Indebted Demand

Atif Mian, Princeton
Ludwig Straub, Harvard
Amir Sufi, Chicago Booth

April 2020

Motivation: rise in debt and decline in r^{*} in advanced economies

- How did this happen? What are the implications?
- Answers more pressing with COVID-19 crisis (more debt, even lower rates)
- We introduce non-homothetic consumption-saving behavior into a conventional, deterministic, two-agent endowment economy
- Such non-homotheticity:
- is strongly supported by empirical evidence
- yields a macro model that can explain why rising income inequality and financial liberalization lead to lower interest rates and higher debt
- generates the concept of indebted demand
- "Indebted demand": stimulating demand today through debt creation reduces demand in the future by shifting resources from borrowers to savers

Policy implications of indebted demand

- Expansionary fiscal and monetary policy push down natural interest rate
- Intuition: both boost short-run demand through debt accumulation ...
- ... but such debt depresses demand in the long run, as it shifts income to savers with lower MPC
- Interest rates must fall to clear the goods market
- Factors boosting debt can push economy into a low growth liquidity trap
- Such a debt trap is a well defined steady state of the model
- Conventional policies don't help escape the trip, and may make it worse
- Redistribution can be particularly effective

Literature

1. Secular stagnation + theories: Summers (2013), Rachel Summers (2019), Eggertsson Mehrotra Robbins (2019), Auclert Rognlie (2018), Caballero Farhi (2017), Straub (2019)
2. Non-homothetic preferences: Old idea (Böhm-Bawerk, Hobson, Fisher), old models (Schlicht, Bourguignon). New: Uzawa (1968), Carroll (2000), Dynan Skinner Zeldes (2004), De Nardi (2004), Illing Ono Schlegl (2018), Straub (2019), Fagereng Holm Moll Natvik (2019), Benhabib Bisin Luo (2019)
3. Inequality and debt (theory): Kumhof Ranciere Winant (2015), Cairo Sim (2018)
4. Inequality and debt (empirics): Cynamon Fazzari (2015), Mian Straub Sufi (2019)
5. Debt and demand: Dynan (2012), Mian Sufi (2015), Mian Sufi Verner (2017), Jorda Schularick Taylor (2016), Bhutta and Keys (2016), Di Maggio et al. (2017), Beraja Fuster Hurst Vavra (2018), Di Maggio Kermani Palmer (2019), Cloyne Ferreira Surico (2019)
6. Deleveraging: Eggertsson Krugman (2012), Guerrieri Lorenzoni (2017)

Motivating the model

The rich save more $(1 / 3)$

- Dynan Skinner Zeldes (2004): saving rates increase in current income

The rich save more $(2 / 3)$

- Straub (2019): consumption has elasticity <1 w.r.t. average income

The rich save more $(3 / 3)$

- Fagareng Holm Moll (2019): saving rate across wealth distribution

Figure 6: Saving rates across the wealth distribution.

Rise in debt driven by households and government

Investment and productivity

- No investment in baseline model, considered in an extension

The rich lend to the non-rich

Debt owed minus debt held as asset

- "Saving glut of the rich and the rise in household debt"

Model

Model of indebted demand

- Deterministic ∞-horizon endowment economy with real assets ("trees")
- Populated by two separate dynasties
- Same preferences, but different endowments of trees
- mass 1 of borrowers $i=b$: endowment ω^{b}
- mass 1 of savers $i=s$: endowment $\omega^{s}>\omega^{b}$
- total endowment $\omega^{b}+\omega^{s}=1$
- Trees are nontradable, dynasties trade debt contracts
- Agents within a dynasty die at rate $\delta>0$, wealth inherited by offspring

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}.

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}. Preferences:

$$
\int_{0}^{\infty} e^{-(\rho+\delta) t}\left\{\log c_{t}^{i}+\frac{\delta}{\rho} \cdot v\left(a_{t}^{i}\right)\right\} d t
$$

- Budget constraint

$$
c_{t}^{i}+\dot{a}_{t}^{i} \leq r_{t} a_{t}^{i}
$$

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}. Preferences:

$$
\int_{0}^{\infty} e^{-(\rho+\delta) t}\left\{\log c_{t}^{i}+\frac{\delta}{\rho} \cdot v\left(a_{t}^{i}\right)\right\} d t
$$

- Budget constraint

$$
c_{t}^{i}+\dot{a}_{t}^{i} \leq r_{t} a_{t}^{i}
$$

- $v(a)=$ utility from bequest [future consumption, "status" benefits from wealth, artwork, gifts (to relatives or charities), adjustment frictions in illiquid accounts]
- Key object: $\eta(a) \equiv a v^{\prime}(a)$ - marginal utility of $v(a)$ relative to \log
- homothetic model: $\eta(a)=$ const $\Rightarrow v(a) \propto \log a$
- non-homothetic model: $\eta(a)$ increases in a

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow d_{t}^{i}

$$
d_{t}^{i} \leq p_{t} \ell
$$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{\text {new debt issuance }} \leq \lambda p_{t} \ell
$$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{w \text { debt issuance }} \leq \lambda p_{t} \ell
$$

- steady state: $d^{i} \leq p \ell \quad$ [paper: generalize to $\ell=\ell\left(\left\{r_{s}\right\}_{s \geq t}\right)$]
- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{\text {ew debt issuance }} \leq \lambda p_{t} \ell
$$

- steady state: $d^{i} \leq p \ell \quad\left[\right.$ paper: generalize to $\ell=\ell\left(\left\{r_{s}\right\}_{s} \geq t\right)$]
- Market clearing $d_{t}^{s}+d_{t}^{b}=0$ pins down interest rate r_{t}
- Focus on debt of borrowers: $d_{t} \equiv d_{t}^{b}$ (state variable)

Scale invariance

- Non-homothetic model is typically not scale invariant in aggregate
- economic growth $\Rightarrow \$ 28,000$ today is like $\$ 200,000$ around 1900
- so ... someone with $\$ 28,000$ today should save a ton?!

Scale invariance

- Non-homothetic model is typically not scale invariant in aggregate
- economic growth $\Rightarrow \$ 28,000$ today is like $\$ 200,000$ around 1900
- so ... someone with $\$ 28,000$ today should save a ton?!
- In reality, savings preferences probably closer to $v(a / A)$ or $v(a / Y)$
- We work with $v(a / Y)$, where so far $Y=1$ (total endowment $=1$)

Equilibria \& indebted demand

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{c}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{c}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

- Setting $\dot{c}=0$ in Euler and use $c^{s}=r a^{s} \Rightarrow$

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(a^{s}\right)}
$$

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{c}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

- Setting $\dot{c}=0$ in Euler and use $c^{s}=r a^{s} \Rightarrow$

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(a^{s}\right)}
$$

- This is a long-run saving supply curve:
- r necessary for which saver keeps wealth constant at a^{s}
- $\eta\left(a^{s}\right)$ determines the shape of the saving supply curve

Long-run saving supply curves

Long-run saving supply curves

- If $\eta\left(a^{s}\right)$ increasing: larger wealth a^{s} requires lower return on wealth r for saver to be indifferent about saving!

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)
- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)

$$
d C=d c^{s}+d c^{b}=-\frac{\rho+\delta}{r} \frac{1}{2}\left(1-\sqrt{1-4\left(1-\frac{r}{\rho+\delta}\right) \frac{\eta^{\prime}(a) a}{\eta(a)}}\right) d x
$$

\Rightarrow Thus increase in debt service costs weighs on aggregate demand

- $d C<0$ if $\eta^{\prime}>0$
- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)

$$
d C=d c^{s}+d c^{b}=-\frac{\rho+\delta}{r} \frac{1}{2}\left(1-\sqrt{1-4\left(1-\frac{r}{\rho+\delta}\right) \frac{\eta^{\prime}(a) a}{\eta(a)}}\right) d x
$$

\Rightarrow Thus increase in debt service costs weighs on aggregate demand

- $d C<o$ if $\eta^{\prime}>0$
- Call this phenomenon "indebted demand"

Equilibrium transitions

Inequality \& financial liberalization

Rising inequality $\omega^{s} \uparrow$: lowers r and raises debt

Homothetic model

Rising inequality $\omega^{s} \uparrow$: lowers r and raises debt

Homothetic model

Non-homothetic model

- Effects of rising inequality $\omega^{s} \uparrow$ in non-homothetic model:

1. inequality $\uparrow \Rightarrow$ more saving by the rich $\Rightarrow r \downarrow \Rightarrow$ debt \uparrow
2. debt \uparrow first raises demand, pushing against decline in r
3. high debt eventually lowers demand, aggravating decline in r

Inequality and debt across 14 advanced economies

Financial liberalization: raising pledgability ℓ

Homothetic model

Financial liberalization: raising pledgability ℓ

Homothetic model

Non-homothetic model

Financial liberalization: raising pledgability ℓ

Homothetic model

- Mechanism in non-homothetic model:

1. raises debt \& demand, pushing r up (short-run saving supply slopes up)
2. ultimately high debt weighs on demand, lowering r, stimulating further debt!
\rightarrow resolves puzzle in literature [e.g. Justiniano Primiceri Tambalotti]

Fiscal \& monetary policy

Fiscal policy implications

- Gov't spends G_{t}, has debt B_{t}, raises income taxes $\tau_{t}^{s}, \tau_{t}^{b}$, subject to

$$
G_{t}+r_{t} B_{t} \leq \dot{B}_{t}+\tau_{t}^{s} \omega^{s}+\tau_{t}^{b} \omega^{b}
$$

- Total demand for debt now $d_{t}+B_{t}$

Fiscal policy implications

- Gov't spends G_{t}, has debt B_{t}, raises income taxes $\tau_{t}^{s}, \tau_{t}^{b}$, subject to

$$
G_{t}+r_{t} B_{t} \leq \dot{B}_{t}+\tau_{t}^{s} \omega^{s}+\tau_{t}^{b} \omega^{b}
$$

- Total demand for debt now $d_{t}+B_{t}$
- Result: In the long run

1. larger gov't debt $B \uparrow$: depresses interest rate $r \downarrow$, crowds in household debt $d \uparrow$
2. tax-financed spending $G \uparrow$: raises $r \uparrow$, crowds out $d \downarrow$
3. fiscal redistribution $\tau^{s} \uparrow, \tau^{b} \downarrow$: raises $r \uparrow$, crowds out $d \downarrow$

- With homothetic preferences none of these policies change r or d !

Imagine inequality falls exogenously. How much does the interest rate rise?
Low B
High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B

With higher B, any given increase in r weighs down more on aggregate demand

Introducing monetary policy

- Introduce monetary policy as in Werning (2015)
- Assume both agents supply labor L^{i}, separable disutility
- Actual output $\hat{Y} \neq$ "potential" $Y=1$

$$
\hat{Y}=\left(L^{b}\right)^{\omega^{b}}\left(L^{s}\right)^{\omega^{s}}
$$

- Nominal wage rigidity, flexible prices \rightarrow income shares still ω^{i}
- Central bank sets real rate r_{t} directly
- Define $r_{t}^{n} \equiv$ natural interest rate path, achieving $\hat{Y}_{t}=Y$

Monetary policy has limited ammunition

- Begin in steady state with r. Consider following monetary stimulus:

$$
r_{t}= \begin{cases}\hat{r}<r & t<T \\ r_{t}^{n} & t \geq T\end{cases}
$$

Monetary policy has limited ammunition

- Begin in steady state with r. Consider following monetary stimulus:

$$
r_{t}= \begin{cases}\hat{r}<r & t<T \\ r_{t}^{n} & t \geq T\end{cases}
$$

- Result:
- stimulus generates demand partly by pulling forward spending, raising debt
- indebted demand \Rightarrow reduces natural interest rates r_{t}^{n}
- effects are stronger if non-homotheticity $\frac{\eta^{\prime}(a) a}{\eta(a)}$ is larger, T is longer
- Natural rate $=$ ammunition of monetary policy (proximity to ZLB)

Effects of monetary policy on natural interest rate paths

- WSJ: "borrowing helped pull countries out of recession but made it harder for policy makers to raise rates"
- Mark Carney: "the sustainability of debt burdens depends on interest rates remaining low"
- Philip Lowe: "if interest rates were to rise ... many consumers might have to severely curtail their spending to keep up their repayments."

Debt trap

Introducing the lower bound

- Consider lower bound r on interest rate r
- $\underline{r}>0$ if r is return on wealth

Introducing the lower bound

- Consider lower bound r on interest rate r
- $r>0$ if r is return on wealth
- What happens if the steady state natural rate falls below \underline{r} ?

The debt trap (= a debt-driven liquidity trap)

- Result: if natural rate $<\underline{r}$, get stable liquidity trap steady state: "debt trap"
\rightarrow Output persistently below potential

$$
\hat{Y}=Y \frac{\underline{r}}{\left(1-\tau^{s}\right) \omega^{s}+\ell} \cdot\left[\eta^{-1}\left(\frac{\rho}{\underline{r}}(1+\rho / \delta)-\rho / \delta\right)-B\right]<Y
$$

- Liquidity trap more likely if
- income inequality ω^{s} is high, low taxes on savers τ^{s}
- pledgability ℓ high, gov. debt B high

How does an economy fall into the debt trap? (i) Rising inequality

Household debt / GDP

Interest rate

Output gap

- - - Without ZLB —— ZLB at $r=3.5 \%$
- Anticipation of the liquidity trap pulls the economy in even faster

How does an economy fall into the debt trap? (ii) Credit boom-bust cycle

Household debt / GDP

Output gap

Fighting debt with debt? Deficit financing in the liquidity trap

Gov. spending

Interest rate

Output gap

Fighting debt with debt? Deficit financing in the liquidity trap

Interest rate

Output gap

- Here, deficit financing is only temporary remedy against a chronic disease
- Indebted demand makes problem even worse in long run

Policies to escape the debt trap

- Recall output in debt trap is

$$
\hat{Y}=Y \frac{\underline{r}}{\left(1-\tau^{s}\right) \omega^{s}+\ell} \cdot\left[\eta^{-1}\left(\frac{\rho}{\underline{r}}(1+\rho / \delta)-\rho / \delta\right)-B\right]<Y
$$

- Debt jubilee? Government bailout of borrower? Only if combined with limits on future borrowing!
- Redistributive income taxes (higher τ^{s}) or a wealth tax of $\tau^{a}>0$ on saver's wealth can by particularly effective
- Shown in paper: a wealth tax boosts output, increasing borrower welfare while leaving saver indifferent

Extensions \& conclusion

Extensions

- Model with investment
- Modeling government yield spread $r-r^{B}$
- Intergenerational mobility
- Sufficient statistic exercise

In paper:

- Open economy model
- Uzawa preferences, relative wealth preferences

Takeaway

- New model to study indebted demand
- amplifies recent trends
- "budget constraint" for deficit-financed monetary \& fiscal stimulus
- COVID-19 policy response induces even more indebted demand
- Extended liquidity trap/debt trap likely (inevitable?)
- Government borrowing on behalf of non-rich
- Initial evidence suggests lower income workers affected most

Extra slides

- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)
- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)

1. Derivative of debt service cost of $\left(r^{B}-g\right) B$ w.r.t. B

$$
\frac{\partial\left(r^{B}-g\right) B}{\partial B}=\underbrace{r^{B}-g}_{<0}+\underbrace{\frac{\partial r^{B}}{\partial B}}_{>0} \stackrel{?}{\gtrless} 0
$$

- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)

1. Derivative of debt service cost of $\left(r^{B}-g\right) B$ w.r.t. B

$$
\frac{\partial\left(r^{B}-g\right) B}{\partial B}=\underbrace{r^{B}-g}_{<0}+\underbrace{\frac{\partial r^{B}}{\partial B}}_{>0} \stackrel{?}{\gtrless} 0
$$

2. Where does the spread $r-r^{B}$ come from? Investors really like B !

- B is not negative for savers just because $\left(r^{B}-g\right) B<0$
- $B \uparrow$ still makes savers wealthier, $a^{\uparrow} \uparrow$, lowering required return on wealth r
- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Key: savers' income share $\omega^{s}=\omega^{s}(r)$ now a function of r !

$$
\omega^{s}(r) \equiv \frac{F_{K} K}{F}+\frac{F_{L^{s} L^{s}}}{F}=1-\frac{F_{L^{b}} L^{b}}{F}
$$

- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Key: savers' income share $\omega^{s}=\omega^{s}(r)$ now a function of r !

$$
\omega^{s}(r) \equiv \frac{F_{K} K}{F}+\frac{F_{L^{s} L^{s}}}{F}=1-\frac{F_{L^{b}} L^{b}}{F}
$$

- $\omega^{s}(r)$ independent of r if $\sigma=1$ [e.g. Cobb-Douglas]
- $\omega^{s}(r) \uparrow$ as $r \downarrow$ iff $\sigma>1$ [e.g. capital-skill complementarity, robots]
- Main result: Our results are unchanged if $\sigma=1$. Amplified if $\sigma>1$.

- Main result: Our results are unchanged if $\sigma=1$. Amplified if $\sigma>1$.

- Related Q: Can corporate debt also cause indebted demand?
- yes, if $\sigma>1$! but always weaker indebted demand than household debt
- why? corporate debt productive, raising Y, easier to repay
- Allow for benefits from gov't bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]

$$
\log \left(c_{t}^{s}+\xi B_{t}\right)+\frac{\delta}{\rho} \cdot v\left(a_{t}^{s}+\xi B_{t} / r\right)
$$

- Implies fixed spread $\xi>0$

$$
r^{B}=r-\xi
$$

- Allow for benefits from gov't bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]

$$
\log \left(c_{t}^{s}+\xi B_{t}\right)+\frac{\delta}{\rho} \cdot v\left(a_{t}^{s}+\xi B_{t} / r\right)
$$

- Implies fixed spread $\xi>0$

$$
r^{B}=r-\xi
$$

- Define effective wealth as including benefits ξB_{t} from bonds. In steady state:

$$
a^{\mathrm{eff}} \equiv \frac{\omega^{s}}{r}+d+\underbrace{\frac{r^{B} B}{r}+\frac{\xi B}{r}}_{=B}
$$

- Savings supply curve unchanged in effective wealth

$$
r=\rho \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\boldsymbol{a}^{\text {eff }}\right)}
$$

- With probability $q>0$, savers turn into borrowers and vice versa
- Saver-turned-borrowers consume down their wealth instantly
- Borrower-turned-savers get transfer from other savers to raise wealth
- With probability $q>0$, savers turn into borrowers and vice versa
- Saver-turned-borrowers consume down their wealth instantly
- Borrower-turned-savers get transfer from other savers to raise wealth
- Saving supply curve becomes flatter with q

$$
r=\rho \frac{1+\delta / \rho}{1+\delta / \rho \cdot \eta(a)}+\underbrace{q \gamma \delta \frac{\delta / \rho \cdot \eta(a)}{1+\delta / \rho \cdot \eta(a)}}_{\text {contribution of mobility }}
$$

- $q \uparrow$ thus mitigates indebted demand, especially if high income inequality γ

$$
\gamma \equiv 1-\frac{\omega^{b}-\ell}{\omega^{s}+\ell}
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \underbrace{\frac{c_{r}}{c}}_{\text {semi-elast. } \epsilon_{r} \text { wrt } r} \frac{c}{a} \frac{d r}{d \log a}+\underbrace{c_{a}}_{M P C \text { cap. gains }}=\frac{d r}{d \log a}+r
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: MPC ${ }^{\text {cap. gains }}=r \quad \log$ preferences: $\epsilon_{r}=0$
- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: $M P C^{\text {cap. gains }}=r \quad$ log preferences: $\epsilon_{r}=0$
- Assume $\epsilon_{r}=0, r \approx 0.06$, MPC $^{\text {cap. gains }} \approx 0.025$
[Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]
- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: $M P C^{\text {cap. gains }}=r \quad$ log preferences: $\epsilon_{r}=0$
- Assume $\epsilon_{r}=0, r \approx 0.06$, MPC cap. gains ≈ 0.025
[Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]

$$
\frac{d r}{d \log a}=-0.035
$$

- In words: if wealth \uparrow by 10%, required $r \downarrow$ by 35 bps

Bottom 90\% did not accumulate assets

Bottom 90\% reduced saving

- Thought experiment: How large is $d C$ implied by current levels of household \& government debt, had interest rates not come down?
- Thought experiment: How large is $d C$ implied by current levels of household \& government debt, had interest rates not come down?
- Counterfactual debt service burden, holding r constant:

- Thought experiment: How large is dC implied by current levels of household \& government debt, had interest rates not come down?
- Counterfactual debt service burden, holding r constant:

