Introduction 0000000000	Literature review	The model 0000	Results 00000000	Welfare analysis 00	Conclusions	Technical appendix

The gender distributive effects of climate policy

M. T. Benkhodja¹, Johan Gustafsson², Xiaofei Ma³, Junior Maih⁴

26 July 2024, RISE Workshop 2024, University of Pretoria

¹ESSCA School of Management, France
 ²Umeå University, Sweden
 ³ESSCA School of Management, France
 ⁴Norges Bank, Norway

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	0000000000000
Road map)					

1 Introduction

- Literature review
- 3 The model
- 4 Results
- **5** Welfare analysis

6 Conclusions

7 Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Welfare analysis	Conclusions	Technical appendix
•000000000					

- 2 Literature review
- **3** The model

- **5** Welfare analysis
- 6 Conclusions

Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
000000000	0000	0000	00000000	00	00	0000000000000
Research	question					

What are the gender distributive effects of climate policy?

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

Ξ.

イロト イロト イヨト イヨト

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
000000000	0000	0000	00000000	00	00	00000000000000
Motivatio	n					

- A worldwide consensus stresses the need for ambitious climate policy
- Increasing attention given to the distributive effects of climate policy

イロト イヨト イヨト

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
000000000	0000	0000	00000000	00	00	00000000000000
Stylized f	acts					

Évolution des surfaces, des fermes et des entreprises engagées en bio depuis 1995

Source : Agence BIO / OC, Agreste / SAA 2020 : (1) Surface agricole utile des exploitations 2020 : 26 855 402 ha et (2) Nombre d'exploitations 2019 : 452 542

France : farms and firms engaged in organic production since 1995 Source : Agence Bio, 2020

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	
Stylized fa	icts					

Evolution of organic farms in France Source : Agence Bio, 2020

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

э

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	00000000000000
Stylized f	acts					

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
00000000000	0000	0000	00000000	00	00	0000000000000
Stylized fa	acts					

France : consumption of organic products by gender, December 2021

		SE	XE
	ENSEMBLE	Homme	Femme
Base	2112	1001	1111
ST Consommateurs (dont rarement)	91 %	90 %	91%
ST Consommateurs au moins une fois par mois	76%	74 %	78%
ST Consommateurs au moins une fois par semaine	52%	49 %	54%
Oui, tous les jours	15%	13%	16%
Oui, régulièrement (au moins une fois par semaine)	37%	36%	37%
Oui, de temps en temps (en∨iron une fois par mois)	24%	25%	24%
ST Non consommateurs (moins d'une fois par mois)	24%	26 %	22%
Oui, rarement (moins souvent qu'une fois par mois)	15%	16%	14%
Non, jamais	9%	10%	9%

Source : Agence Bio, 2022

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

2

イロト イヨト イヨト

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
00000000000	0000	0000	00000000	00		0000000000000
Backgrou	nd					

- Our paper follows from two observations:
 - Gender differences in environmental and ecological awareness regarding consumption.⁵
 - Women, on average, have a comparative advantage in less carbon-intense sectors.⁶
- Likely that climate policy and the green transition will affect men and women differently.

⁵e.g., Bravo et al. (2013), Sanchéz et al. (2016) OECD (2021)

⁶e.g., Fan and Lui (2003), Somuncu (2024), our data → <♂→ < ≧→ < ≧→ ≧ → <<

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	0000000000000
Question						

Will environmental policies influence the gender income inequalities $\ensuremath{?}$

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

< 注 → < 注 → □ 注

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	0000000000000
Key findir	ngs					

The green transition can reduce gender-based income inequality

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

2

・ロト ・四ト ・ヨト ・ヨト

Literature review	The model	Welfare analysis	Conclusions	Technical appendix
0000				

2 Literature review

3 The model

4 Results

5 Welfare analysis

6 Conclusions

Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

(ロ) 《 卽) 《 臣) 《 臣) 《 ⑮) 《 印)

13 / 45

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0●00	0000	00000000	00	00	00000000000000
Literature	e review					

- Distributional effects of environmental policy:
 - Cremer et al. (2003)
 - Aubert et al. (2019)
 - Douenne et al. (2023)
- Accounting for employment effects:
 - Yamazaki (2017)
 - Curtis (2018)
- Gender effects:
 - Somuncu (2023)

-

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	00●0	0000	00000000	00		0000000000000
Our contr	ibution					

We study the distributional effects between men and women of climate policy, accounting for both consumption and employment channels.

э

A B M A B M

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	000●	0000	00000000	00	00	0000000000000
Our appro	oach					

- Build a structural model that includes:
 - gender heterogeneity in consumption and occupation choice
 - firm heterogeneity in emission intensity
- Environmental Dynamic Stochastic General Equilibrium (E-DSGE) model
- Calibrate the model to the French economy

イロト イボト イヨト イヨト

Literature review	The model	Welfare analysis	Conclusions	Technical appendix
	0000			

4 Results

5 Welfare analysis

6 Conclusions

Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

(ロ・・部・・ボ・・ボ・・ ほう ろくぐ)

17 / 45

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0●00	00000000	00	00	0000000000000
Model						

- Two production sectors with stochastic TFP
 - Carbon-intense ("brown") goods
 - Carbon-neutral ("green") goods
- Male and female individuals
 - Consume a composite of green and brown goods
 - Works in both sectors
- Government
 - Un-anticipated climate policy shocks

э

・ロト ・四ト ・ヨト ・ヨト

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	00●0	00000000	00	00	0000000000000
Environm	ental policie	:S				

Following Benkhodja et al.(2022) & (2023) :

- Carbon tax
- Labor cost subsidy for green firms

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	000●	00000000	00	00	
Model illu	stration					

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
		0000000			

1 Introduction

- **2** Literature review
- **3** The model

- **5** Welfare analysis
- 6 Conclusions

Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

(ロ・スピ・スピ・スピ・スピ・スワン

21 / 45

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	0●000000	00	00	0000000000000
Calibratio	n					

Table 1. Calibration of structural parameters			
Description	Parameters	Values	Source
The subjective discount factor	β	0.997	steady state interest rate of 1.2%
The inverse of the elasticity of intertemporal substitution of consumption	γ	0.5	[Gruber, 2013]
The inverse of the wage elasticity of labor supply	σ	2	[Chetty et al., 2011]
The weight of labor in households' utility function	χ	61.67	steady state labor supply intensity of 0.33
The weight of green goods in the female's consumption basket	$\mu_{f,c}$	0.2	French data
The weight of green goods in the male's consumption basket	$\mu_{m,c}$	0.1	French data
Male elasticity of substitution between different types of consumption goods	$\epsilon_{m,c}$	10	Author's assumption
Female elasticity of substitution between different types of consumption goods	$\epsilon_{f,c}$	15	Author's assumption
The payroll tax rates in green and brown sectors	ω	0.3	French data
Carbon tax rate	τ_e	0.009	[Benkhodja et al., 2023]
The proportion of female workers in the green sector	$\mu_{f,g,h}$	0.63	French data
The proportion of female workers in the brown sector	$\mu_{f,b,h}$	0.24	French data
Constant elasticity of substitution between female/male labor in green sector	$\epsilon_{g,h}$	100	Author's assumption
Constant elasticity of substitution between female/male labor in brown sector	$\epsilon_{b,h}$	100	Author's assumption
The level of emissions per unit of production	φ	0.002	Author's calibration
First technological parameter of abatement cost	ψ_1	0.002	Author's calibration
Second technological parameters of abatement cost	ψ_2	2.8	[Annicchiarico and Di Dio, 2015]
Constant in damage function	d_0	1.3950×10^{-3}	[Heutel, 2012]
Linear term in damage function	d_1	-6.6722×10^{-6}	[Heutel, 2012]
Quadratic term in damage function	d_2	1.4647×10^{-8}	[Heutel, 2012]
The pollution depreciation rate	δ_x	0.0035	[Carattini et al., 2021]
Labor mobility costs for females	ϕ_f	0.01	Author's assumption
Labor mobility costs for males	ϕ_m	0.01	Author's assumption

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

E 990

・ロト ・回ト ・ヨト ・ヨト

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Results 00000000

+1pp Positive green productivity shock

M. T. Benkhodia, Johan Gustafsson, Xiaofei Ma, Junior Maih

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Results 00000000

M. T. Benkhodia, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction Literature review The model coord of t

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction Literature review The model Conclusion Conclusions Technical appendix Conclusions Conclusions Technical appendix Conclusions Conclusions

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Literature review	The model	Welfare analysis	Conclusions	Technical appendix
		•0		

Introduction

- **2** Literature review
- **3** The model

4 Results

5 Welfare analysis

6 Conclusions

7 Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	0●	00	0000000000000
Welfare a	nalysis					

Table: Welfare analysis, % deviation from baseline

	female	male
+1pp green TFP shock	+76.8	+32.8
+1pp carbon tax	-5.48E - 05	-1.34E - 04
+1pp labor cost subsidy for green firms	-17.1	-64.7

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

E 990

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Literature review	The model	Welfare analysis	Conclusions	Technical appendix
			•0	

Introduction

- **2** Literature review
- **3** The model

4 Results

6 Welfare analysis

6 Conclusions

Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

(ロ・ス合・ボット ボット 小田・ うんぐ

31 / 45

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	00000000000000
Conclusio	ns					

Environmental policies help reducing the income gap between female and male workers.

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

문어 문

Image: Image:

Literature review	The model	Welfare analysis	Conclusions	Technical appendix
				•000000000000

Introduction

- 2 Literature review
- **3** The model

4 Results

6 Welfare analysis

6 Conclusions

7 Technical appendix

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih The gender distributive effects of climate policy

(ロ・スピ・スピ・スピ・スピ・スワン

33 / 45

As in Heutel (2012), we assume that the pollution caused by firms affects negatively output through the following damage function:

$$d(x_t) = d_0 + d_1 x_t + d_2 x_t^2,$$

Where the emissions stock evolve according to the following process:

$$x_t = (1 - \delta_x)x_{t-1} + e_t + e_t^{row}$$

where δ_x is the pollution decay rate, e_t the level of domestic emissions, and e_t^{row} the emissions in the rest of the world.

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

< □ > < 同 > < Ξ > <</p>

Introduction Literature review The model Results Welfare analysis Conclusions Technical appendix 0000000000 Conclusions and abatement

The level of domestic emissions depends on the output and of the abatement effort η_t

$$e_t = \varphi(1 - \eta_t) Y_{b,t},\tag{1}$$

< 口 > < 同 >

The emission in the rest of the world is assumed to follow an AR process. That is,

$$\log(e_t^{row}) = (1 - \rho_{e_t^{row}}) \log(e^{row}) + \rho_{e_t^{row}} \log(e_{t-1}^{row}) + \epsilon_{e_t^{row}}.$$
 (2)

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	00000000000000
Individual	S					

Each gender type i have preferences over consumption and labor supply:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_{i,t}^{1-\gamma}}{1-\gamma} - \chi \frac{H_{i,t}^{1+\sigma}}{1+\sigma} \right\},\tag{3}$$

where total consumption is a composite of green (g) and brown (b) goods:

$$C_{i,t} = \left(\mu_{i,c}^{1/\epsilon_{i,c}} C_{i,g,t}^{(\epsilon_{i,c}-1)/\epsilon_{i,c}} + (1-\mu_{i,c})^{1/\epsilon_{i,c}} C_{i,b,t}^{(\epsilon_{i,c}-1)/\epsilon_{i,c}}\right)^{\epsilon_{i,c}/(\epsilon_{i,c}-1)}$$
(4)

and labor is perfectly mobile between green and brown firms:

$$H_{i,t} = H_{i,g,t} + H_{i,b,t},$$
 (5)

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	0000●00000000
Individual	s					

Capital markets are completely missing. So the budget constraint of each individual is:

$$C_{i,b,t} + P_{g,t}C_{i,g,t} \le (1-\omega)W_{i,t}H_{i,t} + T_{i,t}$$
(6)

That is, the trade-offs are entirely instantaneous.

Introduction 0000000000	Literature review 0000	The model 0000	Results 00000000	Welfare analysis 00	Conclusions	Technical appendix
Green sec	tor					

The firm maximizes profits:

$$\max_{H_{f,g,t},H_{m,g,t}} P_{g,t} Y_{g,t} - W_{f,t} H_{f,g,t} - W_{m,t} H_{m,g,t}$$
(7)

where output is a linear function of labor:

$$Y_{g,t} = A_{g,t}H_{g,t},\tag{8}$$

イロト イポト イヨト イヨト

and technology follows a stochastic process:

$$\log(A_{g,t}) = (1 - \rho_{A_g})\log(A_g) + \rho_{A_g}\log(A_{g,t-1}) + \epsilon_{A_{g,t}}$$

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

æ

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00		0000000000000
Green sec	tor					

The green firm employs male and female workers such that the value of the marginal products are equal to their wage rates.

$$W_{f,t} = P_{g,t}MP_{H_{f,g,t}}$$
 (9)
 $W_{m,t} = P_{g,t}MP_{H_{m,g,t}}$ (10)

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	
Brown see	ctor					

Output is linear in labor $H_{b,t}$:

$$Y_{b,t} = A_{b,t}H_{b,t},\tag{11}$$

The variable $A_{b,t}$ is a technology specific to the brown sector and is defined as:

$$A_{b,t} = (1 - d(x_{t-1}))a_{b,t},$$

where d is an environmental damage function which affects productivity negatively. x_t represents the emission stock.

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix
0000000000	0000	0000	00000000	00	00	00000000000000
Brown see	ctor					

The productivity shock $a_{b,t}$ follows a stochastic process that is given by:

$$\log(a_{b,t}) = (1 - \rho_{a_b})\log(a_b) + \rho_{a_b}\log(a_{b,t-1}) + \epsilon_{a_{b,t}},$$
(12)

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

The gender distributive effects of climate policy

포 제 표

・ロト ・回ト ・ヨト・

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix				
0000000000	0000	0000	00000000	00	00	000000000000000000000000000000000000				
Emissions and abatement										

Abatement costs Z_t are a function of the abatement effort η_t and output. It takes the following form:

$$Z_t = \psi_1 \eta_t^{\psi_2} Y_{b,t},$$

Polluting firms are taxed by the government depending on the level of domestic emissions $\tau_{e,t}e_t$ where $\tau_{e,t}$ represents the carbon-tax.

The polluting firm maximizes its profits:

$$\max_{H_{f,b,t},H_{m,b,t},\eta_t} Y_{b,t} - Z_t - \tau_{e,t} e_t - W_{b,t} H_{b,t}$$
(13)

Labor demand and abatement effort are given by:

$$W_{f,t} = A_{b,t} M P_{H_{f,b,t}} \tag{14}$$

$$W_{m,t} = A_{b,t} M P_{H_{m,b,t}} \tag{15}$$

$$\eta_t = \left(\frac{\tau_e \varphi}{\psi_1 \psi_2}\right)^{\frac{1}{\psi_2 - 1}} \tag{16}$$

イロト イポト イヨト イヨト

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

Introduction	Literature review	The model	Results	Welfare analysis	Conclusions	Technical appendix		
0000000000	0000	0000	00000000	00	00	0000000000000		
Government								

The budget constraint of the public sector is given by:

$$T_t = \tau_{e,t} e_t + \omega (W_{f,t} H_{f,t} + W_{m,t} H_{m,t})$$
(17)

That is, revenue from carbon and payroll taxes finance lump-sum transfers.

In equilibrium, we have market clearing in green and brown goods markets:

$$C_{g,t} = Y_{g,t},\tag{18}$$

$$C_{b,t} = Y_{b,t}.$$
(19)

Market clearing in different labor markets:

$$H_{f,t} = H_{f,g,t} + H_{f,b,t}$$
 (20)

$$H_{m,t} = H_{m,g,t} + H_{m,b,t}$$
 (21)

★ ∃ ► < ∃ ►</p>

M. T. Benkhodja, Johan Gustafsson, Xiaofei Ma, Junior Maih

[Annicchiarico and Di Dio, 2015] Annicchiarico, B. and Di Dio, F. (2015).

Environmental policy and macroeconomic dynamics in a new keynesian model.

Journal of Environmental Economics and Management, 69:1-21.

[Benkhodja et al., 2023] Benkhodja, M. T., Fromentin, V., and Ma, X. (2023).

Macroeconomic effects of green subsidies. Journal of Cleaner Production, 410:137166.

[Carattini et al., 2021] Carattini, S., Heutel, G., and Melkadze, G. (2021).
Climate policy, financial frictions, and transition risk. National Bureau of Economic Research.

[Chetty et al., 2011] Chetty, R., Guren, A., Manoli, D., and Weber, A. (2011).

э

イロト イヨト イヨト

Are micro and macro labor supply elasticities consistent? a review of evidence on the intensive and extensive margins. *American Economic Review*, 101(3):471–475.

Results

[Gruber, 2013] Gruber, J. (2013).

A tax-based estimate of the elasticity of intertemporal substitution.

The Quarterly Journal of Finance, 3(01):1350001.

[Heutel, 2012] Heutel, G. (2012). How should environmental policy respond to business cycles? optimal policy under persistent productivity shocks. *Review of Economic Dynamics*, 15(2):244–264.

イロト イポト イヨト イヨト

Technical appendix