The gender distributive effects of climate policy

M. T. Benkhodja¹, Johan Gustafsson², Xiaofei Ma³, Junior Maih⁴

26 July 2024, RISE Workshop 2024, University of Pretoria

¹ESSCA School of Management, France

²Umeå University, Sweden

³ESSCA School of Management, France

⁴Norges Bank, Norway

Road map

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- 7 Technical appendix

Introduction

Introduction

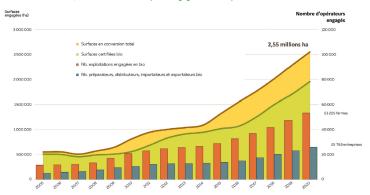
- 3 The model
- **6** Welfare analysis
- **6** Conclusions
- Technical appendix

Research question

Introduction

What are the gender distributive effects of climate policy?

Motivation


Introduction

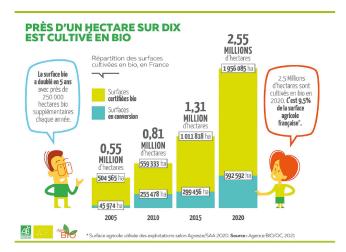
- A worldwide consensus stresses the need for ambitious climate policy
- Increasing attention given to the distributive effects of climate policy

Stylized facts

Introduction

Évolution des surfaces, des fermes et des entreprises engagées en bio depuis 1995

Source: Agence BIO / OC, Agreste / SAA 2020: (1) Surface agricole utile des exploitations 2020: 26 855 402 ha et (2) Nombre d'exploitations 2019 : 452 542

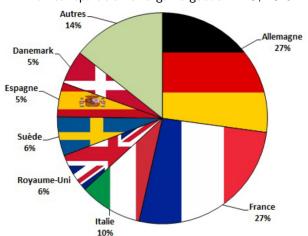

France: farms and firms engaged in organic production since 1995

Source: Agence Bio, 2020

Results Technical appendix 0000000000

Stylized facts

Introduction



Evolution of organic farms in France Source: Agence Bio, 2020 4 D F 4 A F F 4 B F
 Introduction
 Literature review
 The model
 Results
 Welfare analysis
 Conclusions
 Technical appendix

 00000 0000
 0000
 0000
 000000000
 00
 00
 0000000000

Stylized facts

Market repartition of organic goods in EU, 2019

Source: Agence Bio, 2020

Stylized facts

Introduction

France: consumption of organic products by gender, December 2021

		SEXE	
	ENSEMBLE	Homme	Femme
Base	2112	1001	1111
ST Consommateurs (dont rarement)	91%	90%	91%
ST Consommateurs au moins une fois par mois	76%	74%	78%
ST Consommateurs au moins une fois par semaine	52%	49%	54%
Oui, tous les jours	15%	13%	16%
Oui, régulièrement (au moins une fois par semaine)	37%	36%	37%
Oui, de temps en temps (environ une fois par mois)	24%	25%	24%
ST Non consommateurs (moins d'une fois par mois)	24%	26%	22%
Oui, rarement (moins souvent qu'une fois par mois)	15%	16%	14%
Non, jamais	9%	10%	9%

Source: Agence Bio, 2022

Background

Introduction

- Our paper follows from two observations:
 - Gender differences in environmental and ecological awareness regarding consumption.⁵
 - Women, on average, have a comparative advantage in less carbon-intense sectors.6
- Likely that climate policy and the green transition will affect men and women differently.

⁵e.g., Bravo et al. (2013), Sanchéz et al. (2016) OECD (2021)

⁶e.g., Fan and Lui (2003), Somuncu (2024), our data → ← 🗇 → ← 🛢 → 🖎 🚊

Question

Will environmental policies influence the gender income inequalities ?

Key findings

The green transition can reduce gender-based income inequality

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- 7 Technical appendix

Literature review

- Distributional effects of environmental policy:
 - Cremer et al. (2003)
 - Aubert et al. (2019)
 - Douenne et al. (2023)
- Accounting for employment effects:
 - Yamazaki (2017)
 - Curtis (2018)
- Gender effects:
 - Somuncu (2023)

Our contribution

We study the distributional effects between men and women of climate policy, accounting for both consumption and employment channels.

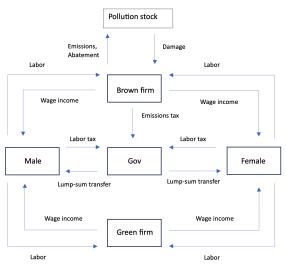
Our approach

- Build a structural model that includes:
 - gender heterogeneity in consumption and occupation choice
 - firm heterogeneity in emission intensity
- Environmental Dynamic Stochastic General Equilibrium (E-DSGE) model
- Calibrate the model to the French economy

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- 7 Technical appendix

Model

- Two production sectors with stochastic TFP
 - Carbon-intense ("brown") goods
 - Carbon-neutral ("green") goods
- Male and female individuals
 - Consume a composite of green and brown goods
 - Works in both sectors
- Government
 - Un-anticipated climate policy shocks


Environmental policies

Following Benkhodja et al.(2022) & (2023):

- Carbon tax
- Labor cost subsidy for green firms

Model illustration

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- Technical appendix

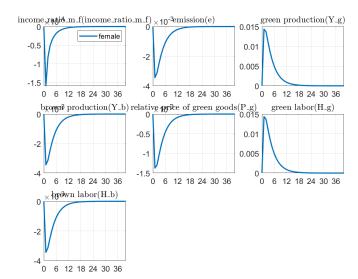
Calibration

Description	Parameters	Values	Source
The subjective discount factor	β	0.997	steady state interest rate of 1.2%
The inverse of the elasticity of intertemporal substitution of consumption	γ	0.5	[Gruber, 2013]
The inverse of the wage elasticity of labor supply	σ	2	[Chetty et al., 2011]
The weight of labor in households' utility function	χ	61.67	steady state labor supply intensity of 0.33
The weight of green goods in the female's consumption basket	$\mu_{f,c}$	0.2	French data
The weight of green goods in the male's consumption basket	$\mu_{m,c}$	0.1	French data
Male elasticity of substitution between different types of consumption goods	$\epsilon_{m,c}$	10	Author's assumption
Female elasticity of substitution between different types of consumption goods	$\epsilon_{f,c}$	15	Author's assumption
The payroll tax rates in green and brown sectors	ω	0.3	French data
Carbon tax rate	τ_c	0.009	[Benkhodja et al., 2023]
The proportion of female workers in the green sector	$\mu_{f,q,h}$	0.63	French data
The proportion of female workers in the brown sector	$\mu_{f,b,h}$	0.24	French data
Constant elasticity of substitution between female/male labor in green sector	$\epsilon_{a,h}$	100	Author's assumption
Constant elasticity of substitution between female/male labor in brown sector	$\epsilon_{b,h}$	100	Author's assumption
The level of emissions per unit of production	φ	0.002	Author's calibration
First technological parameter of abatement cost	ψ_1	0.002	Author's calibration
Second technological parameters of abatement cost	ψ_2	2.8	[Annicchiarico and Di Dio, 2015]
Constant in damage function	d_0	1.3950×10^{-3}	[Heutel, 2012]
Linear term in damage function	d_1	-6.6722×10^{-6}	[Heutel, 2012]
Quadratic term in damage function	d_2	1.4647×10^{-8}	[Heutel, 2012]
The pollution depreciation rate	δ_x	0.0035	[Carattini et al., 2021]
Labor mobility costs for females	ϕ_f	0.01	Author's assumption
Labor mobility costs for males	ϕ_m	0.01	Author's assumption

+1pp Positive green productivity shock

female brown consumption(Cfebrale green consumption(C_fg) female consumption(Cf) male brown consumption(C_mbale green consumption(C_mg) male consumption(Cm) 0.1 female male -1 5 0.05 -2 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female green wage(W_fg) female brown wage(W_fb) female labor(H_f) male green wage(W_mg) maleobrown wage(W_mb) male labor(H_m) 0.05 0.2 0 0.1 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female brown labor(H_fb) female labor income(income_f) female green labor(H_fg) male green labor(H_mg) male brown labor(H_mb) male labor income(income_m) 20 0.1 10 0.05 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36

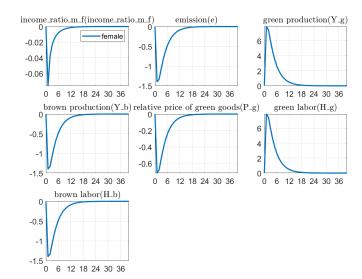
+1pp Positive green productivity shock



+1pp Positive shock to carbon tax

female brown consumption(Cfebrale green consumption(C_fg) female consumption(Cf) male brown consumption(C_mbale green consumption(C_mg) male-consumption(Cm) female male 0.01 -2 -0.5 -4 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female green wage(W_fg) female brown wage(W_fb) female labor(H_f) maler green wage (W_mg) maleobrown wage(W_mb) × 1700 rate labor(H_m) -1 -1 -5 -2 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female brown labor(H_fb) female labor income(income_f) female green labor(H_fg) male green labor(H_mg) male_leptrown labor(H_mb) male_leptror income(income_m) 0.04 0.02 -0.5 -4 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36

+1pp Positive shock to carbon tax



+1pp Labor cost subsidy for green firms

female brown consumption(Cfebrale green consumption(C_fg) female consumption(Cf) male brown consumption(C_mbale green consumption(C_mg) male consumption(Cm) female male -1 5 -0.05-0.1 6 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female green wage(W_fg) female brown wage(W_fb) female labor(H_f) male green wage(W_mg) maleobrown wage(W_mb) male labor(H_m) 0.1 0.3 0.2 0.05 0 0.1 -2 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36 female brown labor(H_fb) female labor income(income_f) female green labor(H_fg) male green labor(H_mg) male brown labor(H_mb) male labor income(income_m) 20 10 -1 -0.05 -0.1 12 18 24 30 36 12 18 24 30 36 12 18 24 30 36

+1pp Labor cost subsidy for green firms

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- Technical appendix

Welfare analysis

Table: Welfare analysis, % deviation from baseline

	female	male
+1pp green TFP shock	+76.8	+32.8
+1pp carbon tax	-5.48E - 05	-1.34E - 04
+1pp labor cost subsidy for green firms	-17.1	-64.7

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- **6** Welfare analysis
- **6** Conclusions
- 7 Technical appendix

Conclusions

Environmental policies help reducing the income gap between female and male workers.

- 1 Introduction
- 2 Literature review
- 3 The model
- 4 Results
- 6 Welfare analysis
- **6** Conclusions
- 7 Technical appendix

Appendix: Emissions and abatement

As in Heutel (2012), we assume that the pollution caused by firms affects negatively output through the following damage function:

$$d(x_t) = d_0 + d_1 x_t + d_2 x_t^2,$$

Where the emissions stock evolve according to the following process:

$$x_t = (1 - \delta_x)x_{t-1} + e_t + e_t^{row}$$

where δ_r is the pollution decay rate, e_t the level of domestic emissions, and e^{row}_{t} the emissions in the rest of the world.

Appendix: Emissions and abatement

The level of domestic emissions depends on the output and of the abatement effort η_t

$$e_t = \varphi(1 - \eta_t) Y_{b,t},\tag{1}$$

The emission in the rest of the world is assumed to follow an AR process. That is,

$$\log(e_t^{row}) = (1 - \rho_{e_t^{row}}) \log(e^{row}) + \rho_{e_t^{row}} \log(e_{t-1}^{row}) + \epsilon_{e_t^{row}}.$$
 (2)

Individuals

Each gender type i have preferences over consumption and labor supply:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_{i,t}^{1-\gamma}}{1-\gamma} - \chi \frac{H_{i,t}^{1+\sigma}}{1+\sigma} \right\},\tag{3}$$

where total consumption is a composite of green (g) and brown (b) goods:

$$C_{i,t} = \left(\mu_{i,c}^{1/\epsilon_{i,c}} C_{i,g,t}^{(\epsilon_{i,c}-1)/\epsilon_{i,c}} + (1-\mu_{i,c})^{1/\epsilon_{i,c}} C_{i,b,t}^{(\epsilon_{i,c}-1)/\epsilon_{i,c}}\right)^{\epsilon_{i,c}/(\epsilon_{i,c}-1)}.$$
(4)

and labor is perfectly mobile between green and brown firms:

$$H_{i,t} = H_{i,g,t} + H_{i,b,t},$$
 (5)

Individuals

Capital markets are completely missing. So the budget constraint of each individual is:

$$C_{i,b,t} + P_{g,t}C_{i,g,t} \le (1 - \omega)W_{i,t}H_{i,t} + T_{i,t}$$
 (6)

That is, the trade-offs are entirely instantaneous.

Green sector

The firm maximizes profits:

$$\max_{H_{f,g,t},H_{m,g,t}} P_{g,t} Y_{g,t} - W_{f,t} H_{f,g,t} - W_{m,t} H_{m,g,t} \tag{7}$$

where output is a linear function of labor:

$$Y_{g,t} = A_{g,t}H_{g,t},\tag{8}$$

and technology follows a stochastic process:

$$\log(A_{g,t}) = (1 - \rho_{A_g})\log(A_g) + \rho_{A_g}\log(A_{g,t-1}) + \epsilon_{A_{g,t}},$$

Green sector

The green firm employs male and female workers such that the value of the marginal products are equal to their wage rates.

$$W_{f,t} = P_{g,t} M P_{H_{f,g,t}}$$
 (9)
 $W_{m,t} = P_{g,t} M P_{H_{m,g,t}}$ (10)

$$W_{m,t} = P_{g,t} M P_{H_{m,g,t}} \tag{10}$$

39 / 45

Brown sector

Output is linear in labor $H_{b,t}$:

$$Y_{b,t} = A_{b,t} H_{b,t}, (11)$$

The variable $A_{b,t}$ is a technology specific to the brown sector and is defined as:

$$A_{b,t} = (1 - d(x_{t-1}))a_{b,t},$$

where d is an environmental damage function which affects productivity negatively. x_t represents the emission stock.

Brown sector

The productivity shock $a_{b,t}$ follows a stochastic process that is given by:

$$\log(a_{b,t}) = (1 - \rho_{a_b})\log(a_b) + \rho_{a_b}\log(a_{b,t-1}) + \epsilon_{a_{b,t}}, \qquad (12)$$

Emissions and abatement

Abatement costs Z_t are a function of the abatement effort η_t and output. It takes the following form:

$$Z_t = \psi_1 \eta_t^{\psi_2} Y_{b,t},$$

Polluting firms are taxed by the government depending on the level of domestic emissions $\tau_{e,t}e_t$ where $\tau_{e,t}$ represents the carbon-tax.

Brown sector

The polluting firm maximizes its profits:

$$\max_{H_{f,b,t},H_{m,b,t},\eta_t} Y_{b,t} - Z_t - \tau_{e,t} e_t - W_{b,t} H_{b,t}$$
 (13)

Labor demand and abatement effort are given by:

$$W_{f,t} = A_{b,t} M P_{H_{f,b,t}} \tag{14}$$

$$W_{m,t} = A_{b,t} M P_{H_{m,b,t}} \tag{15}$$

$$\eta_t = \left(\frac{\tau_e \varphi}{\psi_1 \psi_2}\right)^{\frac{1}{\psi_2 - 1}} \tag{16}$$

Government

The budget constraint of the public sector is given by:

$$T_{t} = \tau_{e,t}e_{t} + \omega(W_{f,t}H_{f,t} + W_{m,t}H_{m,t})$$
(17)

That is, revenue from carbon and payroll taxes finance lump-sum transfers.

Market clearing

In equilibrium, we have market clearing in green and brown goods markets:

$$C_{g,t} = Y_{g,t},\tag{18}$$

$$C_{b,t} = Y_{b,t}. (19)$$

Market clearing in different labor markets:

$$H_{f,t} = H_{f,g,t} + H_{f,b,t} (20)$$

$$H_{m,t} = H_{m,g,t} + H_{m,b,t}$$
 (21)

- [Annicchiarico and Di Dio, 2015] Annicchiarico, B. and Di Dio, F. (2015).
 - Environmental policy and macroeconomic dynamics in a new keynesian model.

Journal of Environmental Economics and Management, 69:1–21.

[Benkhodja et al., 2023] Benkhodja, M. T., Fromentin, V., and Ma, X. (2023).

Macroeconomic effects of green subsidies.

Journal of Cleaner Production, 410:137166.

- [Carattini et al., 2021] Carattini, S., Heutel, G., and Melkadze, G. (2021).
 - Climate policy, financial frictions, and transition risk.

National Bureau of Economic Research.

[Chetty et al., 2011] Chetty, R., Guren, A., Manoli, D., and Weber, A. (2011).

Are micro and macro labor supply elasticities consistent? a review of evidence on the intensive and extensive margins. *American Economic Review*, 101(3):471–475.

[Gruber, 2013] Gruber, J. (2013).

A tax-based estimate of the elasticity of intertemporal substitution.

The Quarterly Journal of Finance, 3(01):1350001.

[Heutel, 2012] Heutel, G. (2012).

How should environmental policy respond to business cycles? optimal policy under persistent productivity shocks.

Review of Economic Dynamics, 15(2):244-264.

