝑡

1+𝜙)
. (6)

log(𝑎𝑡) = 𝜌𝑎 log(𝑎𝑡−1)+𝜀𝐴,𝑡. (7)

𝐶𝑡+𝐼𝑡 ≤𝑤𝑡𝐿𝑡+𝑟𝑡𝐾𝑡+𝜋𝑡−𝑇𝑡. (8)

𝐾𝑡+1 = (1−𝛿𝐾)𝐾𝑡+𝐼𝑡. (9)

𝑌𝑡−𝑝𝐸
𝑡 𝐸

𝑀
𝑡 = 𝐼𝑡+𝐶𝑡+𝜙1(𝐸

𝐷
𝑡 )

𝜙2 . (10)
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Calibration

Table: Parameter values.

Parameters Value Description

𝛼𝐾 0.3 Share of capital in production
𝛼𝐸 0.1 Share of energy in production
𝜙1 0.0065 Parameter in cost functions of energy production
𝜙2 2 Parameter in cost functions of energy production
𝛿𝐾 0.025 Capital depreciation rate
𝜌 0.01 discount factor rate
𝜎𝐶 1 Risk aversion
𝜙 1 Inverse of Frisch elasticity
𝜇𝐿 1 Scale of labor disutility
𝐴 1 Steady-state value of TFP level
𝜌𝐴 0.95 TFP shock persistence
𝜎𝐴 1 TFP shock standard deviation
𝜌𝑎 0.194 Preference shock persistence
𝜎𝑎 1 Preference shock standard deviation
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Long-term impacts in the two regimes I

Long-term impacts

Figure: The long run effects of TFP level in the two regimes.
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Short-term impacts in the two regimes I

Short-term impacts

Figure: Regime-specific dynamic responses of energy, social welfare and economic variables to positive TFP
shocks. Notes: The responses are shows in percent.
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Short-term impacts in the two regimes II

Short-term impacts

Figure: Regime-specific dynamic responses of energy, social welfare and economic variables to positive
preference shocks. Notes: The responses are shows in percent.
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The importance of transition probability I

Figure: The accumulated responses of energy, welfare and economic variables to positive TFP shocks with
different values of regime-switching probability 𝑝12.
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The importance of transition probability II

Figure: The accumulated responses of energy, welfare and economic variables to positive preference shocks
with different values of regime-switching probability 𝑝12.
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The importance of transition probability III

Figure: The simulated series of energy, social welfare, and output. Notes: The shaped areas are the 95%
confidence interval of the series. The regime switches from regime 1 to regime 2 in period 100. The blue lines
from period 100 to 200 are the counterfactual paths of the series if the regime does not shift.
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The optimal subsidy policy I

Figure: The steady-state optimal subsidy against the TFP level and imported energy.
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The optimal subsidy policy II

Figure: Regime-specific dynamic response of the optimal subsidy level to positive TFP and preference
shocks. Notes: The responses are shows in percent.
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The optimal subsidy policy III

Figure: The accumulated responses of the optimal subsidy levels to positive TFP and preference shocks with
different values of regime-switching probability 𝑝12.
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Conclusion

▶ An interruption in energy supply from foreign countries leads to a significant reduction in
output, social welfare, and energy consumption.
▶ During an energy crisis, energy consumption becomes more sensitive to economic shocks in the

short run.
▶ Household behavior adjusts in response to the anticipation of an energy crisis, mitigating

potential negative effects and reducing volatility in energy, output, and household consumption.
▶ Our findings indicate that a well-designed subsidy policy must take into account the

variations in productivity levels and energy imports.
▶ When the economy faces a significant risk of energy imports disruption, the optimal

approach for the government is to select a subsidy policy that is less responsive to current
economic shocks.
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