Fiscal Policy Regimes in Least Developed Countries

Lucius Cassim

2nd RISE Workshop, Pretoria

25th July, 2024

,

Introduction

Do fiscal surpluses evolve in a manner that ensures long-term fiscal solvency in the least developed countries(LDCs)?

Market And why?

- X YES ⇒ surpluses endogenously determined ⇒ Ricardian regime (Sargent, 1982)
 - Some set \mathbb{R}^m Example: \Uparrow Debt \Rightarrow \Uparrow future taxes or \Downarrow expenditure.
- X NO ⇒ surpluses arbitrarily chosen ⇒ non-Ricardian regime (Sargent, 1982)
 - Solution Example: \uparrow Debt \Rightarrow \uparrow Prices(Cochrane, 2023, 2001, 1998).
- **×** Surpluses in the LDCs seem to evolve differently from other countries.

Lucius

Figure 1: Primary Surpluses and Liabilities in LDCs

Lucius

Pretoria

Motivation

- 1. While empirical evidence of the evolution of surpluses in advanced and other developing economies is abundant, such evidence for least developed countries is nonexistent.
- Knowledge about surplus evolution affects the optimal design of other national policies such as monetary and exchange rate policy(Aiyagari and Gertler, 1985; Woodford, 1995; Cochrane, 1998)

Example

2.1 Arbitrary surplus evolution \Rightarrow prices jump to ensure long term fiscal solvency

This challenges the effectiveness of standard monetary policy

2.2 Arbitrary surplus evolution \Rightarrow monetary tightening or fiscal expansion leads to currency depreciation

Preview of Findings

- 1. Using time series data for selected LDCs, we find that the evolution of surpluses in most LDCs is arbitrary.
 - This means that LDCs do not use fiscal surpluses to ensure long-term fiscal solvency, potentially opening the door to high borrowing interest rates and sovereign defaults
 - Importantly, monetary policy will be less effective in stabilizing inflation because prices have to respond to changes in fiscal stances to achieve fiscal solvency.
- 2. We strongly suspect that poor institutional quality in LDCs may be responsible for this behavior of surpluses:
 - Surpluses positively respond to improved institutional quality
 - Countries with relatively better institutions but not different from LDCs in level of development show endogenous evolution of surpluses

Government's present value budget constraint

$$\omega_t = \chi_t + \mathbb{E}_t \sum_{j=t+1}^{\infty} \prod_{\tau=t}^{j-1} r_\tau \ \chi_j \tag{1}$$

• ω_t :accumulated public liabilities as a percentage of nominal GDP

- r_t : ratio of gross interest rate to gross nominal GDP
- χ_t : total public surplus as a percentage of nominal GDP
- ▶ (1) must be satisfied regardless of a fiscal regime
- How χ_t and ω_t relate to each other as the system moves towards (1) determines the underlying fiscal policy regime.

Lucius

The Methods

Based on data availability, we sampled nine least-developed countries.

- 1. Lesotho
- 2. Mozambique
- 3. Guinea
- 4. Comoros
- 5. Gabon
- 6. Madagascar
- 7. Equatorial Guinea
- 8. Malawi
- ${\tt ISS}\,$ Annual data over an average sample period of 1980-2022
- For comparative purposes, we applied the estimation approach on selected advanced economies

Empirical Model

• Estimated a Bayesian structural VAR for each country:

$$\mathbf{A}_{0}\mathbf{Y}_{t} = \sum_{j=1}^{\Omega} \mathbf{B}_{j}\mathbf{Y}_{t-j} + \mathbf{Z}_{t}\varphi + \mathbf{X}_{t}\Lambda + \eta_{t}$$
 (2a)

X A_0 : Structural parameters ; Y_t : Endogenous series

surplus(χ_t); liabilities(ω_t); discount factor(r_t)

X \mathbf{X}_t , \mathbf{Z}_t : Controls and Deterministic terms **X** $\eta_t = (\eta_t^{\chi} \ \eta_t^{\omega} \ \eta_t^r)'$:Structural shocks

The interest

X To estimate the reaction of liabilities(ω) following a positive structural shock to surpluses

$$IRF(h) = \frac{\partial \omega_{t+h}}{\partial \eta_t^{\chi}}, \quad h = 1, 2, 3, \dots H$$
 (2b)

14/31

Empirical Model..

- X Order matters in this case
- **X** We made the following ordering:

$$\chi_t \ \omega_t \ r_t$$
 (3a)

 $oldsymbol{x}$ The results are, however, robust to an alternative ordering: $\omega_t ~~\chi_t ~~r_t$

Decision

X Decided based on the following criterion:

$$Decision \Rightarrow \begin{cases} Ricardian \exists h \ s.t & \frac{\partial \omega_{t+h}}{\partial \eta_t^{\chi}} < 0\\ non - Ricardian & \frac{\partial \omega_{t+h}}{\partial \eta_t^{\chi}} \ge 0 \quad \forall h \end{cases}$$
(3b)

X These conclusions assume that χ_t is **not negatively autocorrelated**.

Lucius	Pretoria	25th July, 2024	15 / 31

Ricardian: a positive shock to surpluses implies an increase in resources which are then used to pay off some liabilities, regardless of the autocorrelation structure of χ_t

$$\uparrow \chi_t \to \Downarrow \omega_{t+1} \tag{4a}$$

• non-Ricardian: three cases can be considered:

$$\Uparrow \chi_t \rightarrow \begin{cases}
1. & \rho_{t,t+k} = 0 \rightarrow \omega_{t+1} = constant \\
2. & \rho_{t,t+k} > 0 \rightarrow \Uparrow \omega_{t+1} \\
3. & \rho_{t,t+k} < 0 \rightarrow \Downarrow \omega_{t+1}
\end{cases}$$
(4b)

As such, to uniquely identify a fiscal regime, it must be the case that:

$$\rho_{t,t+k} \in [0,1] \tag{4c}$$

Estimation....Choice of priors

- We compared three priors based on the estimated posterior probability of the model.
- For each country, we chose a prior, among the three, with the highest model posterior probability

Priors	Madagascar	Guinea	Equatorial Guinea	Gabon	Lesotho	Malawi	Mozambique	Comoros
Normal diffuse prior								
Log-likelihood	-183.2993	-217.467	-396.201	-228.021	-226.2002	-104.557	-156.503	-52.605
model prior probability	0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333
model posterior probability	0.299	0.990	0.991	0.909	0.000	1.000	0.000	0.000
Normal Wishart prior								
Log-likelihood	-189.766	-221.987	-400.965	-233.124	-238.225	-170.607	-165.246	-238.225
model prior probability	0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333
model posterior probability	0.0013	0.011	0.009	0.0055	0.000	0.000	0.000	0.000
Original Minessota prior								
Log-likelihood	-183.448	-228.754	-404.726	-230.379	-193.186	-161.302	-139.521	-11.979
model prior probability	0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333
model posterior probability	0.700	0.0000	0.0002	0.0859	1.000	0.000	1.000	1.000

Table 1: Choice of priors

The Findings

Lag	Malawi	Madagascar	Lesotho	Guinea	Gabon	Equatorial Guinea	Comoros Islands	Mozambique
1	0.3929***	0.739***	0.605***	0.5663***	0.4573***	0.6038***	0.7973***	0.8536***
2	0.2809***	0.6655***	0.4304***	0.5152***	0.2274***	0.6001***	0.7088***	0.7859***
3	0.1581***	0.5622***	0.2809***	0.4726***	0.2195***	0.3179***	0.6409	0.6984***
4	0.1825***	0.467***	0.0892***	0.4602***	0.3171***	0.2466***	0.5406***	0.5775
5	0.0796***	0.3619***	0.030***	0.3566***	0.2953***	0.111***	0.4744***	0.4576***
6	0.0114***	0.2513***	-0.0687***	0.2831***	0.1931***	0.1197***	0.4173***	0.3496 ***
7	0.0325***	0.2393***	-0.2198	0.355	0.0052***	0.0491	0.3627	0.2312***
8	0.1044***	0.1816	-0.4137	0.2114	-0.0319	-0.0288***	0.3578	0.1012
9	0.1171***	0.1602	-0.5398	0.09	-0.1858	-0.0585***	0.2348***	0.0146***
10	0.1049***	0.0945	-0.3743	0.0222	-0.3294	-0.0757***	0.1997***	-0.0612***
* p <	0.10, ** p < 0	.05, *** p < 0.01						

- There is no evidence of a negative correlation within at most a six-year horizon for most of these countries
 - $\diamond\,$ We can uniquely identify a fiscal regime in that horizon for these countries
- A surplus shock leads to more surpluses at least for the first years post-impact

Lucius

Figure 3: Response of liabilities to a positive surplus shock

20 / 31

Figure 4: Response of liabilities to a positive surplus shock

1/31

Table 2: Reaction to surplus shocks

LDCs	surplus	liabilities	regime	Advanced	surplus	liabilities	regime
Malawi	+	0	NR	USA	+	-	R
Mozambique	+	0	NR	UK	+	-	R
Lesotho	+	0	NR	Canada	+	-	R
Guinea	+	0	NR	Germany	+	-	R
Gabon	+	0	NR	France	+	-	R
Madagascar	+	0	NR	Japan	+	-	R
Comoros	+	0	NR	Australia	+	-	R
Equatorial Guinea	+	0	NR	Italy	+	-	R

Notes: NR represents non-Ricardian regime while R represents Ricardian regime.

Explanation of the Results

- We suspect that these results are driven by the presence of poor fiscal governance institutions in LDCs
- The quality of fiscal institutions determines fiscal discipline and thereby determines the sustainable evolution of surplus(Debrun and Kumar, 2009)
- ► To test our suspicion, we followed the following steps:
- 1. We provide empirical content to the theoretical claim that the quality of governance institutions determines the evolution of surpluses in LDCs.
- 2. We then show that "developing" countries with better governance institutional quality have Ricardian regimes

We estimate the following simple fiscal surplus reaction function

 $S_{it} = \alpha_0 + \alpha_1 S_{it-1} + \delta B_{it-1} + \gamma \ institution_{it} + x'_{it}\beta + \eta_i + \epsilon_{it} \ (5)$

- $i = 1, \dots 31$ while $t = 2005, \dots 2018$.
- S_{it}: primary surplus/GDP B_{it}: debt stock/GDP x_{it}: control variables
 - \circ η_i : country fixed effects
- Institution: Measure of quality of governance institutions
- ► Following Debrun and Kumar (2009), we use an additive eleven-point scale (0 10) time-varying World Bank's democracy index

	Fixed Ef	fects	System GMM			
	structural surplus	total surplus	structural surplus	total surplus		
Lagged structural surplus	0.875***		0.944***			
	(0.049)		(0.012)			
Lagged total surplus		0.328***		0.409***		
		(0.107)		(0.015)		
Lagged debt stock	0.018	0.033	0.033	0.034		
	(0.107)	(0.120)	(0.103)	(0.107)		
Institution	0.019***	0.053***	0.093***	0.127***		
	(0.030)	(0.084)	(0.006)	(0.007)		
Controls?	Yes	Yes	Yes	Yes		
Constant?	Yes	Yes	Yes	Yes		
Sample size	385	385	386	386		
Joint P-value	0.000	0.000	0.000	0.000		

Table 3: Fiscal	policy	reaction	function	for	least	developed	countries
-----------------	--------	----------	----------	-----	-------	-----------	-----------

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

- Finally, we run the structural VAR model on a developing country with relatively better quality institutions
- ► Two countries Mauritius and Botswana have an average institutional index of 9 and 7 respectively over the period 1980 2018

Figure 5: Average institutional quality index: 1980 - 2018

Figure 6: Response of liabilities to a positive surplus shock

28 / 31

Conclusion

- Our findings suggest the following:
- 1. The evolution of fiscal surpluses in LDCs is arbitrary implying non-Ricardian fiscal regime
 - $\diamond\,$ We strongly suspect that this is due to poor fiscal governance institutions in LDCs
- 2. These findings cast doubt on the effects of conventional monetary policy since prices have to respond to changes in fiscal stances to achieve fiscal solvency
 - Perhaps the need for unconventional monetary policy action
- 3. To the contrary, advanced economies or economies with quality governance institutions have Ricardian regimes.

Thank you!

Reference

Aiyagari, S. R. and Gertler, M. (1985). The backing of government bonds and monetarism. Journal of Monetary Economics, 16(1):19–44.

https://www.sciencedirect.com/science/article/pii/0304393285900042.

- Cochrane, J. H. (1998). A frictionless view of us inflation. NBER macroeconomics annual, 13:323-384. https://www.journals.uchicago.edu/doi/abs/10.1086/ma.13.4623752.
- Cochrane, J. H. (2001). Long-term debt and optimal policy in the fiscal theory of the price level. Econometrica, 69(1):69–116. https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00179.
- Cochrane, J. H. (2023). The fiscal theory of the price level. Princeton University Press. https://www.degruyter.com/document/doi/10.1515/9780691243245/html.
- Debrun, X. and Kumar, M. S. (2009). The discipline-enhancing role of fiscal institutions: Theory and empirical evidence. In *Policy Instruments for Sound Fiscal Policies: Fiscal Rules* and Institutions, pages 51–88. Springer. https:

//link.springer.com/content/pdf/10.1057/9780230271791_3?pdf=chapter%20toc.

Sargent, T. J. (1982). Beyond demand and supply curves in macroeconomics. The American Economic Review, 72(2):382–389. https://www.jstor.org/stable/1802363.

Woodford, M. (1995). Price-level determinacy without control of a monetary aggregate. In *Carnegie-Rochester conference series on public policy*, volume 43, pages 1–46. Elsevier. https://www.sciencedirect.com/science/article/pii/0167223195900330.