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Abstract

Testing for purchasing power parity (PPP) and uncovered interest
parity (UIP) has been the focus of many empirically oriented studies.
Whilst these simple economic theories of exchange rate and interest
rate determination are theoretically attractive, the empirical support
for these equilibrium conditions is at best mixed. Many potential rea-
sons have been cited in the literature for the failure of such studies,
ranging from market imperfections to inappropriate modelling strate-
gies. The current state-of-the-art procedure involves testing for two
cointegrating vectors in a multivariate error correction model which
may be economically identified as the PPP and UIP relations. How-
ever, such a procedure does not account for the policy regime shifts
which often characterise economic time series. It is proposed that such
regime shifts distort the underlying PPP and UIP relations, making
them difficult to detect when modelled within this conventional frame-
work. In this paper, a Markov-switching vector error correction model
(VECM) is considered for time series data in which monetary and ex-
change rate regime shifts are known a priori to be present. Weak
evidence in favour of PPP and UIP is established in a standard linear
VECM, although the residuals of this model clearly indicate that it
is inappropriate in terms of functional form. The Markov-switching
VECM, however, provides convincing evidence in favour of both the
PPP and UIP relations and a marked improvement in the residual
distributions. An enlightening by-product of this method is the data-
based estimation of regimes which appear to conform to those sug-
gested by economic history.

KEY WORDS: Purchasing power parity; Uncovered interest parity;
Markov-switching vector error correction model; Multivariate coin-
tegration
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1 Introduction

1.1 Problem Description

Purchasing power parity (PPP) was first pondered by scholars in the six-
teenth century and is the surprisingly simple proposition that, once con-
verted to a common currency, national price levels should be equal [47]. The
basic idea stems from the law of one price which states that in competitive
markets free of transactions costs and trade barriers, arbitrage in the goods
market will ensure that identical goods are sold for the same price in different
countries when their prices are expressed in terms of the same currency [24].
Of course, if goods market arbitrage enforces broad parity in prices across a
sufficiently large range of individual goods, then there should also be a high
correlation in aggregate price levels. This result is exactly what is posited
by the theory of PPP [47].

Meanwhile, in the capital market, a similar arbitrage condition is also thought
to prevail. The uncovered interest parity (UIP) requires that the expected
returns on deposits in any two currencies should be equal in the absence
of transactions costs, risk premia and speculative effects when measured in
a common currency [16]. If expected returns do differ between countries,
rational, profit-seeking investors will choose to invest in the country with the
highest expected return on deposits ceteris paribus. The resulting capital
flows will put pressure on the bilateral exchange rate and on the prices of
the two financial instruments to adjust in such a way as to eliminate the
arbitrage opportunity in the asset market.

The two equilibrium conditions mentioned above do not, however, prevail
independently. Indeed, one might expect interactions in the determination
of exchange rates, prices and interest rates in the goods and asset markets
[30]. Interest rates, adjusting according to UIP, affect capital flows and the
real demand for liquidity. The strength and direction of capital flows influ-
ence the demand for currencies and hence induce movements in the exchange
rate. However, a change in the exchange rate would require a counterbal-
ancing movement in national price levels in order for PPP to hold. On the
other hand, changes in the real demand for liquidity will affect price lev-
els directly and should therefore translate into a movement in the exchange
rate in accordance with PPP [43]. The PPP and UIP relations are therefore
intrinsically interwoven.

Whilst UIP may be regarded as a short-term market clearing mechanism
under the efficient market hypothesis, few empirically literate economists
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take PPP seriously as a short-term proposition. Instead, most instinctively
believe in some variant of purchasing power parity as a long-run determinant
of the exchange rate [47]. This paper will attempt to establish whether the
economic theories of PPP and UIP are supported by firm empirical evidence
when South Africa and the United States are considered as trading partners.

1.2 Background to the Investigation

Whilst the PPP and UIP conditions are theoretically attractive, the empir-
ical support for these relations is at best mixed. Slight variations in data
definitions, time periods and estimation methods are known to have sub-
stantive effects on results. The search for methods which are robust to such
variations has led to an enormous and ever-growing empirical literature on
the topic. The fact that so much research has been reported on this sub-
ject indicates, to some extent, the reluctance of researchers to part with the
commonsense notions of PPP and UIP [43].

The difficulties faced in ascertaining firm empirical evidence in favour of
these theories should come as no surprise. The very definitions of PPP and
UIP given above are riddled with caveats such as “assuming competitive
markets free of transactions costs and trade barriers” and “in the absence
of transactions costs, risk premia and speculative effects.” Clearly, these
assumptions are not consistent with the real world and it is the violations
of these assumptions which are often cited as the cause of failure of many
empirically oriented studies.

Johansen and Juselius attribute the failure of many of the earlier studies of
PPP and UIP in which these relations are treated as disjoint to the neglect of
the important interactions between the goods and asset markets alluded to
earlier [30]. Instead, the authors propose modelling both relations simulta-
neously. Although such a multivariate approach seems far more convincing,
the results unfortunately have not been. Some authors find evidence for PPP
and UIP, whilst others do not.

What might be concluded from the literature as a whole is that if PPP does in
fact hold as a long-run relation, the speed of adjustment back to equilibrium
is very slow, making it difficult to establish this condition empirically [47].
Additionally, most empirical work finds evidence in support of UIP as a long-
run relation, rather than an immediate market clearing mechanism as might
be expected in efficient markets [30]. As such, the empirical evidence often
does not support the relevant economic theory in its strictest form.
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1.3 Purpose of the Research

This paper will consider an alternative method for assessing the evidence in
favour of PPP and UIP. The current state-of-the-art approach which tests
for these relations within a multivariate error correction framework will be
adapted to explicitly allow for regime shifts over the time period consid-
ered. Indeed, the time period considered in this study is characterised by
substantial changes in monetary and exchange rate policy. The manner in
which the South African Reserve Bank provided accommodation to commer-
cial banks and achieved monetary targets has certainly changed substantially
throughout the twentieth century. Exchange rate policy too has evolved con-
siderably from the Bretton Woods fixed exchange rate system introduced in
the wake of the second World War to the present-day floating exchange rate.
Moreover, intervention by the Reserve Bank to stabilise the real exchange
rate has diminished substantially over the years. It is proposed that these
shifts in monetary and exchange rate policies cloud the underlying PPP and
UIP relations, making them difficult to detect when modelled within the
conventional multivariate framework. Instead, it is suggested that PPP and
UIP hold conditional on the underlying regimes, but not necessarily across
regimes. In this sense, the PPP and UIP relations considered here are of a
weaker form than those implied by the formal definitions given above.

The underlying regimes will be estimated from the data together with the pa-
rameters of the multivariate error correction model. These estimated regimes
will then be assessed against the monetary and exchange rate regimes in
South Africa as suggested by historical evidence. The economic and politi-
cal developments that typify the regimes should provide further insight into
why it is that PPP and UIP are difficult to demonstrate over the entire pe-
riod. The parameters obtained in this model will also be compared to those
obtained by following the standard approach in order to determine whether
there are any important differences in the adjustment mechanisms implied
by these models.

1.4 Layout of the Paper

This paper is laid out as follows. Section 2 presents the theoretical concepts
necessary to understand the modelling strategy to follow. An overview of the
relevant properties of stochastic processes is provided, followed by a descrip-
tion of the multivariate models employed. Parameter estimation in these
models, although interesting, is relegated to the appendices. The section is
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concluded with a more detailed review of the economic theories of purchas-
ing power parity and uncovered interest parity. The dataset employed in this
study is discussed in Section 3, paying particular attention to the economic
and political developments that characterise the studied time period. The
methodological approach adopted in this paper is also outlined in this sec-
tion. The empirical findings are presented in Section 4. Finally, conclusions
and recommendations for further research are given in Section 5.
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2 Theoretical Background

This section covers the necessary statistical and economic theory required
for testing the purchasing power and uncovered interest parities empirically.
It commences by considering some of the basic properties of stochastic pro-
cesses that are relevant in the time series context. The vector autoregressive
model is introduced together with its vector error correction representation
appropriate for modelling non-stationary processes. These models are then
adapted to allow for hidden regimes which are assumed to evolve according
to a first-order Markov process. Finally, the various forms of PPP and UIP
are discussed in the context of the aforementioned statistical methods for
testing their data admissibility.

2.1 Basic Notions

2.1.1 Stochastic Processes

Consider the probability space (Ω,F , P ) where Ω is the sample space, F is
the event space or σ-algebra consisting of subsets of Ω and P is a probability
measure which maps F 7→ [0, 1]. Then the collection of random variables
{Yt : t ∈ Z} defined relative to the probability space (Ω,F , P ) is referred to
as a discrete-time stochastic process, where Z is the set of all real integers
[23]. Note that whilst it is customary to denote random variables with capital
letters and their realisations with lower case letters, the notation in this paper
will in general not distinguish between the two. The distinction should,
however, be clear from the context.

A special stochastic process of relevance in time series analysis is white noise.
Let {ut} be a zero mean, finite variance stochastic process, that is E[ut] = 0
and Var[ut] <∞. Then {ut} is referred to as weak white noise if Cov[ut, us] =
0 for t 6= s. If, in addition, the stochastic process {ut} is also homoscedastic,
that is Var[ut] = σ2

u for all t and some finite constant σ2
u, then the process

is referred to as strong white noise. Finally, if the random variables in a
stochastic process are identically and independently distributed, denoted as
i.i.d, then this constitutes a strict white noise process since independence is
a stricter condition than the zero correlation implied by Cov[ut, us] = 0 [23].
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2.1.2 Autocorrelation

If Cov[ut, us] 6= 0, then the series {ut} is said to be autocorrelated or serially
correlated. Autocorrelation introduces time dependence into the stochastic
process in that the realisation at a given point in time is dependent upon
the previously realised values [23]. A classic example of a stochastic process
which demonstrates this property is the autoregressive process

yt = φyt−1 + εt, (2.1)

with autoregressive coefficient φ and strict white noise innovations εt; that
is, εt is an i.i.d random variable with zero mean and variance σ2, written

more compactly as εt
iid∼ rv (0, σ2). More specifically, this process is known

as a first-order autoregressive process, denoted as AR(1), and may be easily
generalised to the pth order. An AR(p) process has the form

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt (2.2)

with {εt} representing a strict white noise process as before and φ1, . . . , φp

representing the partial autocorrelation coefficients. These autocorrelation
coefficients are partial in the sense that they measure the correlation between
the current and lagged values after removing the predictive power of all the
values of the series with smaller lags. Clearly, an AR(p) process would be
expected to have zero partial autocorrelations for lags greater than p [49].

It is also useful at this point to introduce the concept of a lag operator L,
which shifts variables back in time such that Liyt = yt−i. Using the lag oper-
ator, the AR(p) process in Equation (2.2) has the equivalent representation

(1− φ1L− φ2L2 − . . .− φpLp)yt = εt.

The pth order polynomial p(L) = 1−
∑p

i=1 φiLi is referred to as the (reverse)
characteristic polynomial of the AR(p) process [23].

2.1.3 Stationarity

The notion of stationarity is fundamental to the analysis of all time series
processes. In a univariate context, strict stationarity implies that the joint
distribution of {yt1 , yt2 , . . . , ytk} is identical to that of {yt1−h, yt2−h, . . . , ytk−h}
for any collection of time points t1, t2, . . . , tk, for any number k = 1, 2, . . . ,
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and for any shift h = 0,±1,±2, . . . [49]. The extension to a multivariate
time series is analogous, replacing the single observation yt with a vector
of observations yt drawn randomly from a multivariate distribution at time
t. Since strict stationarity is difficult to show in practice, one must typi-
cally settle for a weaker form thereof. More specifically, a stochastic process
{yt : t = 1, 2, . . .} is said to be weakly stationary if the joint distribution of
{yt1 , yt2 , . . . , ytk} is identical to that of {yt1−h, yt2−h, . . . , ytk−h} with respect
to their first two product moments and these two moments are finite; that
is, the mean and variance are time invariant and correlations depend only on
the time lag between observations, but not on time itself [23].

As an illustration, consider the AR(1) process in Equation (2.1). By recursive
substitution, this process may be written as

yt = φnyt−n +
n−1∑
i=0

φiεt−i.

Recalling that {εt : t = 1, 2, . . .} is a sequence of identically and indepen-
dently distributed random variables with E[εt] = 0 and Var[εt] = σ2 for all
t, it therefore follows that

E[yt] = φnE[yt−n] (2.3)

and

Var[yt] = φ2nVar[yt−n] + σ2

n−1∑
i=0

φ2i. (2.4)

Now consider what happens to these two moments under each of the following
three conditions as n→∞.

(a) Explosive Autoregressive Coefficient |φ| > 1

If the autoregressive coefficient φ is greater than 1, both the mean and vari-
ance will grow exponentially as n increases. Consequently, these two mo-
ments are nonconstant over time and therefore the process cannot be regarded
as stationary even in the weak sense. On the other hand, an autoregressive
coefficient φ less than −1 will produce an oscillating time series. This con-
dition implies that the absolute value of the mean will grow exponentially
as n increases, as will the variance. Clearly, such a process will also be
non-stationary. In light of the implications for the mean and variance of an
autoregressive process with |φ| > 1, such processes are said to be explosive
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and are generally not sustainable in the long-run [23].

(b) Unitary Autoregressive Coefficient |φ| = 1

A special case of an AR(1) process, known as the pure random walk, is
obtained when φ = 1 and may be expressed as

yt = yt−1 + εt, (2.5)

or equivalently,
(1− L)yt = εt.

Clearly, the characteristic polynomial p(L) = (1 − L) has a unit root such
that p(1) = 0.

From Equations (2.3) and (2.4), the first two moments of a pure random
walk process which started in the infinite past may be established as

lim
n→∞

E[yt] → lim
n→∞

E[yt−n]

and
lim

n→∞
Var[yt] = lim

n→∞
Var[yt−n] + nσ2 →∞.

Hence, whilst the pure random walk is indeed stationary in mean, its variance
accumulates over time and it is therefore non-stationary. An extension of this
model is the random walk with drift

yt = ν + yt−1 + εt

which allows for a stochastic trend through the drift term ν. By successive
substitution, the random walk with drift may be rewritten as

yt = nν + yt−n +
n−1∑
i=0

εt−i

and is therefore neither stationary in mean nor variance in the limit as n→
∞. Consequently, it is concluded that unit root processes are non-stationary
[38].

Although extremely rare in economic applications, an autoregressive process
with φ = −1 is also non-stationary. From Equation (2.3), it follows that such
a process will exhibit an oscillating mean, although the mean will be constant
in absolute value. In addition, the variance of such a process will accumulate
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over time as is the case with a pure random walk process. Such a process
would oscillate indefinitely without ever converging to a stable equilibrium
and it would therefore seem unsurprising that an autoregressive process with
φ = −1 is seldom encountered in practice.

(c) Stable Autoregressive Coefficient |φ| < 1

Suppose the AR(1) process given by Equation (2.1) has an autoregressive
coefficient |φ| < 1. Then, assuming this process began in the infinite past, it
is easy to verify that

lim
n→∞

E[yt] = lim
n→∞

φn E[yt−n] → 0

lim
n→∞

Var[yt] = lim
n→∞

φ2nVar[yt−n] +
σ2(1− φ2n)

1− φ2
→ σ2

1− φ2

provided lim
n→∞

E[yt−n] < ∞ and lim
n→∞

Var[yt−n] < ∞. In this case, both the

mean and variance are time invariant and finite. Furthermore, the covariance
between observations is also constant over time, which can be shown by
multiplying Equation (2.1) through by yt and taking expectations to yield

E[ytyt−1] = φE[y2
t−1] + E[εtyt−1]

Cov[yt, yt−1] =
φσ2

1− φ2

since E[yt−1] = 0 and Cov[εt, yt−1] = 0. The general case follows by induction
with

Cov[yt, yt−n] =
φnσ2

1− φ2
,

which is also time invariant. The correlation coefficient ρi between yt and
yt−i for i = 1, 2, . . . is found by simply dividing Cov[yt, yt−i] by the variance
of yt to obtain the Yule-Walker system of recursive equations. The first-
order correlation coefficient is ρ1 = Cov[yt, yt−1]/Var[yt] = φ and it can be
easily shown that the correlation ρn between yt and yt−n equals φn in general.
Correlations therefore depend upon the time lag between observations, but
not on time itself. Hence one may conclude that an AR(1) process with
|φ| < 1 and finite first two moments is at least weakly stationary [23]. It is
worth noting that this is a limiting result obtained by assuming an infinite
time line. It is therefore perhaps more accurate to refer to such a process as
being asymptotically stationary [38].
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One of the more common tests for stationarity is the Dickey-Fuller test. This
test proceeds by subtracting yt−1 from both sides of Equation (2.1) to produce

(1− L)yt = γyt−1 + εt, (2.6)

where γ = φ− 1. The null and alternative hypotheses for this test are then
given as

H0 : γ = 0

H1 : γ < 0

where stationarity is implied by the alternative hypothesis and non-rejection
of the null hypothesis suggests that the characteristic polynomial has a unit
root. Note that this test was developed specifically for economic time series
which are typically modelled as autoregressive processes with 0 ≤ φ ≤ 1.
Explosive processes with |φ| > 1 and oscillating processes with φ < 0 are not
common in economics and are therefore disregarded in this test.

While it may appear that this test can be carried out by performing a stan-
dard t-test on the ordinary least squares estimate of the γ coefficient, it can
be shown that the test statistic does not have a conventional Student t dis-
tribution under the null hypothesis of a unit root [11]. Indeed, an implicit
assumption of the t-test is that the data are drawn from a single popula-
tion distribution, which is clearly contrary to the null hypothesis since non-
stationarity implies that the parameters of the distribution of yt depend on
the time t. Consequently, Dickey and Fuller simulated critical values for this
test for time series of various lengths [9]. MacKinnon later produced a much
larger set of simulated critical values than those tabulated by Dickey and
Fuller [41].

The above test of γ in Equation (2.6) is only applicable to AR(1) processes.
This simple test has, however, been augmented to allow for higher-order
autoregressive processes as well as the inclusion of intercept and trend terms.
As an example of this augmentation, consider an AR(2) process with an
intercept ν and deterministic trend δt written in terms of the lag operator as

(1− φ1L− φ2L2)yt = ν + δt+ εt.

Now consider factorising the reverse characteristic polynomial of this AR(2)
process as follows

(1− υL)(1− ϕL)yt = ν + δt+ εt, (2.7)
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where υ ≥ ϕ with 0 ≤ υ ≤ 1 such that explosive and oscillating processes are
again excluded from further consideration. Multiplying out Equation (2.7)
and rearranging yields

yt = υLyt + ϕLyt − υϕL2yt + ν + δt+ εt

(1− L)yt = −Lyt + υLyt + ϕLyt − υϕLyt + υϕLyt − υϕL2yt + ν + δt+ εt

= (υ − 1)(1− ϕ)yt−1 + υϕ(1− L)yt−1 + ν + δt+ εt

= γyt−1 + β(1− L)yt−1 + ν + δt+ εt,

where γ = (υ−1)(1−ϕ) and β = υϕ. The existence of at least one unit root
in this AR(2) process would imply υ = 1 and hence γ = 0. On the other
hand, a stationary process is characterised by |υ| < 1, which translates into
γ < 0, ignoring the unlikely possibility of an explosive or oscillating process.

More generally, consider the AR(p) process

(1− φ1L− φ2L2 − . . .− φpLp)yt = ν + δt+ εt

which, through a similar factorisation of the reverse characteristic polyno-
mial, may be rewritten as

(1− υL)(1− ϕ1L− ϕ2L2 − . . .− ϕp−1Lp−1)yt = ν + δt+ εt, (2.8)

where υ is the largest inverse root of the reverse characteristic polynomial of
the AR(p) process with 0 ≤ υ ≤ 1. Equation (2.8) may be manipulated in a
similar manner to the AR(2) process above in order to obtain the following
formulation

(1− L)yt = γyt−1 +

p−1∑
i=1

βi(1− L)yt−i + ν + δt+ εt, (2.9)

where γ = (υ − 1)(1 −
∑p−1

i=1 ϕi) and βi = fi(υ, ϕ1, . . . , ϕp−1) for i = 1, . . . ,
p− 1. Clearly, this process will also have a unit root under the null hypothesis
H0 : γ = 0, whilst the alternative hypothesisH1 : γ < 0 implies stationarity if
one disregards explosive and oscillating processes. This test of γ in Equation
(2.9) is known as the Augmented Dickey-Fuller (ADF) test [5].

Since the characteristic polynomial of higher-order processes may have more
than one unit root, the interpretation of the null hypothesis must be modified
such that the non-rejection of H0 : γ = 0 implies at least one unit root in the
characteristic polynomial of yt. If this is found to be the case, the ADF test
can be repeated on the first differences of yt, where the null hypothesis of at

11



least two unit roots is tested against the alternative of exactly one unit root.
One could continue in this manner taking differences of yt and repeating the
ADF test until the number of unit roots is established through the eventual
rejection of the null hypothesis [5].

As was the case with the simple Dickey-Fuller test, a t-test of the ordinary
least squares estimate of γ in Equation (2.9) is inappropriate and hence
simulated critical values are utilised to test the statistical significance of the
alternative hypothesis. Importantly, these critical values depend on whether
or not intercept and trend terms are included in Equation (2.9), as well as
the number of lags in this model. It is generally recommended to include a
sufficient number of lags in the model to remove any serial correlation in the
residuals. The inclusion of intercept and trend terms in the model is usually
informed by their plausibility as a description of the data generating process
[19]. Including irrelevant regressors in the regression will, however, reduce
the power of the test, making it more likely to reject stationarity [11].

2.1.4 Integrated Processes

Integrated processes are a class of trending processes which may be rendered
stationary by differencing. A stochastic process {yt : t = 1, . . . , T} is said
to be integrated of order zero, denoted I(0), if it is stationary in the strict
sense with a finite and non-zero long-run variance defined as the limit as
T → ∞ of Var[

√
T ȳ] where ȳ = T−1

∑T
t=1 yt. Now, let ∆ ≡ (1 − L) denote

the difference operator such that

∆dyt = (1− L)dyt.

Then the stochastic process {yt} is said to be integrated of order d, denoted
I(d) for d = 1, 2, . . ., if its dth difference ∆dyt is I(0) [21]. Alternatively, a
univariate I(d) process may be defined as having d unit roots in its charac-
teristic polynomial [38]. The order of integration of a stochastic process may
therefore be established by performing the sequence of ADF tests described
earlier.

As an example, consider the pure random walk process {yt} in Equation
(2.5). This process was shown to be non-stationary in levels. Taking first
differences yields ∆yt = (1 − L)yt = εt ∼ I(0) since {εt} is white noise.
Consequently, a non-stationary random walk process is rendered stationary
by taking first differences and hence yt ∼ I(1).
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More generally, consider an AR(p) process written in the form given by Equa-
tion (2.8). Now suppose the characteristic polynomial of this process has a
unit root implying υ = 1. Then, omitting the intercept and trend terms,
Equation (2.8) may be expressed as

∆yt = ϕ1∆yt−1 + ϕ2∆yt−2 + . . .+ ϕp−1∆yt−p+1 + εt,

which is an AR(p − 1) process in first differences. If the remaining roots of
p(L) = (1−ϕ1L−ϕ2L2− . . .−ϕp−1Lp−1) are all greater than one in absolute
value, yt will be stationary in first differences; that is yt ∼ I(1). If p(1) = 0,
then ∆yt is not stationary (due to a unit root in its characteristic polynomial)
and it will be possible to factorise p(L) further and take differences of ∆yt.
If ∆2yt is stationary, then yt ∼ I(2). Otherwise, assuming {yt} is in fact an
integrated process, one could conceivably continue differencing until ∆dyt is
stationary and conclude that yt ∼ I(d).

2.1.5 Cointegrated Processes

Equilibrium relationships are assumed to exist between many economic vari-
ables. Suppose k such time-dependent variables are collected in the vector
yt = (y1t, . . . , ykt)

′ and their long-run equilibrium relation is given by the lin-
ear combination E[β′yt] = E[β1y1t + . . .+βkykt] = 0 where β = (β1, . . . , βk)

′.
In any particular period, this relation may not be satisfied exactly so that
β′yt = zt, where {zt} is a stochastic process representing the short-run de-
partures from equilibrium. Now suppose the variables in yt are all I(1).
Then, assuming no equilibrium relationship exists between the variables in
yt, a linear combination of these I(1) processes will itself be I(1) implying
zt ∼ I(1) [23]. However, if there is in fact an equilibrium relationship be-
tween the variables in yt, it seems quite plausible that these variables may
wander extensively as a group and that {zt} is stationary at the same time.
Hence, although each process is integrated, the process generated by a linear
combination of the variables in yt may be stationary. Integrated processes
exhibiting this property are said to be cointegrated [38].

More generally, the variables in the k dimensional vector process yt are coin-
tegrated of order (d, b), denoted CI(d, b), if all the components of yt are I(d)
and there exists a linear combination β′yt with β 6= 0 which is I(d− b) for
b > 0. For example, if yt is a vector process of I(1) variables and β′yt ∼ I(0),
then yt ∼ CI(1, 1). The vector β is referred to as a cointegrating vector and
the stochastic process consisting of the cointegrated variables is said to be a
cointegrated process [38].

13



2.2 The Vector Autoregressive Model

2.2.1 Definition

The vector autoregressive, or VAR, model arises frequently in the modelling
of multivariate relationships and is a natural extension of its univariate au-
toregressive counterpart. The simplest case, a bivariate first-order VAR
model, may be expressed mathematically as follows

(
y1t

y2t

)
=

(
ν1

ν2

)
+

[
π11.1 π12.1

π21.1 π22.1

](
y1,t−1

y2,t−1

)
+

(
ε1t

ε2t

)

yt = ν + Π1yt−1 + εt

where ν = (ν1, ν2)
′ is a vector of constants known as drifts and εt = (ε1t, ε2t)

′

is an identically and independently distributed random vector of innovations
at time t relative to yt−1 = (y1,t−1, y2,t−1)

′ at time t− 1. More specifically, εt

is usually regarded as an independent draw from a multivariate Gaussian dis-
tribution, denoted N (0,Ω), with a zero mean vector and variance-covariance
matrix Ω. Although y1t and y2t could be modelled as two separate univari-
ate autoregressions on y1,t−1 and y2,t−1 respectively, this approach would not
capture any interactions that may be present between the two variables. The
multivariate model, however, allows for such interactions by modelling each
variable as a function of both its own lags as well as that of all other variables
in the response vector yt [43].

In general, a pth order VAR model in k variables may be expressed as

yt = ν + Π1yt−1 + Π2yt−2 + . . .+ Πpyt−p + εt,

where yt = (y1t, y2t, . . . , ykt)
′, ν = (ν1, ν2, . . . , νk)

′, εt = (ε1t, ε2t, . . . , εkt)
′

iid∼ N (0,Ω) and

Πj =


π11.j π12.j · · · π1k.j

π21.j π22.j · · · π2k.j
...

...
. . .

...
πk1.j πk2.j · · · πkk.j

 .
This VAR model is said to be in reduced form in that no current dated values
of the k variables appear as regressors in any of the equations. When current
values are included, the model is said to be in structural form in the sense
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that the equations directly represent behavioural relationships, rather than
merely the interactions of such relationships [43].

2.2.2 Stationarity of a VAR Process

Consider the VAR(1) model without drift written in terms of the lag operator
as

(I −Π1L)yt = εt.

Multiplying through by (I −Π1L)−1 yields

yt = (I −Π1L)−1 εt

|I −Π1L|yt = adj [I −Π1L] εt (2.10)

where adj [I −Π1L] is the adjoint matrix.

Now consider the eigenvalue problem Π1x = λx with characteristic equation

|Π1 − λI| = 0,

where the polynomial p(λ) = |Π1−λI| is known as the characteristic polyno-
mial of Π1. The real and complex roots λ1, λ2, . . . , λk of this polynomial are
referred to as the eigenvalues of Π1, each of which has an associated eigen-
vector x1,x2, . . . ,xk such that Π1xi = λixi for i = 1, . . . , k. Alternatively,
the eigenvalues of Π1 may be found by considering the reverse characteristic
equation

|I −Π1L| = 0,

where L = λ−1. The reverse characteristic polynomial is then defined as
q(L) = |I −Π1L| which has roots equal to the inverse eigenvalues of Π1

[20].

Recall from Section 2.1.3 that the univariate AR(1) process

yt = φyt−1 + εt ⇔ (1− φL)yt = εt

is stationary if its autoregressive coefficient φ is less than one in absolute
value. This condition is clearly equivalent to stating that the polynomial
(1 − φL) must have a root greater than one in modulus. Now consider the
VAR(1) model in Equation (2.10) written in terms of the reverse character-
istic polynomial as

q∗(L)(1− υL)yt = adj [I −Π1L] εt,
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where q(L) = q∗(L)(1−υL) and υ is a real or complex root of the polynomial
q(L). Rearranging terms and defining ζt = q∗ (L)−1 adj [I −Π1L] εt yields

yt = υyt−1 + ζt. (2.11)

It therefore follows that each of the stacked univariate processes in yt will only
be stationary if |υ| < 1 or, equivalently, the absolute root of the polynomial
(1− υL) is greater than one. Moreover, this must be the case for all roots of
the reverse characteristic polynomial q(L), since for each real or complex root,
it is possible to rewrite the VAR(1) process in the form given by Equation
(2.11). Since a vector stochastic process is only stationary if each of its
univariate constituents is stationary, it follows that a sufficient condition
for stationarity in the VAR(1) model is that all the roots of the reverse
characteristic polynomial must be greater than one in absolute value or,
equivalently, lie outside the unit circle [38].

Although the above discussion has focused exclusively on first-order vector
autoregressions, the results may be easily generalised to higher-order VAR(p)
processes by noting that any VAR(p) process can be expressed as a first-order
system by rewriting it in what is known as the companion form. To illustrate,
consider the VAR(p) process

yt = ν + Π1yt−1 + Π2yt−2 + . . .+ Πpyt−p + εt.

This process may be expressed in companion form as

Y t = A0 +A1Y t−1 +Et,

where Y t =
(
y′t,y

′
t−1, . . . ,y

′
t−p+1

)′
,A0 = (ν ′,0′, . . . ,0′)′,Et = (ε′t,0

′, . . . ,0′)′

and

A1 =



Π1 Π2 · · · Πp−1 Πp

I 0 · · · 0 0
0 I · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · I 0


.

Stationarity in this context is therefore ensured when all the eigenvalues of
the companion matrix A1 have modulus less than one [43].
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2.3 The Vector Error Correction Model

2.3.1 Definition

The vector error correction model (VECM) is a convenient reparameterisa-
tion of the VAR model discussed above. To illustrate its derivation, consider
the simple VAR(3) process without an intercept or other deterministic terms

yt = Π1yt−1 + Π2yt−2 + Π3yt−3 + εt.

Subtracting yt−1 from both sides and simplifying, the VAR(3) process may
be rewritten as follows

∆yt = (Π1 − I)yt−1 + Π2yt−2 + Π3yt−3 + εt

= (Π1 − I)yt−1 + Π2yt−2 + Π3yt−2 −Π3yt−2 + Π3yt−3 + εt

= (Π1 − I)yt−1 + (Π2 + Π3)yt−2 −Π3∆yt−2 + εt

= (Π1 − I)yt−1 + (Π2 + Π3)yt−1 − (Π2 + Π3)yt−1 + (Π2 + Π3)yt−2

−Π3∆yt−2 + εt

= (Π1 + Π2 + Π3 − I)yt−1 − (Π2 −Π3) ∆yt−1 −Π3∆yt−2 + εt.
(2.12)

Equation (2.12) is the error correction representation of a VAR(3) process.
In general, the error correction representation of a k dimensional VAR(p)
process is

∆yt = Πyt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt (2.13)

where Π =
∑p

i=1 Πi− I, Γi = −
∑p

j=i+1 Πj and as before it is assumed that

εt
iid∼ N (0,Ω). Note that Equation (2.13) allows for deterministic terms and

I(0) exogenous variables in the model through the d × 1 vector Dt which
may include a constant (drift), trend, seasonal dummies, intervention dum-
mies or other regressors which are considered exogenous to the system. The
k × d matrix Φ includes the coefficients associated with these deterministic
and exogenous variables [27]. Observe that a cointegrated VAR(p) process
translates into a VECM of order p−1, since p−1 lags of the response vector
∆yt appear as regressors in the VECM given as Equation (2.13).

To illustrate the usefulness of this representation, suppose that the charac-
teristic polynomial of a VAR(p) process has exactly one unit root such that
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yt is I(1) and therefore non-stationary. One possible response to such a case
may be to model the first differences as a VAR(p) process of the form

∆yt = Π1∆yt−1 + Π2∆yt−2 + . . .+ Πp∆yt−p + ΦDt + ε∗t .

Statistically, this model may seem acceptable since the first differences of I(1)
variables are by definition stationary. However, such a formulation provides
no information on the relationship between the levels of the variables in the
VAR model, yet it is these precise relationships which are usually of economic
interest [43].

An alternative arises when stationary relations exist between the non-station-
ary levels of the variables in yt; that is, the k variables in yt are cointegrated.
Suppose yt is integrated of order one as described above. Recall that yt is said
to be cointegrated, denoted CI(1, 1), if there exists a linear combination of
these variables which is I(0). Now suppose 0 < r < k such linearly indepen-
dent combinations exist so that β1yt, . . . ,βryt are all stationary processes.
Then the k × r matrix β = (β1, . . . ,βr) is referred to as the cointegration
matrix of yt where each column represents a unique cointegrating relation be-
tween the variables in yt. The r dimensional vector process β′yt is therefore
integrated of order zero [43].

Returning to the VECM(p − 1) given as Equation (2.13), if yt ∼ I(1) and
hence ∆yt ∼ I(0), then at first glance this model would appear to be unbal-
anced in its time series properties; the left hand side is clearly I(0), whilst the
right hand side includes the I(1) vector yt−1 and, since a linear combination
of I(1) variables is in general also I(1), the right hand side would therefore
appear to be I(1). However, suppose that Π = αβ′ with β representing the
matrix of r cointegrating vectors alluded to earlier. Then the VECM(p− 1)
process may be rewritten as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt. (2.14)

If the variables in yt are indeed cointegrated, then the linear combination of
I(1) variables β′yt−1 has a reduced order of integration and is therefore I(0)
in this case. Hence, the right hand side of Equation (2.14) becomes a linear
combination of I(0) variables and the model would therefore be balanced in
its time series properties provided that such cointegrating relations exist [43].

The interpretation of the error correction model in Equation (2.14) is indeed
most appealing. The cointegrating combinations β′yt−1 represent the long-
run or equilibrium relationships among the levels of the variables. Recall
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that these relationships are often of distinct interest in empirical studies.
Nonzero values of β′yt−1 indicate lagged disequilibria which are eradicated
through the adjustment coefficients in the k× r matrix α, with each column
corresponding to one of the r cointegrating relations. For this reason, the
model is sometimes, and perhaps more appropriately, referred to as the vector
equilibrium correction model. Short-run adjustments are also captured in the
model through the elements in the Γi matrices [43]. A detailed account of
parameter estimation in the VECM is provided in Appendix A.

2.3.2 Hypothesis Tests of the Cointegrating Rank

The rank of β is referred to as the cointegrating rank and represents the
number of linearly independent cointegrating relations. Since Π = αβ′,
where α and β are both k × r matrices with r < k, this is equivalent to
finding the rank of Π. By excluding the possibility that r ≥ k, it should be
immediately obvious that Π is singular or rank deficient. In fact, this must
be the case if the characteristic polynomial of the VAR process has a unit
root such that yt ∼ I(1). To understand why this is so, consider the now
familiar VAR(p) process without drift or deterministic terms

yt = Π1yt−1 + Π2yt−2 + . . .+ Πpyt−p + εt

which, using a previous trick, may be rewritten as∣∣I −Π1L−Π2L2 − . . .−ΠpLp
∣∣yt

= adj
[
I −Π1L−Π2L2 − . . .−ΠpLp

]
εt

with reverse characteristic polynomial |I −Π1L−Π2L2 − . . .−ΠpLp|. Note
that this approach is equivalent to rewriting the VAR(p) process in compan-
ion form, in which case the reverse characteristic polynomial is found to be
|I −A1L| = |I −Π1L−Π2L2 − . . .−ΠpLp|. Now suppose this polynomial
has a unit root. Then

|I −A1| = |I −Π1 −Π2 − . . .−Πp| = 0

and, noting that Π = Π1+Π2+. . .+Πp−I, it therefore follows that |Π| = 0
so that Π will be rank deficient [43]. The case where r ≥ k would therefore
imply that yt is stationary, in which case cointegration is irrelevant.

In the event that there are no cointegrating relations amongst the I(1) vari-
ables in yt, the rank of Π will be zero. However, Π can only be completely
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rank deficient if it is the null matrix and the VECM(p− 1) would therefore
reduce to a VAR(p− 1) model in first differences [27].

In order to establish a formal testing procedure for the cointegrating rank,
define H(r) as the submodel

∆yt = Πyt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt (2.15)

under the condition that rank(Π) ≤ r. This formulation leads to the nested
sequence of models

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(k).

The modelsH(1), . . . , H(k−1) imply cointegrating relations between the I(1)
variables in the response vector. The model H(k) is the unrestricted VAR
or I(0) model, whilst H(0) imposes the restriction Π = 0 corresponding
to a VAR model in first differences. The nested sequence ranges from a
VAR model in differences through to a VAR model in stationary levels and
therefore provides a means for investigating the coefficient matrix Π in terms
of the information it may include with respect to the long-run equilibria
hidden in the data [27].

The above formulation allows for the construction of likelihood ratios to
test the null hypothesis H0r : model H(r) against the alternative hypotheses
H1k : model H(k) and H1,r+1 : model H(r + 1). The full derivation of these
hypothesis tests from the likelihood function of the general VECM is given
in Appendix A. Briefly, these tests are derived by first concentrating the
likelihood function for the VECM process

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt

with respect to the parameters {Γ1, . . . ,Γp−1,Φ} by regressing ∆yt and yt−p

on ∆yt−1, . . . ,∆yt−p+1 and Dt [30]. Define the residual vectors from these
two regressions at time t as R0t and R1t respectively with residual product
moment matrices

Sij = T−1

T∑
t=1

RitR
′
jt for i, j = 0, 1,
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where T is the length of the observed data sequence. Further define λ̂1 ≥
λ̂2 ≥ . . . ≥ λ̂k as the ordered eigenvalues associated with the eigenvalue
problem ∣∣λS11 − S10S

−1
00 S01

∣∣ = 0.

The likelihood ratio statistic for the test of H0r against H1k may then be
constructed by dividing the maximised likelihood function for the model with
the restriction rank(Π) = r by the maximised likelihood of the unrestricted
VAR model with Π of full rank; that is,

Q (H(r)|H(k)) =

(
|S00|

∏r
i=1(1− λ̂i)

)−T/2(
|S00|

∏k
i=1(1− λ̂i)

)−T/2

where Q(·) is the likelihood ratio. This expression may be rearranged as
follows

Q (H(r)|H(k))−2/T =
|S00|

∏r
i=1(1− λ̂i)

|S00|
∏k

i=1(1− λ̂i)

=
k∏

i=r+1

(1− λ̂i)
−1

which, after taking logarithms, leads to the so-called trace statistic [27]

−2 logQ (H(r)|H(k)) = −T
k∑

i=r+1

log(1− λ̂i).

A “large” value of the trace statistic is evidence against the hypothesis H0r;
that is, the cointegrating rank is greater than r. A “small” value of the trace
statistic indicates a lack of evidence against H0r and hence would lead to the
conclusion that the cointegrating rank is less than or equal to r. In order to
determine the exact cointegrating rank, the following sequence of hypothesis
tests would need to be performed:

1. Begin by testing the model H(0) against the model H(k). If H(0) is
not rejected, then the cointegrating rank r = 0 and the sequence stops.
If H(0) is rejected, then conclude that the cointegrating rank is greater
than zero and move on to the next test.
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2. Test the model H(1) against the model H(k). If H(1) is not rejected,
then r ≤ 1 and, since r = 0 was rejected in the previous test, conclude
that the cointegrating rank r = 1 and the sequence stops. If H(1) is
rejected, then conclude that the cointegrating rank is greater than one
and move on to the next test.

3. Continue this process with the last possible test considering the model
H(k − 1) against the model H(k). If H(k − 1) is not rejected, then
r ≤ k − 1 and, since r ≤ k − 2 was rejected in the previous test,
conclude that the cointegrating rank r = k− 1. Otherwise, if H(k− 1)
is rejected, conclude that r = k [43].

Another likelihood ratio test that may be employed to ascertain the cointe-
grating rank is the test of H0r : model H(r) against H1,r+1 : model H(r+1).
The likelihood ratio test statistic is constructed as before, except the de-
nominator now becomes the maximised likelihood function for the model
H(r + 1)

Q (H(r)|H(r + 1))−2/T =
|S00|

∏r
i=1(1− λ̂i)

|S00|
∏r+1

i=1 (1− λ̂i)

= (1− λ̂r+1)
−1.

Taking logarithms and rearranging produces what is known as the maximal
eigenvalue or λmax test statistic [27]

−2 logQ (H(r)|H(r + 1)) = −T log(1− λ̂r+1).

The testing procedure using the λmax statistic is almost identical to that
employed when working with the trace statistic, with a minor modification.
Begin by testing the model H(0) against the model H(1), rather than H(k)
as previously. IfH(0) is not rejected, stop the sequence and conclude that the
cointegrating rank r = 0. If H(0) is rejected, proceed to test the model H(1)
against the model H(2). Continue in this manner if necessary until the last
test of the modelH(k−1) against the modelH(k), in which case the λmax and
trace statistics will be identical [43]. The aforementioned procedures based
on the λmax and trace statistics were largely developed by Søren Johansen
and consequently have become known as the Johansen approach to rank
selection.

The asymptotic distributions of both the trace and λmax statistics are non-
standard and depend upon the deterministic terms included in the model.
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The asymptotic distributions and critical values have, however, been tabu-
lated from simulations for various values of k−r and under different assump-
tions regarding the deterministic terms [43].

An alternative approach to choosing the cointegrating rank is based on fa-
miliar model selection criteria, such as Akaike’s information criterion (AIC),
the Hannan-Quinn information criterion (HQC) and the Schwarz Bayesian
information criterion (SBC). At the outset, this approach would seem ad-
vantageous in that the order p and rank r of the VAR model written in its
error correction form as in Equation (2.15) may be chosen simultaneously
[38]. Indeed, the specified lag length in the VAR model forms the basis of
inference on the cointegrating rank [43].

A Monte Carlo study conducted by Reimers using each of the above three
information criteria to select model order and cointegrating rank revealed
mixed results [46]. Changing the order, rank and length of the observed time
series seems to have a large effect on the performance of each criterion in
correctly identifying model order, rank and the correct combination of the
two [43]. Furthermore, these changes appear to affect the performance of each
criterion differently. Consequently, it is possible to arrive at different model
specifications depending on the choice of information criterion [38]. Overall,
it is suggested that, if an information criterion is to be used, the SBC is
probably the best choice to simultaneously estimate order and cointegrating
rank. However, the dominant practice at present is to first choose the lag
length based on one or more of the information criteria and then to decide
upon the cointegrating rank following the Johansen approach [43].

2.3.3 Intercepts and Trends in the VECM

Consider the VECM process

∆yt = α
(
β′ ν1 δ1

)( yt−1

1
t

)
+

p−1∑
i=1

Γi∆yt−i + εt for t = 1, 2, . . . , T,

(2.16)

which allows for an intercept term and a deterministic trend in the equilib-
rium relations through the inclusion of the r dimensional vectors ν1 and δ1

in the cointegration space. The inclusion of these intercepts and trends in the
cointegration space will affect the likelihood ratio statistics employed in the
hypothesis tests of the cointegrating rank and hence also the critical values
used to determine statistical significance in such tests.
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The VECM in Equation (2.16) with an intercept and trend in the cointegra-
tion space may be rewritten in the more familiar form

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt for t = 1, 2, . . . , T, (2.17)

with Φ = (ν, δ) and Dt = (1, t)′, where ν = αν1 and δ = αδ1 in this case.
Note, however, that in this example it is assumed that there is no intercept
or trend in the model itself; that is, the intercept and trend are restricted to
the cointegration space only. Of course, it is possible to have constants and
trends arising from both of these sources simultaneously. In this more general
case, it will initially be unclear whether the intercept and trend terms, ν and
δ, pertain to the cointegration space, the actual data generating process or
both when the model is estimated in the form given by Equation (2.17).
In order to draw inferences concerning the cointegrating rank of the model,
however, it is necessary to partition the deterministic component according
to the two sources from which it may originate [43].

More generally then, suppose Φ = (ν, δ), Dt = (1, t)′ and αν1 and αδ1

are constant and trend terms generated in the cointegration space as before.
Now define α⊥ as a k× (k− r) matrix of full rank which is orthogonal to α.
Further define ν2 and δ2 as k−r dimensional vectors. Then the deterministic
component of the model may be decomposed into two unrelated or orthogonal
parts

ΦDt = ν + δt = α(ν1 + δ1t) +α⊥(ν2 + δ2t), (2.18)

where α(ν1 + δ1t) is generated in the cointegration space and α⊥(ν2 + δ2t)
is generated in the model. Clearly, ν = αν1 + α⊥ν2 and δ = αδ1 + α⊥δ2

such that Equation (2.16) holds when there is an intercept term and a trend
term in the cointegration space, but not in the data generating process; that
is, ν2 = δ2 = 0.

The deterministic components arising from the cointegration space may be
extracted by premultiplying Equation (2.18) through by (α′α)−1α′ and not-
ing that α′α⊥ = 0 due to orthogonality

(α′α)−1α′ΦDt = (α′α)
−1
α′α(ν1 + δ1t) + (α′α)

−1
α′α⊥(ν2 + δ2t)

= ν1 + δ1t

so that ν1 = (α′α)−1α′ν and δ1 = (α′α)−1α′δ. Similarly, premultiply-
ing through by (α′

⊥α⊥)−1α′
⊥ reveals that ν2 = (α′

⊥α⊥)−1α′
⊥ν and δ2 =

(α′
⊥α⊥)−1α′

⊥δ. Hence it is a straightforward exercise to decompose the de-
terministic component of the model into its two constituents, namely that
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which is attributable to the data generating process and that which is inher-
ent in the long-run relationships between the variables [27].

In deciding whether or not to allow for intercept and trend terms in either the
model, the cointegration space or both, one needs to consider the roles that
such terms fulfill. As it turns out, the practical implications of a constant
and deterministic trend are quite different depending on whether these terms
are assumed to characterise the data generating process or the cointegrating
relations. Suppose for simplicity that the variables yt in the VECM process
defined by Equation (2.17) are in logarithms so that ∆yt may be interpreted
as a rate of growth. Including a constant term in the model, but not in
the cointegration space, therefore implies “autonomous drift” or constant
growth over time which leads to a deterministic trend in the levels of yt. By
contrast, including a constant term in the cointegration space simply allows
for a nonzero intercept term in the equilibrium relationships between the
variables in yt. Indeed, one would ordinarily allow for a nonzero intercept
term in a linear model such that a constant in the cointegration space would
seem to be a reasonable a priori specification. Note, however, that including
a constant in the cointegration space only will not account for a linear trend
in the data. Of course, a constant in both the cointegration space and the
data generating process will allow for both a nonzero intercept term in the
cointegrating relations and a linear trend in the data. Indeed, such a model
would seem practically relevant [43].

Inclusion of a deterministic trend in the VECM data generating process im-
plies that the growth rates ∆yt themselves grow or shrink over time. Clearly,
a linear trend in growth rates will produce a quadratic trend in levels. Since
time series which explode exponentially are rare, the inclusion of a time trend
in the model itself (not in the cointegration space) is unlikely to be justified
in practice. By contrast, the inclusion of a time trend in the cointegration
space implies a linear (rather than quadratic) time trend in the levels of yt.
Recall from the preceding paragraph that a linear trend in levels may also be
accounted for by including a constant in the data generating process. Hence,
if a time series includes a linear trend in levels so as to justify a constant term
in the data generating process, then it may be necessary to consider a time
trend in the cointegrating combination. Note, however, that it is not always
necessary to include a linear trend in the cointegration space if there is a
linear trend in the levels of yt. Variables exhibiting a linear trend which are
(stochastically) cointegrated may in addition also be deterministically coin-
tegrated in that the linear trend cancels out in the cointegrating combination
[43].

25



2.3.4 Identification of the Cointegrating Vectors

Consider the VECM process

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt

and suppose that Π = αβ′, where β is a k × r cointegration matrix and α
is a k × r matrix of equilibrium adjustment coefficients, also known as the
loading matrix. Clearly, this decomposition of Π into α and β′ is not unique.
One could of course set Π = ακ−1κβ′ for some non-singular r × r matrix
κ. In this case, the loading matrix is ακ−1, whilst the cointegration matrix
becomes βκ′. Clearly, if β′yt ∼ I(0), then κβ′yt must also be stationary,
confirming that βκ′ is also a cointegration matrix for yt. Hence, whilst
the data may be used to isolate the cointegration space sp(β), it does not
ensure the uniqueness or economic relevance of the estimated cointegrating
vectors. It therefore becomes necessary to impose identifying restrictions on
the cointegration space [43].

In order to identify the cointegrating relations, define Ri as a k × gi matrix
of gi linearly independent restrictions of the form

R′
iβi = 0 for i = 1, . . . , r (2.19)

where βi denotes the ith column or cointegrating vector in β. The number
of linearly independent restrictions gi is assumed to be strictly less than k,
since for gi = k all the elements of βi are constrained to zero implying that
rank(β) < r, whilst gi > k implies redundant restrictions in Ri. The matrix
Ri is therefore assumed to be of full column rank gi < k [43].

Now let H i ≡ R⊥
i be a k × (k − gi) matrix of full column rank k − gi such

that R′
iH i = 0 and

βi = H iϕi

for some k− gi dimensional vector ϕi. The cointegrating vector βi therefore
belongs to the space orthogonal to Ri. Since βi is a k dimensional vector
of freely varying parameters, imposing gi restrictions reduces the number of
free parameters to the k − gi included in ϕi. The indirect parameterisation
in Equation (2.19) may easily be retrieved from this last equation through
premultiplication by R′

i [43].
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A direct parameterisation of the cointegration matrix is given by

β = (H1ϕ1, . . . ,Hrϕr) . (2.20)

Letting H = (H1, . . . ,Hr), it should be clear that the above conditions
restrict the cointegration space to

sp(β) ⊂ sp(H).

Hence, whilst the restriction Π = αβ′ leads to the estimation of an r dimen-
sional subspace chosen in Rk, the restriction imposed by Equation (2.20)
forces this subspace to lie in the given subspace sp(H) of Rk [27].

To illustrate, consider the I(1) vector process yt = (y1t, . . . , y5t)
′ and suppose

economic theory posits two cointegrating relations between these variables
ϕ1y1t−ϕ1y2t−ϕ1y3t = z1t and ϕ2y4t−ϕ2y5t = z2t, where z1t and z2t are I(0)
processes. Imposing these cointegrating relations would involve restricting
the elements in the cointegration matrix as follows

β =


β11 β12

β21 β22

β31 β32

β41 β42

β51 β52

 =


ϕ1 0

−ϕ1 0
−ϕ1 0

0 ϕ2

0 −ϕ2

 , (2.21)

such that

β′yt =

[
ϕ1 −ϕ1 −ϕ1 0 0
0 0 0 ϕ2 −ϕ2

]
y1t

y2t

y3t

y4t

y5t

 =

(
ϕ1y1t − ϕ1y2t − ϕ1y3t

ϕ2y4t − ϕ2y5t

)

is an I(0) vector process. Now consider the cointegrating vector β1 corre-
sponding to the first column of β. In order to identify the first cointegrating
relation, this vector is subject to the following set of g1 = 4 linear restrictions

R′
1 β1 = 0

1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1




β11

β21

β31

β41

β51

 =


0
0
0
0

 .
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In this case, H1 will be a five dimensional vector (since k = 5 and g1 = 4)
orthogonal to R1 such that

β1 = H1 ϕ1
β11

β21

β31

β41

β51

 =


1

−1
−1

0
0

ϕ1.

Clearly there is only one free scalar parameter ϕ1 which requires estimation
in this cointegrating relation, which may seem obvious from Equation (2.21).

Similarly, the second cointegrating vector β2 is subject to the following g2 = 4
linear restrictions

R′
2 β2 = 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1




β12

β22

β32

β42

β52

 =


0
0
0
0


and it therefore follows that

β2 = H2 ϕ2
β12

β22

β32

β42

β52

 =


0
0
0
1

−1

ϕ2.

As with the previous cointegrating vector, there is only a single free scalar
parameter ϕ2 which requires estimation in this cointegrating relation. Defin-
ing

H = (H1,H2) =


1 0

−1 0
−1 0

0 1
0 −1

 ,
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it should be clear that the restriction implied by Equation (2.21) ensures
sp(β) ⊂ sp(H).

An obvious question at this point is how many linearly independent restric-
tions are necessary in order to uniquely identify the cointegrating relations.
The answer is given by the so-called rank condition for the identification of
cointegrating vectors [27]. More specifically, the rank condition states that
provided there are no further identifying conditions on the parameters in
the model (for example, the cointegrating vectors have been normalised ap-
propriately), then βi is identified if and only if the parameters satisfy the
conditions

rank (R′
iβ) = r − 1 for i = 1, . . . , r, (2.22)

implying R′
iβi = 0 for all i and R′

iβj 6= 0 for all i 6= j. Since R′
iβ is

a gi × r dimensional matrix, the rank condition requires gi ≥ r − 1 for
i = 1, . . . , r, which implies that the cointegrating vectors are identified if
there are at least r − 1 linear restrictions on each cointegrating vector [43].
Furthermore, since rank(R′

iβi) = rank(0) = 0, it follows that when the
restrictions associated with the ith cointegrating vector are applied to the
remaining r − 1 cointegrating vectors, the resulting matrix will have rank
r − 1. Hence, it is impossible to create a vector which is restricted in the
same way as βi from a linear combination of the remaining r−1 cointegrating
vectors. The ith cointegrating vector βi may therefore be identified as the
only vector among all linear combinations of β1, . . . ,βr that satisfies the
restriction Ri or, equivalently, is in the space spanned by the columns of H i;
that is, βi ∈ sp(H i) [28].

However, the true parameter value β is not known in general and hence the
rank condition as presented in Equation (2.22) is not operational in practice.
Consequently, it would be far more useful to establish a set of conditions
on the linear restrictions R1, . . . ,Rr such that they uniquely identify the
cointegrating vectors β1, . . . ,βr. From the rank condition, it follows that
the cointegrating relations are identified if

rank (R′
iH1ϕ1, . . . ,R

′
iHrϕr) = r − 1 for i = 1, . . . , r

where the r − 1 column vectors {RiHjϕj, j = 1, . . . , r, j 6= i} are lin-
early independent. This result implies the following necessary and sufficient
condition for a set of restrictions to be identifying as given by Johansen [28]:

rank(R′
iH i1 , . . . ,R

′
iH is) ≥ s

for s = 1, . . . , r − 1 and any set of indices 1 ≤ i1 ≤ . . . ≤ is ≤ r excluding
i. Note that this condition does not involve the parameters and is therefore
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immediately operational given a set of restrictions. For this reason, the coin-
tegrating relations are said to be generically identified ; that is, the statistical
model satisfies the aforementioned set of algebraic conditions which ensure
that the cointegrating vectors are distinguishable regardless of the parameter
values [28].

In the example above,

R′
1H2 =


1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1




0
0
0
1

−1

 =


0
0
1

−1


and

R′
2H1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1




1
−1
−1

0
0

 =


1

−1
−1

0

 .

Hence rank(R′
1H2) = 1 and rank(R′

2H1) = 1 and therefore both cointegrat-
ing relations are generically identified by the chosen set of restrictions in this
example.

Since the choice of H1, . . . ,Hr is not unique, the parameters ϕ1, . . . ,ϕr are,
however, only determined up to a constant factor. Consequently, each coin-
tegrating vector is typically normalised on a different variable by setting the
coefficient on the normalising variable to one, where the normalising variable
is usually chosen to aid economic interpretation. Such a normalisation is of
the form

βi = hi +H∗
iψi,

where ψi is a k− gi − 1 dimensional vector of free parameters, with one less
freely varying parameter relative to ϕi due to the normalisation on one of the
variables. Clearly, hi ∈ sp(H i) and sp(hi,H

∗
i ) = sp(H i). The normalisation

may therefore be achieved by choosing hi as a unit vector with H∗
i having

zeros in the row corresponding to the unitary element in hi [27].

In the example above, it should be noted that the choice of H1 and H2

from all possible vectors in the set of orthogonal complements to R1 and
R2 was essentially arbitrary. Indeed, any H•

1 ∈ sp(H1) and H•
2 ∈ sp(H2)

(for example, H•
1 = (2,−2,−2, 0, 0)′ and H•

2 = (0, 0, 0,−0.5, 0.5)′) would
be orthogonal to R1 and R2 respectively and could very well be chosen
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instead. A normalisation is therefore necessary in order to uniquely determine
the parameters ϕ1 and ϕ2. For example, normalising on y1t in the first
cointegrating relation and y4t in the second cointegrating relation involves
setting β11 = 1 and β42 = 1. Given the choice of H1 and H2, doing so is
equivalent to setting ϕ1 = 1 and ϕ2 = 1. Clearly, if H•

1 and H•
2 were chosen

instead of H1 and H2, the same normalisation would imply ϕ1 = 0.5 and
ϕ2 = −2. In both cases, there are no free parameters in the cointegrating
relations after normalisation and the imposition of the specified restrictions.

Whilst generic identification is concerned with the correct model specification
such that the parameters may be uniquely identified, Johansen and Juselius
suggest replacing the requirement of correct model specification with the
assumption of a reasonably well-structured model which is consistent with
several theories [31]. Consequently, they propose that the concept of iden-
tification be broadened to include the notions of empirical and economic
identification, in addition to generic identification. Whilst empirical identi-
fication focuses on the estimated parameters and whether the data supports
the generic restrictions, economic identification relates to the interpretabil-
ity of the estimated parameter values in light of relevant economic theory.
Hence, whilst the mathematical condition above is necessary and sufficient
for the generic identification of the cointegrating relations, it does not guar-
antee that the model is either empirically or economically identified [31].

2.3.5 Testing Linear Restrictions on the Cointegrating Vectors

The rank condition given by Equation (2.22) implies that at least r−1 linear
restrictions must be imposed on each cointegrating vector for the long-run
relations to be generically identified. The case where exactly r−1 restrictions
are placed on each column in β, that is, Ri is a k × (r − 1) matrix for
i = 1, . . . , r, is referred to as exact or just identification, since it involves
the minimum number of restrictions required for identification. By contrast,
when more than r− 1 restrictions are imposed on each cointegrating vector,
the restrictions are said to be overidentifying, since they are not required in
order to uniquely determine the cointegrating vectors in the generic sense.
In the example above, four restrictions were imposed on each of the two
cointegrating relations when in fact only one linear restriction on each is
necessary for just identification. Consequently, both sets of linear restrictions
imposed on the cointegrating vectors in that example were overidentifying.
Such additional restrictions are usually based on theoretical considerations
and it would therefore seem appropriate to test whether these restrictions

31



are in fact consistent with the data [43].

Testing the overidentifying restrictions may be achieved by means of a stan-
dard hypothesis test of

H0 : Overidentified model

H1 : Exactly identified model

by comparing the likelihood of the overidentified model to that of the just
identified model. The asymptotic distribution of the appropriate likelihood
ratio statistic for this test can be shown to be chi-squared with v degrees
of freedom equal to the number of overidentifying restrictions, provided β is
identified. Noting that the maximum number of freely varying coefficients in
each cointegrating vector equals k − (r − 1) and letting si denote the actual
number of freely estimated coefficients in the ith cointegrating vector, the
total number of overidentifying restrictions relative to the number required
for exact identification is

v =
r∑

i=1

[k − (r − 1)− si] .

A statistically significant χ2
v value would suggest that the additional restric-

tions are not supported by the data, whilst non-rejection of the null hypoth-
esis would imply that the overidentifying restrictions are consistent with the
data. Note that an nonsignificant test statistic does not imply acceptance of
the null hypothesis since it is possible to formulate several different sets of
overidentifying restrictions. The acceptability of a particular set will depend
upon whether the restrictions lead to an economically identified structure
[43].

Additionally, it should be noted that overidentifying restrictions may result
in a model which is no longer generically identified. In this case, if the χ2

v

test statistic is found to be nonsignificant, one could conclude that the eco-
nomic structure imposed is not supported by the data. Hence, even though
the economic structure can be described by a generically identified statisti-
cal model, the data may suggest that this structure cannot be empirically
identified [31].

2.3.6 Partial Models and Exogeneity

Economic systems often comprise of many interrelated variables and mod-
elling such multivariate time series may therefore require the estimation of
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complex systems of equations of relatively high dimensionality. Consequently,
it is often tempting to consider partially specified systems, where only some
of the variables are treated as endogenous conditional on the remaining vari-
ables [25].

To this effect, consider the full VECM

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt (2.23)

where Dt includes only deterministic terms such as an intercept, trend and

seasonal dummy variables and εt
iid∼ N (0,Ω). Now suppose the k dimen-

sional vector process ∆yt is decomposed into the vectors ∆y1t and ∆y2t of
dimensions k1 and k2 respectively, where k1 + k2 = k. Such a decompo-
sition may be achieved, for example, by defining the k × k1 matrix a =
(Ik1 ,0)′ such that a′∆yt = ∆y1t and a′⊥∆yt = ∆y2t, where Ik1 is a
k1 dimensional identity matrix and a⊥ is a k × k2 matrix of full column
rank orthogonal to a [25]. This choice of a implies that ∆y1t includes
the first k1 variables in ∆yt and ∆y2t therefore comprises of the remain-
ing k − k1 = k2 variables, although clearly a could be constructed such
that ∆y1t = a′∆yt may include any set of k1 variables from ∆yt. Let the
model parameters (α,Γ1, . . . ,Γp−1,Φ) be decomposed correspondingly with
(α1,Γ1,1, . . . ,Γ1,p−1,Φ1) = a′(α,Γ1, . . . ,Γp−1,Φ) and (α2,Γ2,1, . . . ,Γ2,p−1,
Φ2) = a′⊥(α,Γ1, . . . ,Γp−1,Φ). Similarly, define ε1t = a′εt and ε2t = a′⊥εt

with variance-covariance matrices Ω11 = a′Ωa and Ω22 = a′⊥Ωa⊥ respec-
tively and Var[ε1t, ε2t] = Ω12 = a′Ωa⊥. Then the VECM given as Equation
(2.23) may be decomposed into a partial or conditional model for ∆y1t given
∆y2t and past information as follows

a′∆yt = ωa′⊥∆yt + (a′ − ωa′⊥)∆yt

= ωa′⊥∆yt + (a′ − ωa′⊥)
(
αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt

)
∆y1t = ω∆y2t + (α1 − ωα2)β

′yt−1 +

p−1∑
i=1

(Γ1,i − ωΓ2,i)∆yt−i

+ (Φ1 − ωΦ2)Dt + ε1t − ωε2t (2.24)

where ω = Ω12Ω
−1
22 , together with a marginal model for y2t given as
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a′⊥∆yt = a′⊥

(
αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt

)
∆y2t = α2β

′yt−1 +

p−1∑
i=1

Γ2,i∆yt−i + Φ2Dt + ε2t. (2.25)

Notice that the cointegrating relations β′yt−1 feature in both the conditional
and marginal models such that both y1t and y2t will in general include infor-
mation relevant to the estimation of the cointegrating coefficients. Further-
more, it is observed that whilst the adjustment coefficients corresponding to
∆y1t were defined as α1 in the full model given by Equation (2.23), the load-
ing matrix in Equation (2.24) for the conditional model of ∆y1t given ∆y2t

is α1−ωα2. Inferences regarding the manner in which y1t adjusts to depar-
tures from the equilibrium relations β′yt−1 may therefore differ depending
on whether the full or conditional model is considered. In general, these in-
terrelations between the parameters of the marginal and conditional models
imply that a full system analysis is necessary in order to draw inferences
which are efficient in the sense that all the available information included in
the data is utilised [26].

There is, however, one situation in which the conditional model includes as
much information as the full system about the cointegrating relations and
adjustment coefficients, such that an analysis of the partial model given in
Equation (2.24) will be efficient with respect to inferences on α and β. An
efficient analysis of the partial model is possible if the rows ofα corresponding
to the ∆y2t equations in the full model are zero, in which case α2 = 0 and
the conditional and marginal models given as Equations (2.24) and (2.25)
reduce to

∆y1t = ω∆y2t +α1β
′yt−1 +

p−1∑
i=1

(Γ1,i − ωΓ2,i)∆yt−i

+ (Φ1 − ωΦ2)Dt + ε1t − ωε2t (2.26)

and

∆y2t =

p−1∑
i=1

Γ2,i∆yt−i + Φ2Dt + ε2t (2.27)

respectively. It should be clear from this formulation that the adjustment
coefficients for ∆y1t are the same in both the full model and the conditional
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model given by Equation (2.26) where α2 = 0. In addition, the cointegrating
relations fall away in Equation (2.27) and the marginal model is therefore not
relevant to the estimation of β when α2 = 0. Hence, the maximum likelihood
estimator for (α,β) in the full model given by Equation (2.23) will be the
same as the maximum partial likelihood estimator in the conditional model
presented as Equation (2.26). If this condition holds, the variables in ∆y2t

are said to be weakly exogenous for α and β [25]. It is worth noting at this
point that the notion of weak exogeneity depends on the explicit choice of
parameters of interest [26]. Hence, although ∆y2t is weakly exogenous for
(α,β) in the VECM given by Equation (2.23) with α2 = 0, it is obvious
upon examination of Equations (2.26) and (2.27) that ∆y2t is not weakly
exogenous for the parameters Γ1, . . . ,Γp−1 and Φ in this same model.

The weak exogeneity of ∆y2t for (α,β) implies that ∆y2t does not react
to disequilibria in the cointegrating relations, but may still react to lagged
changes of y1t as is evident from the marginal model in Equation (2.27). If
the lagged changes of y1t include information relevant for forecasting ∆y2t

that is not present in any other covariates, then ∆y1t is said to Granger cause
∆y2t [17]. If the columns of Γ2,i corresponding to ∆y1,t−i in the marginal
model are equal to zero for i = 1, . . . , p − 1 so that ∆y1t does not Granger
cause ∆y2t, then ∆y2t is said to be strongly exogenous for (α,β) [26].

Testing for the weak exogeneity of ∆y2t with respect to (α,β) in the VECM
given by Equation (2.23) is equivalent to testing the following set of linear
restrictions on the loading matrix α

H0 : a′⊥α = 0 ⇔ α2 = 0

H1 : a′⊥α 6= 0 ⇔ α2 6= 0,

where weak exogeneity is implied under the null hypothesis. The test for
strong exogeneity is defined analogously by imposing additional zero restric-
tions on the columns of Γ2,i corresponding to ∆y1,t−i for i = 1, . . . , p− 1 and
testing the jointly constrained α2 and Γ2,i matrices for data admissibility.
In both cases, the restrictions on the coefficient matrices can be tested by
means of a standard likelihood ratio or Wald test comparing the restricted
or partial model with the unrestricted, full model [29].
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2.4 The Markov-Switching VAR Model

The Markov-switching vector autoregressive model, denoted as MS-VAR for
short, may be regarded as an extension of a VAR(p) process to time series
which are subject to shifts in regime. In such instances, the standard VAR
model with its time invariant parameters is likely to be inappropriate. The
basic idea behind this class of regime-switching models is that the parameters
of the underlying data generating process of the observed multivariate time
series yt depend upon an unobserved regime variable st. Since the regimes
are unobserved, a model for the regime generating process must first be
formulated such that the observed data may be used to draw inferences about
the state of the world at each time point [35].

2.4.1 The Regime Generating Process

Markov-switching models assume that the evolution of the regime variable
st ∈ {1, . . . ,m} can be described by a discrete time, discrete state Markov
stochastic process with transition probabilities

pij = Pr[st+1 = j|st = i],
m∑

j=1

pij = 1 for all i, j ∈ {1, . . . ,m}.

In particular, it is assumed that st follows an irreducible, ergodic and finite
Markov process with transition probability matrix

P =


p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
. . .

...
pm1 pm2 · · · pmm

 .
The defining properties of any transition probability matrix are that all its el-
ements are non-negative and, since the system must move to some state from
any state i, all rows sum to unity such that P1 = 1, where 1 = (1, . . . , 1)′ is
an m dimensional vector [7]. The assumptions of ergodicity and irreducibil-
ity are fundamental to the theoretical properties of MS-VAR models and are
therefore considered formally in Appendix B.
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2.4.2 The Data Generating Process

The most general specification of a Markov-switching vector autoregressive
process of order p with m regimes is given by

yt = ν(st) + Π1(st)yt−1 + Π2(st)yt−2 + . . .+ Πp(st)yt−p + εt, (2.28)

where εt|st∼N (0,Ω(st)) and ν(st),Π1(st), . . . ,Πp(st),Ω(st) reflect the de-
pendence of the parameters on the realised regime st ∈ {1, . . . ,m}.

The model given by Equation (2.28) specifies that all parameters of the
stochastic process are conditional on the state st of the Markov chain. Of
course, it may be the case that only some of the parameters are conditioned
on the state, whilst others may be regime invariant. In order to establish
a unique notation for each model, it is conventional to specify the regime
dependent parameters in the acronym describing the model. For example,
the aforementioned model is an MSIAH(m)-VAR(p) process, revealing the
dependence of the intercept (I), autoregressive coefficients (A) and error vari-
ance structure (H for heteroscedasticity) on the underlying regime [34].

As with the linear VAR model, an MS-VAR process may be reparameterised
as a Markov-switching vector error correction model of the form

∆yt = ν(st) +α(st)β
′yt−1 +

p−1∑
i=1

Γi(st)∆yt−i + εt, (2.29)

where all the parameters are as previously defined and εt|st∼N (0,Ω(st)).
Note that the regime dependent intercept in the above model may be decom-
posed as ν(st) = α(st)ν1(st) + α⊥(st)ν2(st), provided the intercept term is
not restricted to the cointegration space. Hence, this model allows for regime
shifts in the intercept term ν1 in the cointegrating relations, whilst the coin-
tegrating coefficients in β are assumed constant across regimes. The error
correction coefficients αmay also be considered regime dependent permitting
different adjustment dynamics between regimes.

Krolzig justifies a two stage procedure for the estimation of an MS-VECM
where the regime generating process is described by an irreducible, ergodic
Markov chain [33]. The first stage involves the estimation and identification
of the cointegrating relations over the entire time period under analysis fol-
lowing the methods discussed above. The regime generating process is not
considered at this point. Then, conditional on the cointegration matrix β,
the remaining parameters are estimated treating zt−1 = β′yt−1 as a vector of
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exogenous I(0) variables [36]. In addition to the estimation of the model pa-
rameters in Equation (2.29), the probability Pr[st = i|Y T ] of being in regime
i = 1, . . . ,m at each time t = 1, . . . , T is also estimated based on the entire
dataset Y T . These estimated probabilities are referred to as smoothed prob-
abilities since they incorporate all the available information in the data and
the estimated regime st at time t is that regime with the highest smoothed
probability at time t for t = 1, . . . , T [34]. The estimation of the model pa-
rameters and the smoothed probabilities in this second stage is accomplished
via the EM algorithm outlined in Appendix C.

2.5 Economic Theory

2.5.1 Purchasing Power Parity

Let P SA
t and PUS

t denote the prices of a reference basket of tradable com-
modities in South Africa and the United States at time t respectively. Then,
in the absence of transactions costs and barriers to trade, the absolute ver-
sion of purchasing power parity (PPP) states that the nominal rand/dollar

exchange rate E
R/$
t must equal the ratio of the countries’ price levels; that

is,

E
R/$
t =

P SA
t

PUS
t

. (2.30)

Alternatively, PPP asserts that the price of the basket of goods will be equal
across the two countries when measured in a common currency, such that

P SA
t = E

R/$
t × PUS

t .

A departure from this equilibrium condition would lead to an arbitrage op-
portunity in the commodity market and the fulfillment thereof would put
pressure on the exchange rate to enforce parity in the national price levels.
Hence, deviations from PPP should be self-correcting [32].

However, the absolute version of PPP may only be expected to hold when
the two baskets whose prices are compared in Equation (2.30) are identical
and include only tradable goods which are subject to international arbitrage.
Since the coverage and composition of a country’s basket is chosen to reflect
the consumption specific to that country, the absolute version of the PPP
theory therefore cannot be immediately assessed by comparing the national
price levels across two countries [43]. Furthermore, even if an internationally
standardised basket of tradable goods is available for the countries under con-
sideration, information disparities, transactions costs and the effects of tariff
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and non-tariff trade barriers are likely to result in considerable deviations
from absolute PPP in the short run. Such market imperfections, with the
likely exception of information disparities, may persist indefinitely making
absolute PPP a somewhat elusive concept [16].

Suppose, however, that the short-run deviations from absolute PPP due to
transactions costs, information disparities and the effects of tariff and non-
tariff trade barriers form a stationary stochastic process, say Qt, such that

E
R/$
t = Qt ×

P SA
t

PUS
t

. (2.31)

In this case, percentage changes in relative price levels may still approximate
percentage changes in the exchange rate provided that the factors causing
deviations from absolute PPP are relatively stable over time. Equation (2.31)
is known as the relative version of purchasing power parity, which converts the
absolute version from a statement about price and exchange rate levels into
one about price and exchange rate changes. This weaker form of PPP requires
only that Qt is stationary with some constant mean reflecting the average
departure from absolute PPP due to market imperfections and differences in
the coverage and composition of the commodity baskets under comparison.
In contrast, Qt must have a unit mean in order for absolute PPP to hold.
Consequently, relative PPP may be valid even when absolute PPP is not
[51].

Absolute PPP as presented in Equation (2.30) is related to the monetary
approach to exchange rate determination, which posits that national price
levels are fully determined by the supply and (real) demand for money in the
long run. Changes in the interest rate and output levels affect the exchange
rate only through their influences on money demand. As a long-run theory
of exchange rate determination, relative PPP also allows for the impact of
changes in money supply and demand on the exchange rate, but corrects
the monetary approach by allowing for nonmonetary factors through the
additional term Qt. By rearranging Equation (2.31), it is easy to verify that

Qt =
E

R/$
t × PUS

t

P SA
t

, (2.32)

which is the price of the American commodity basket expressed in rands
relative to the price of the South African commodity basket. This quantity
is referred to as the real exchange rate to differentiate it from the nominal
exchange rate E

R/$
t at which currency is traded [37].
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Taking logarithms on both sides of Equation (2.32) and using lower case let-
ters to denote the variables in logarithmic form yields the following expression
for the relative PPP condition

pSA
t − pUS

t − e
R/$
t = −qt. (2.33)

Now, in order for relative PPP to hold, qt must be a stationary process.
However, the variables on the left hand side of Equation (2.33) cannot be
assumed to be stationary in practice. At first glance, this may seem to refute
the relative PPP hypothesis. Suppose, however, that pSA

t , pUS
t and e

R/$
t are

I(1) processes. Then relative PPP may still hold if the linear combination
of these processes on the left hand side of Equation (2.33) results in a coin-
tegrated process. This condition would imply that the real exchange rate is
stationary as required.

The above argument suggests the following testing strategy for this strict
form of relative PPP. First, determine whether pSA

t , pUS
t and e

R/$
t are all I(1)

processes. If this condition holds, then proceed to test whether the vector
β = (1,−1,−1)′ is a cointegrating vector for the I(1) vector process yt =

(pSA
t , pUS

t , e
R/$
t )′; that is, determine whether qt ∼ I(0). If the cointegrating

vector is supported by the data such that the real exchange rate is stationary,
the evidence is supportive of the view that there is a long-run tendency for
relative PPP to hold. On the other hand, if the real exchange rate is I(1),
it will exhibit random walk behaviour which suggests that deviations from
PPP are persistent, rather than self-correcting [43].

Letting −qt = −µ(1) + ξ
(1)
t , where µ(1) is the mean natural logarithm of the

real exchange rate and ξ
(1)
t is a white noise process, yields an alternative, but

synonymous, expression for the relative PPP hypothesis

pSA
t − pUS

t − e
R/$
t + µ(1) = ξ

(1)
t . (2.34)

Clearly, this formulation is equivalent to that presented above, except in that
the intercept in the cointegration space is now made explicit.

Assessing the validity of PPP as a determinant of exchange rates in the long
run has been the focus of many empirically oriented studies. Surprisingly,
the empirical evidence in support of the cointegrating vectors necessary to
establish both the absolute and relative versions of PPP is somewhat scarce.
Many explanations for this lack of evidence have been proposed in the liter-
ature. One possible explanation that was mentioned earlier is the inclusion
of non-tradable goods in commodity baskets and the presence of trade bar-
riers that are high enough to inhibit international arbitrage [50]. Another
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potential reason is that the price elasticity of demand for goods and services
may vary substantially between countries, leading firms to set market-specific
prices, practicing so-called “pricing to market” [1]. Additionally, monopolis-
tic and oligopolistic practices may interact with transactions costs and trade
barriers to further weaken the link between prices of similar goods sold in
different countries [42]. As a result, empirical studies often fail to establish

β = (1,−1,−1)′ as a cointegrating vector for yt = (pSA
t , pUS

t , e
R/$
t )′. However,

a non-stationary real exchange rate does not preclude a long-run relationship
between relative prices and the nominal exchange rate. Such a long-run re-
lationship may still exist, although not the one-for-one relationship implicit
in the calculation of the real exchange rate [50]. It may therefore be more
viable to test for a weaker form of relative PPP such as

pSA
t − β

(1)
1 pUS

t − β
(1)
2 e

R/$
t + µ(1) = ξ

(1)
t ,

where β
(1)
1 and β

(1)
2 are close to one. Departures in these coefficients from

unity may be attributable to the aforementioned market frictions [48]. Note
that

µ(1) = E

[
ln

(
PUS

t

)β(1)
1 ×

(
E

R/$
t

)β(1)
2

P SA
t

]

in this case. Consequently, µ(1) will only approximate the mean real exchange
rate in logarithmic form when β

(1)
1 and β

(1)
2 are not exactly equal to one,

provided these coefficients are at least positive.

Johansen and Juselius suggest that the failure of many of the earlier studies
of PPP may be ascribed to the omission of important short-run determinants
of the exchange rate in the modelling procedure [30]. In particular, arbitrage
opportunities in the asset market are also likely to affect the exchange rate
and, under the assumption of market efficiency, the asset market is likely to
clear much faster than the goods market in which participants are bound by
contracts. Furthermore, arbitrage is more costly in the goods market relative
to the asset market. Consequently, it is reasonable to assume that exchange
rates are affected by short-run fluctuations arising from highly volatile asset
markets and by long-run effects from interrelated goods markets. In addition,
the influence of commodity prices on the exchange rate cannot be ignored,
particularly in a resource-based economy such as South Africa.
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2.5.2 Uncovered Interest Parity

Just as the PPP condition in Equation (2.30) implies equilibrium in the goods
market in the sense that no arbitrage opportunities prevail, the uncovered
interest parity (UIP) ensures equilibrium in the asset market. This latter
theory states that the expected returns on deposits of any two currencies
should be equal when measured in a common currency. Let rSA

t and rUS
t

be the rand and dollar interest rates at time t respectively. Then the UIP
condition may be stated mathematically as

rSA
t = rUS

t +
E

R/$
t+1 − E

R/$
t

E
R/$
t

+ rUS
t ×

E
R/$
t+1 − E

R/$
t

E
R/$
t

. (2.35)

The last term on the right hand side is usually negligibly small and is there-
fore typically ignored, such that the UIP condition reduces to

rSA
t = rUS

t +
E

R/$
t+1 − E

R/$
t

E
R/$
t

. (2.36)

Since the future nominal exchange rate E
R/$
t+1 cannot be known in advance,

it is usually replaced by its expected value. The right hand side of Equation
(2.36) implies that the expected rand rate of return on dollar deposits is
approximately equal to the dollar interest rate plus the rate of depreciation
in the rand/dollar exchange rate. For UIP to hold, this rand rate of return
on dollar deposits must equal the rate of return on rand deposits, such that
no type of deposit is in excess demand or excess supply. In the event that
this equality does not hold, an arbitrage opportunity will exist in the asset
market and the exchange rate will be forced to adjust accordingly as profit-
seeking investors take advantage of it. As with PPP, departures from UIP
should therefore also be self-correcting, albeit at a faster pace than PPP [37].

Most empirical works on UIP have, however, not been able to verify this
relation as an immediate market clearing mechanism. Instead, empirical
evidence seems to suggest that UIP holds as a long-run relation [30]. The
presence of transactions costs, risk premia and speculative effects are all
possible explanations for the observed short-run deviations from UIP [16].
Now suppose these effects are captured in the stationary process ut = µ(2) +
ξ

(2)
t , where µ(2) is the mean of these effects and ξ

(2)
t is white noise. Then, the

long-run, steady state solution implied by UIP is given as

rSA
t − rUS

t − µ(2) = ξ
(2)
t . (2.37)
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Note that the expected depreciation in the exchange rate from Equation
(2.36) falls away in this expression since the exchange rate is assumed con-
stant in the steady state [30].

In order for UIP to hold, it must be the case that ξ
(2)
t is stationary. However,

interest rates are typically I(1) processes when examined over a specified
time period, despite being implicitly bound between zero and some, usually
small, positive number. It therefore follows that rSA

t − rUS
t must be a coin-

tegrated process. Hence, it is necessary to establish that β = (1,−1)′ is a
cointegrating vector for the I(1) vector process yt = (rSA

t , rUS
t )′ such that the

linear combination β′yt is stationary. If the data support this proposition,
then this would constitute evidence in favour of UIP as a long-run relation.

Note that the UIP condition given as Equation (2.37) was derived from Equa-
tion (2.35) by assuming that the last term on the right hand side of the latter
equation is a zero mean process. This assumption is, however, only valid if
the exchange rate does not exhibit trending behaviour over the time period
considered. Rewriting Equation (2.35) as

rSA
t =

(
1 +

E
R/$
t+1 − E

R/$
t

E
R/$
t

)
rUS
t +

E
R/$
t+1 − E

R/$
t

E
R/$
t

,

it should be clear that the coefficient on rUS
t will not be unitary if the ex-

change rate is non-stationary in mean, since the expected value of E
R/$
t+1−E

R/$
t

will be non-zero. In such a case, it may be more reasonable to consider a
weaker form of UIP given by

rSA
t − β

(2)
1 rUS

t − µ(2) = ξ
(2)
t ,

where

β
(2)
1 =

(
1 +

E
R/$
t+1 − E

R/$
t

E
R/$
t

)
may deviate from one due to a trending exchange rate and ξ

(2)
t is a white

noise process as before.

Note that

µ(2) = E

[
ut +

E
R/$
t+1 − E

R/$
t

E
R/$
t

]
in this formulation, where ut is a stochastic process which captures the short-
run deviations from UIP due to market imperfections.
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Testing for PPP and UIP individually as presented above implicity ignores
the substantive impact of capital markets on the exchange rate. Conse-
quently, it may be difficult or impossible to find evidence in favour of one
relation without simultaneously accounting for the other [30]. Most re-
cent empirical studies therefore cast this problem within the multivariate
framework of the VECM and test for two cointegrating relations amongst
pSA

t , pUS
t , e

R/$
t , rSA

t and rUS
t which may be economically identified as the PPP

and UIP conditions. This testing strategy will be employed in this paper
conditional on the monetary and exchange rate regimes which characterise
the time period under analysis.
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3 Data Issues and Methodological Approach

3.1 Time Period

The empirical analyses to follow in Section 4 were conducted using quar-
terly data from the first quarter of 1972 to the first quarter of 2007 obtained
from the International Financial Statistics online database published by the
International Monetary Fund. This time period is characterised by a num-
ber of significant monetary and exchange rate regime shifts together with a
substantial degree of financial and external liberalisation.

The choice of time period for analysis was motivated by the change in ex-
change rate policy that took place toward the end of 1971. As is evident
from the top panel of Figure 1, the rand/dollar exchange rate was fixed prior
to 1972 under the Bretton Woods fixed exchange rate system. In order to
ease pressures on the exchange rate, relative price levels had to be controlled
accordingly during this period. From 1972, however, the exchange rate was
allowed to vary such that arbitrage opportunities in the goods market could
be eliminated by exchange rate movements, thereby restoring parity in na-
tional price levels. The studied time period was therefore restricted to the
post Bretton Woods era in which exchange rate adjustment is expected to
bring about purchasing power parity, albeit subject to intervention by the
South African Reserve Bank at times.
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Figure 1: Nominal rand/dollar exchange rate
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During the 1970s, the rand was pegged to either the US dollar or the pound
sterling. As a consequence, South Africa’s exchange rate policy mirrored the
volatile developments on the international front during this period. The level
of the peg was adjusted relatively frequently by policy-makers and took the
form of discrete step-changes, as is evident from the middle panel of Figure
1. Annual inflation over this decade averaged 9%, with major price shocks
attributable to the 1973 and 1979 oil price shocks and the sharp rise in the
gold price from 1979 to 1983 [4].

Import surcharges were introduced in 1977 following the cessation of capital
inflows due to the Soweto riots in 1976 and remained in effect until 1980 when
the high gold price took pressure off the current account [4]. In addition to
the strict exchange controls on the capital flows of residents, nonresidents
were required to place the proceeds from sales of South African assets in
blocked rand accounts for a period of five years [32].

From the 1960s to early 1980s, monetary policy in South Africa may be
characterised as a liquid asset ratio system [4]. During this period, liquidity
conditions in the country were controlled mainly by means of changes to the
amount of cash and liquid assets that commercial banks were required to
hold as a percentage of total deposits [32]. The interest rate, on the other
hand, was not regarded as an important corrective tool. The intention was
that the limited supply and low yield of such liquid assets would curtail bank
lending and money supply, thereby easing inflationary pressures [4].

Greater flexibility was introduced into the foreign exchange market in 1979
with the adoption of a managed float, dual exchange rate system. Under this
system, the financial transactions of nonresidents were valued at a discounted
exchange rate, known as the financial rand, whilst current account transac-
tions were subject to a commercial exchange rate which was announced on
a daily basis in line with market forces. The intended impact of this dual
exchange rate system was to break the direct link between foreign and do-
mestic interest rates as well as to insulate the capital account from particular
categories of capital flows [4]. The financial rand was later abolished in 1983
in line with the liberalisation objectives of the Reserve Bank. At this time,
controls on nonresident capital flows were also lifted and a more lenient atti-
tude was taken to applications from residents for direct investment abroad.
The unified exchange rate remained stable for a few months, after which it
depreciated sharply on the back of the gold price decline in 1983 [3].

The early 1980s also saw a monetary regime shift to a system based on cash
reserves, with the South African Reserve Bank maintaining indirect control of
the money supply by influencing the money market shortage through the in-
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terest rate at which banking institutions were provided with discount-window
accommodation against suitable collateral [32]. The climbing gold price in
1979 put downward pressure on interest rates in an attempt to prevent an
excessive appreciation of the newly floating exchange rate. By the first quar-
ter of 1980, the interest rate had dropped to 4.7%, while annual inflation rose
to almost 15%, averaging around 13% from 1980 to 1985. This inflationary
trend was, however, later reversed after a very sharp rise in interest rates in
the aftermath of the gold shocks in 1981 and 1982 [4].

The mid-1980s were characterised by prolonged social and political unrest in
South Africa and a deteriorating sovereign risk rating which led to large cap-
ital outflows and disinvestment from the country. The tense political climate
coupled with the gold price decline in 1983 caused the unified rand/dollar
exchange rate to fall sharply. In 1985, the rand fell even further following the
debt crisis induced by the refusal of a number of international banks to roll
over South Africa’s short-term loans. The resulting financial sanctions led to
a foreign debt standstill and a subsequent series of rescheduling agreements
over the period from 1985 to 1995. The financial rand was reintroduced in
1985 and capital controls were once again tightened [32]. The feed-through to
inflation became evident toward the end of 1984 which, together with strong
consumer demand, led to a sharp rise in interest rates peaking at almost
22% in early 1985 [4]. Within the next year, however, interest rates were
more than halved in an attempt to stimulate domestic demand on the back
of declining investor confidence. With inflation rising to 16.4% in 1986, the
Reserve Bank retaliated by imposed target ranges for the growth of broad
money, which were announced annually from 1986 to 1998 [3].

Aron, Elbadawi and Kahn suggest that exchange rate intervention during
the 1980s was directed at maintaining profitability and stability in the gold
mining industry [3]. The authors indicate that the real rand gold price was
fairly stable over this period, despite large fluctuations in the dollar gold
price. Furthermore, any instability in the real rand price of gold over this
period can be attributed to real shocks in the form of the excessive rise in the
dollar gold price and the debt crisis shock of 1985. Whether the stable real
rand gold price was deliberate or not, the authors argue that the outcome was
a highly volatile real exchange rate that protected the gold mining industry,
but had a negative impact on the manufacturing export sector.

From 1988, the real rand gold price has been allowed to fall as the importance
of gold as a proportion of foreign exchange earnings declines. The result was
a far more stable real exchange rate, appreciating between 1988 and 1992
and then falling from 1992 to mid 1994 due to the capital outflows that
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resulted from political uncertainty ahead of South Africa’s first democratic
elections. Following the general elections in 1994, capital inflows resumed
strongly as liberalisation efforts were once again intensified. Capital controls
on residents were gradually relaxed and almost all controls on nonresidents
were removed. In addition, the lowering of trade tariffs led to a sharp growth
in exports and imports [32]. The intervention efforts that followed in order to
prevent an excessive appreciation of the rand were largely successful, albeit
at the expense of monetary targets [4]. In March 1995, the financial and
commercial rands were once again unified resulting in highly volatile real
and nominal exchange rates from 1996 to 1999 [3].

Interest rates were raised substantially in 1988, partly influenced by the in-
creases in world interest rates and partly to curb inflation and maintain a
current account surplus. Interest rates were kept high in subsequent years by
the new Reserve Bank governor, Dr Chris Stals, appointed in 1989. Nonethe-
less, inflation remained persistent until 1992, exceeding 15% for the most
part. From late 1992, however, inflation finally began to decline reaching
single figures from early 1993. Money growth too declined sharply, falling
within the official targets from mid-1990. Between 1992 and 1993, there was
a gradual decline in the interest rate to 12% which was sustained until the
1994 elections [4].

The currency crisis that began in February 1995 resulted in a sharp depre-
ciation in the rand/dollar exchange rate which was met with massive inter-
vention from the Reserve Bank. Further currency crises occurred in October
1996, November 1997 and April 1998, triggered largely by contagion effects
from the Asian crisis and a fall in the price of gold and other metals [15].
Following the April 1998 crisis, the exchange rate was around 40% below its
average value between the elections in 1994 and the first crisis in 1995. The
interest rate rose to 17% after the first crisis, falling to 15% prior to the April
1998 crisis and then rising to 20% thereafter. Inflation, however, averaged
just over 6% in 1998 [4].

In early 1998, a new regime of monetary accommodation was introduced,
whereby the Reserve Bank offered daily tenders of liquidity to banks through
repurchase transactions. By controlling the amount of liquidity available for
tender each day, the Reserve Bank would signal its intentions with respect
to the repurchase rate, where an excess demand for liquidity would cause
the repurchase rate to rise and an excess supply would cause the repurchase
rate to fall. The repurchase rate could therefore fluctuate on a daily basis
according to market forces. However, the rate was fixed at 12% toward the
end of 1999 in order to provide some certainty during the transition into the
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new millennium amidst Y2K fears. The repurchase rate was again allowed to
fluctuate in January 2000, but was subsequently fixed in October 2001. The
fixed repurchase system in which the Reserve Bank announces the repurchase
rate periodically is still in effect to date [4].

In February 2000, the South African Reserve Bank introduced a formal
inflation-targeting framework in which it employs the repurchase rate as its
sole mechanism for influencing general price levels in the country. Hence,
the repurchase rate is determined by the Reserve Bank in order to restrict
inflation to within the current target range of 3% to 6%. The turn of the
century also brought with it a sharp real depreciation in the rand from 1999
to 2002 due to a decline in mineral exports, followed by a substantial real
appreciation precipitated by the natural resource boom between 2002 and
2006 [15]. These movements in the exchange rate are reflected in the bottom
panel of Figure 1.

3.2 Data Description

The variables of interest in the present study are as follows:

• The natural logarithm of the Producer Price Index in South Africa,
denoted as pSA

t at time t, with 2000 as the base year

• The natural logarithm of the Producer Price Index in the United States,
denoted as pUS

t at time t, with 2000 as the base year

• The natural logarithm of the nominal rand/dollar exchange rate, de-

noted as e
R/$
t at time t

• The average discount rate of the three month Treasury Bill in South
Africa, denoted as rSA

t at time t

• The average discount rate of the three month Treasury Bill in the
United States, denoted as rUS

t at time t

• The natural logarithm of the average dollar gold price, denoted as gt

at time t

• The natural logarithm of the average crude oil price, denoted as ct at
time t
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Note that the Consumer Price Index (CPI) and Gross Domestic Product
(GDP) deflator were also considered as indicators of the general price levels in
South Africa and the United States. These series together with the Producer
Price Index (PPI) are illustrated in Figure 2 for the two countries. It should
be noted that the three price indices do not appear to differ substantially
over the time period considered, particularly in the case of South Africa.
The results of this paper therefore appear to be fairly robust to the choice of
price index. The PPI was ultimately chosen over the CPI as the latter index
is likely to bias the results in favour of PPP, since South Africa’s consumer
commodity bundle includes imported goods from the United States which
are also included in the consumer commodity bundle of the United States
and vice versa.

The relevance of the gold price in the present study is motivated by the
fact that South Africa is a predominately resource-based economy and one
of the largest exporters of gold in the world. The ratio of gold exports to
non-gold merchandise exports excluding services averaged 0.93 between 1980
and 1985, although this figure has declined considerably in recent years.
Nonetheless, movements in the gold price continue to have marked effects on
the exchange rate in South Africa. The inclusion of the crude oil price as a
variable of interest is prompted by the influence of this variable on the price of
goods and services which require oil and oil products as inputs to production.
Since most of South Africa’s oil stocks are imported, fluctuations in the oil
price can have profound effects on inflation levels in the country, whilst also
influencing the exchange rate [4]. All series and their first differences are
plotted in Figures 3 and 4 respectively.
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Figure 2: Producer Price Index (PPI), Consumer Price Index (CPI) and
Gross Domestic Product (GDP) deflator for South Africa and the United
States
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Figure 3: Time series plots of variables under analysis
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Figure 4: Time series plots of differenced variables under analysis
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3.3 Methodology

The Augmented Dickey-Fuller tests presented in Table 1 indicate that all se-
ries are non-stationary in levels, but stationary in first differences. Although
there is evidence at the 5% significance level to suggest that the natural loga-
rithm of the average dollar gold price gt is stationary in levels, this hypothesis
is rejected at the 1% significance level. Given that the ADF test lacks sta-
tistical power, gt will be treated as non-stationary in levels. Consequently, it
is concluded that all series have exactly one unit root and are therefore I(1)
processes. The non-stationarity of the data suggests that an unrestricted vec-
tor autoregressive model, coupled with Johansen’s multivariate cointegration
tests, may be an appropriate point of departure for analysing these data.

Levels Test Statistic Model∗

pSA
t -0.283 AR(4) with intercept and trend
pUS

t -3.363 AR(2) with intercept and trend

e
R/$
t -2.985 AR(4) with intercept and trend
rSA
t -2.733 AR(2) with intercept
rUS
t -2.696 AR(8) with intercept and trend
gt -3.598† AR(4) with intercept and trend
ct -3.044 AR(2) with intercept and trend

Differences Test Statistic Model∗

∆pSA
t -3.599‡ AR(3) with intercept

∆pUS
t -4.747‡ AR(2) with intercept

∆e
R/$
t -4.991‡ AR(3) with intercept

∆rSA
t -7.366‡ AR(1)

∆rUS
t -5.294‡ AR(7)

∆gt -3.974‡ AR(3)
∆ct -8.065‡ AR(2)

† and ‡ denote significance at the 5% and 1% levels respectively
* The lag length was chosen to remove serial correlation and is supported

by the Hannan-Quinn information criterion
Intercepts and trends were included where these appeared commensur-
ate with the data generating process

Table 1: Augmented Dickey-Fuller Tests of Integrating Order
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Since South Africa represents a small economy relative to the United States,
it may be the case that price levels and interest rates in the United States do
not adjust to disequilibria in the long-run PPP and UIP relations between
South Africa and the United States. Consequently, the series pUS

t and rUS
t

will be tested for weak exogeneity with respect to the parameters α and β.
The full vector error correction model comprising a system of five equations
for each of ∆pSA

t , ∆pUS
t , ∆e

R/$
t , ∆rSA

t and ∆rUS
t could therefore potentially

be reduced to a partial model of only three or four equations which includes
as much information as the full system about the cointegrating relations
and adjustment coefficients [26]. The weakly exogenous variables, if any, will
then feature only in the cointegrating relations and as lagged covariates (after
taking first differences) in the model.

The influence of the gold and oil prices on the rand/dollar exchange rate and
general price levels as described in Sections 3.1 and 3.2 is likely to warrant
their inclusion in the model. Following the workings of Johansen and Juselius,
these variables and their lags will be treated as exogenous and tested for
statistical significance as differenced I(0) covariates in the proposed VECM
[30]. It will therefore be assumed that the gold and oil prices do not feature
in the long-run cointegrating relations.

The economic theories of PPP and UIP imply two cointegrating relations
between the variables pSA

t , pUS
t , e

R/$
t , rSA

t and rUS
t . The strict versions of

these two equilibrium conditions were defined earlier as

pSA
t − pUS

t − e
R/$
t + µ(1) = ξ

(1)
t

rSA
t − rUS

t − µ(2) = ξ
(2)
t ,

where ξ
(1)
t and ξ

(2)
t are white noise processes. The term µ(1) in the PPP

equation represents the mean natural logarithm of the real exchange rate
and the term µ(2) in the UIP equation is the mean interest rate differential,
which may be non-zero due to a country-specific risk premium, speculative
effects and other imperfections in the asset market. Recall, however, that
relative PPP may not be expected to hold in the strict sense above due to
the presence of transactions costs, trade barriers and non-tradable goods inter
alia. In addition, the strict form of UIP assumes that the exchange rate is
stationary in mean, which does not appear to be the case upon examination
of the exchange rate series plotted in Figure 3. It may therefore be more
feasible to consider the weak forms of relative PPP and UIP defined as

pSA
t − β

(1)
1 pUS

t − β
(1)
2 e

R/$
t + µ(1) = ξ

(1)
t

rSA
t − β

(2)
1 rUS

t − µ(2) = ξ
(2)
t ,
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where the β coefficients may deviate from unity due to the aforementioned
market frictions. As with the strict versions of PPP and UIP, the series
ξ

(1)
t and ξ

(2)
t must be stationary. Hence, the unrestricted VAR model will

be tested for a cointegrating rank of two. The linear restrictions necessary
to economically identify the two cointegrating vectors as the weak and strict
forms of PPP and UIP will then be tested for data admissibility. In the event
that the data do support these long-run relations, the adjustment coefficients
in the VECM will be examined to determine the manner in which equilibrium
is restored.

Sustained departures from PPP and UIP may, however, be expected a priori
in light of the notable monetary and exchange rate regime shifts discussed
earlier. Indeed, many empirical studies have found the real value of the
rand to be non-stationary when large periods of time are considered, such
as MacDonald and Ricci who examine the real effective exchange rate from
1970 to 2002 [40]. Furthermore, Fedderke and Pillay find evidence in favour
of a time-varying risk premium for South Africa [12]. It may therefore be
anticipated that the mean logarithm of the real exchange rate µ(1) and the
mean interest rate differential µ(2) are not constant over the entire time pe-
riod as is required for PPP and UIP to hold. Moreover, large changes in
these means will lead to the rejection of the PPP and UIP hypotheses when
tested in the standard VECM framework. Suppose, however, that µ(1) and
µ(2) are constant within distinct regimes, but differ between regimes. In this
case, a Markov-switching VECM with regime-dependent intercepts in the
cointegration space will be more likely to establish PPP and UIP as coin-
tegrating relations conditional on the underlying regimes. Furthermore, the
regime-dependent means associated with these relations may shed light on
the economic developments that led to the break-down of PPP and UIP in
the conventional sense. Since the underlying regimes are estimated simul-
taneously with the parameters in the MS-VECM, it will also be interesting
to note if the regimes estimated from the data coincide with the historical
regimes outlined in Section 3.1.

In light of the economic and political developments that took place in South
Africa, there would appear to be four distinct regimes in the 35-year time
period. The first regime spans the 1970s and is characterised by a fixed
exchange rate system and monetary policy based on the liquid asset ratio
system. The early to mid 1980s may be classified as another distinct period in
South Africa’s economic history. A managed float exchange rate system was
adopted and the liquid asset ratio system of accommodation was substituted
with a system based on cash reserves. Politically, this regime is characterised
by uncertainty and social unrest. Consequently, investors demanded a higher
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risk premium for investing in South Africa during this regime relative to
regime 1. The mean interest rate differential µ(2) should therefore be larger
in this regime. Similarly, the large capital outflows following the debt crisis
in 1985 produced a real depreciation in the rand/dollar exchange rate such
that µ(1) should also be larger in regime 2 relative to regime 1.

The late 1980s to late 1990s may be regarded as another distinct economic
regime. During this period, the new governor of the South African Reserve
Bank, Dr Chris Stals, was concerned largely with stabilising the real effective
exchange rate in the wake of several currency crises from 1995 to 1998. After
the huge capital outflows during the tumultuous second regime, a lower real
exchange rate was observed throughout regime 3, despite substantial real ap-
preciations and depreciations at times. Consequently, µ(1) might be expected
to decline from regime 2 to regime 3. Target ranges for broad money were
announced annually throughout regime 3 to be achieved by manipulating
the interest rate. Nonetheless, the interest rate remained high throughout
this regime. The higher interest rate, together with the rise in investor risk
prior to the elections in 1994, is likely to result in a higher mean interest rate
differential µ(2) in this regime relative to regime 2.

Finally, the period from 1998 to 2007 may be classified as a fourth regime,
coinciding with the introduction of the repurchase system of accommoda-
tion in early 1998. This final regime also saw the introduction of a formal
inflation-targeting policy, which has successfully brought inflation under con-
trol in recent years. Lower interest rates and an improved country-specific
risk profile are likely to have led to a decline in the mean interest rate dif-
ferential µ(2) in this regime. Meanwhile, the real exchange rate depreciated
sharply in the first half of this regime following a decline in mineral exports,
but recovered dramatically in subsequent years. The net effect on the mean
real exchange rate over this regime is therefore indeterminate.

Due to software restrictions, the cointegrating rank and economically iden-
tifying constraints on the cointegrating vectors cannot be tested in the MS-
VECM. Instead, these will be tested in a linear VECM with dummy variables
for each regime. The regime-dependent intercepts in the cointegration space
will be computed and discussed and the loading matrix in the MS-VECM will
be compared to that obtained in the linear VECM to determine whether the
two models imply different adjustment dynamics to disequilibria in the long-
run relations. Residual diagnostics will also be performed for both models
and any discrepancies noted.
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3.4 Software

Microfit 4.1 was utilised for the cointegration analyses and estimation of
the standard vector error correction models to follow. The Markov-switching
model was estimated using the MSVAR 1.30 package in Ox 3.00. All graphics
were generated in GiveWin 2.02.
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4 Empirical Findings

In this section, an attempt will be made to establish data-based evidence in
support of the PPP and UIP relations proposed by economic theory. The
section will commence by determining the appropriate lag order of an unre-
stricted VAR model with five endogenous variables: the natural logarithm
of the Producer Price Index in South Africa pSA

t , the natural logarithm of
the Producer Price Index in the United States pUS

t , the natural logarithm

of the nominal rand/dollar exchange rate e
R/$
t , the average discount rate of

the three month Treasury Bill in South Africa rSA
t and the average discount

rate of the three month Treasury Bill in the United States rUS
t . Having

established in Section 3.3 that these five series are in fact I(1), the VAR
model will then be reparameterised as a VECM under the presumption that
the matrix Π is rank deficient. The number of cointegrating relations will
be assessed by considering both the data and economic theory. Linear re-
strictions that economically identify the PPP and UIP relations will then be
imposed on the cointegrating vectors and tested for data admissibility. The
variables pUS

t and rUS
t will then be tested for weak exogeneity with respect

to (α,β) in an attempt to reduce the full VECM to a more parsimonious
partial model without adversely affecting inferences about the cointegrating
relations. Finally, a Markov-switching VECM, which explicitly accounts for
the regime shifts noted in Section 3.3, will be proposed for the data. The lin-
ear and Markov-switching models will be compared in terms of the evidence
furnished by each with respect to PPP and UIP as well as the equilibrium
adjustment mechanisms implied by the two models. The section will con-
clude with an examination of the residuals of the Markov-switching model
relative to those obtained in the linear model.

4.1 The Unrestricted VAR Model

In order to determine an appropriate lag order p for subsequent models, the
following unrestricted VAR model was estimated for p = 1, . . . , 5,

yt =

p∑
i=1

Πiyt−i + ΦDt + εt, (4.1)

where yt = (pSA
t , pUS

t , e
R/$
t , rSA

t , rUS
t )′. The deterministic and exogenous vari-

ables in the vector Dt were selected based on their statistically significant
contribution to likelihood. These variables are presented in Table 2 together
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with their respective likelihood ratio statistics. Note that the inclusion of a
deterministic trend in the model is warranted in terms of likelihood, although
its economic interpretation is questionable. It may, however, be argued that
this term acts as a proxy for other observed and unobserved variables which
have not been included in the analysis, but which exert an influence on the
endogenous variables in the response vector yt.

The Akaike information criterion (AIC), Schwarz Bayesian information crite-
rion (SBC) and likelihood ratio tests for lag order selection in the unrestricted
VAR model given by Equation (4.1) are presented in Table 3. Note that

AIC = logL(θ̂)− q

and
SBC = logL(θ̂)− q

2
log T,

where θ̂ is the maximum likelihood estimate of the model parameters, q is the
number of freely estimated parameters in the system and T = 141 is number
of observations used for estimation in each equation, such that larger values
of these criteria imply better models. Note too that the likelihood ratio test
statistic is only asymptotically chi-squared distributed and tends to over-
reject the null hypothesis when the length of the observed data sequence is
small. Consequently, a modified version of the likelihood ratio statistic is
also provided in Table 3, which attempts to account for the finite number
of observations by making an adjustment for the degrees of freedom in the
estimated model [44].

Variables in Dt χ2
d d P-value∗

Intercept 1 12.95 5 0.024
Differenced gold price at time t ∆gt 23.15 5 0.000
Differenced oil price at time t ∆ct 35.16 5 0.000
Differenced oil price at time t− 1 ∆ct−1 11.48 5 0.043
Centred seasonal dummies d1

t , d
2
t , d

3
t 27.38 15 0.026

Linear trend t 25.74 5 0.000

* Test of the null hypothesis that the variable does not make a significant contribution
to likelihood against the alternative hypothesis that the variable does make a signif-
icant contribution to likelihood

Table 2: Deterministic and exogenous variables in the unrestricted VAR
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p logL AIC SBC H0 H1 χ2
25 χ2∗

25

1 767.053 702.053 606.218 p = 0 p = 1 2204.27‡ 2001.04‡

2 812.121 722.121 589.427 p = 1 p = 2 90.14‡ 78.63‡

3 831.171 716.171 546.617 p = 2 p = 3 38.10† 31.89
4 857.222 717.222 510.809 p = 3 p = 4 52.10‡ 41.76†

5 874.449 709.449 466.176 p = 4 p = 5 34.45 26.39

† and ‡ denote significance at the 5% and 1% levels respectively
* Adjusted for small data sequences

Table 3: Lag order selection criteria in the unrestricted VAR model

Both of the information criteria suggest a fairly low lag order for the unre-
stricted VAR model with the AIC favouring a VAR(2) model and the more
conservative SBC suggesting a lag order of one. The likelihood ratio test
clearly supports the second-order VAR model relative to its first-order coun-
terpart. On the other hand, the adjusted likelihood ratio test comparing
the model with three lags to one with only two lags suggests that these two
models are equivalent in terms of likelihood. Furthermore, the adjusted like-
lihood ratio test comparing the VAR(2) model with a VAR(4) model which
may be appropriate for quarterly data yields a test statistic of 72.29 with 50
degrees of freedom and a corresponding p-value of 0.021. There is therefore
no overwhelming evidence to suggest that more than two lags are necessary
for these data and hence a lag order of two will be adopted in the unrestricted
VAR model.

The results of the residual diagnostic tests associated with each of the five
equations in the unrestricted VAR(2) model specified by Equation (4.1) with
p = 2 are given in Table 4. The residuals of all equations fail the Jarque-
Bera test for normality, although this violation does not appear particularly
concerning when examining the distribution of the residuals corresponding
to the pSA

t and e
R/$
t equations. The residuals of the pUS

t equation and more
notably the interest rate equations are, however, severely leptokurtic. Het-
eroscedasticity, based on the regression of squared residuals on squared fitted
values, does not appear to be problematic, except in the case of the residuals
of the rUS

t equation which also exhibit significant autoregressive conditional
heteroscedasticity (ARCH). There is also evidence of significant ARCH ef-

fects in the residuals of the pUS
t equation and, to a lesser extent, the e

R/$
t

and rSA
t equations. Note, however, that non-normality and ARCH effects

in the residuals may be expected when regime shifts are present, since the
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Equation

pSA
t pUS

t e
R/$
t rSA

t rUS
t

Autocorrelation χ2
4 6.985 12.511† 12.213† 6.346 20.154‡

Functional form χ2
1 1.541 2.912 0.075 1.960 5.843†

Normality χ2
2 7.241† 166.473‡ 19.200‡ 907.845‡ 443.904‡

Heteroscedasticity χ2
1 0.722 2.691 1.261 4.833† 24.080‡

ARCH(2) χ2
2 0.142 1.016 6.947† 8.431† 31.632‡

ARCH(4) χ2
4 1.364 14.778‡ 8.021 8.801 31.782‡

† and ‡ denote significance at the 5% and 1% levels respectively

Table 4: Model diagnostics for unrestricted VAR(2) model

distribution of the residuals may then be a mixture of zero mean Gaussian
distributions with different variances for each regime.

The Lagrange multiplier test indicates statistically significant serial correla-
tion amongst the residuals pertaining to the pUS

t , e
R/$
t and rUS

t equations,
although this is only especially concerning in the latter case. Ramsey’s re-
gression specification error test (RESET) of functional form does not reject
the null hypothesis of zero mean Gaussian residuals with constant variance
in all equations except that of rUS

t [43]. This result might be expected given
that the residuals of this equation violate all the requirements of the linear
model considered in Table 4. However, if interest rates in the United States
are weakly exogenous with respect to the PPP and UIP relations between
South Africa and the United States, rUS

t may be excluded from the vector of
endogenous variables without biasing inferences on these long-run relations.
The problematic residuals associated with this equation would therefore only
be of concern if rUS

t is not weakly exogenous for α and β in the VECM.

The 10× 10 companion matrix of the VAR(2) process with five endogenous
variables is defined as [

Π1 Π2

I 0

]
.

The eigenvalues of this estimated matrix are given in Table 5. These eigen-
values all lie within the unit circle, although the largest absolute eigenvalue is
very close to unity implying an extremely slow reversion to the mean. From
Section 2.2.2, this implies that yt may be treated as I(1) and modelled as a
non-stationary time series.
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Eigenvalues

0.98± 0.01i 0.47
0.85± 0.11i 0.29± 0.17i

0.78 0.12± 0.07i

Table 5: Eigenvalues of the companion matrix of the VAR(2) model where
i =

√
−1

4.2 The Vector Error Correction Model

The unrestricted VAR model in Equation (4.1) with p = 2 may be rewritten
in its error correction form as a VECM(1) process

∆yt = Πyt−1 + Γ∆yt−1 + ΦDt + εt, (4.2)

where Γ = −Π2 and all other parameters are as previously defined.

When parameterised in this manner, it is necessary to specify explicitly
whether the constant term and linear trend which were present in the un-
restricted VAR model pertain to the cointegration space, the proposed data
generating process or both. Of course, it is also possible to discard these
terms altogether. Whilst all these cases were explored, unrestricted inter-
cepts would seem to be justified by the statistical significance of the intercept
term and linear trend in the unrestricted VAR model. Hence the vector of
deterministic and exogenous variables Dt in Equation (4.2) will include all
the variables presented in Table 2 except the trend term. This specification
allows for a non-zero intercept in the PPP and UIP relations which conforms
to Equations (2.34) and (2.37), whilst simultaneously permitting a linear
trend in the levels of the endogenous variables through the intercept term in
the data generating process of ∆yt. Note, however, that this specification
does not allow for a deterministic trend in the cointegration space since this
would violate the PPP and UIP conditions. The trend is therefore assumed
to be deterministically cointegrated in the sense that it cancels out in the
cointegrating relations [43].

4.2.1 Determining the Cointegrating Rank of the VECM

The number of cointegrating relations is given by the rank of the matrix Π,
which has an upper bound of five in this study. The eigenvalues corresponding
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to each of the five potential cointegrating vectors are 0.29, 0.16, 0.08, 0.03 and
0.02, which at first glance would seem to suggest a cointegrating rank of two.
However, Johansen’s λmax and trace test statistics presented in Table 6 im-
ply only a single cointegrating relation at the 5% significance level, although
the hypothesis of two cointegrating relations is only marginally nonsignifi-
cant in both tests at this significance level. Indeed, the λmax test statistic
provides evidence in favour of two cointegrating relations at the 10% signif-
icance level, whilst the trace statistic for this test is only negligibly smaller
than its 90% critical value. Furthermore, the Monte Carlo simulations of
Persaran, Shin and Smith indicate that these test statistics tend to under-
reject when observed data sequences are small [45]. Hence Johansen’s test
statistics would appear to support the notion of two cointegrating relations
between the variables in yt.

The information criteria presented in Table 7 provide somewhat conflict-
ing evidence with respect to the cointegrating rank. Whilst the liberal AIC
favours a rank of three, the conservative SBC suggests that there is only a sin-
gle cointegrating relation. The Hannan-Quinn information criterion (HQC),

H0 H1 λmax 95% CV 90% CV

r = 0 r = 1 47.45 33.64 31.02
r ≤ 1 r = 2 25.25 27.42 24.99
r ≤ 2 r = 3 12.19 21.12 19.02
r ≤ 3 r = 4 4.57 14.88 12.98
r ≤ 4 r = 5 3.17 8.07 6.50

H0 H1 Trace 95% CV 90% CV

r = 0 r ≥ 1 92.63 70.49 66.23
r ≤ 1 r ≥ 2 45.18 48.88 45.70
r ≤ 2 r ≥ 3 19.93 31.54 28.78
r ≤ 3 r ≥ 4 7.74 17.86 15.75
r ≤ 4 r = 5 3.17 8.07 6.50

Table 6: Johansen’s test statistics for selection of cointegrating rank in the
VECM(1) with unrestricted intercepts
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Rank AIC SBC HQC

r = 0 692.94 604.47 656.99
r = 1 707.66 605.93 666.32
r = 2 713.29 601.23 667.75
r = 3 714.38 594.96 665.85
r = 4 713.67 589.82 663.34
r = 5 714.25 588.93 663.33

Table 7: Information criteria for selection of cointegrating rank in the
VECM(1) with unrestricted intercepts

which is defined as

HQC = logL(θ̂)− q log(log T ),

provides a compromise between these two extremes, suggesting a cointegrat-
ing rank of two in the VECM(1) with unrestricted intercepts [44]. The infor-
mation criteria therefore complement Johansen’s test statistics in support of
two cointegrating relations. Hence this specification will be adopted in the
hope that these two long-run relations correspond to the economic theories
of PPP and UIP.

4.2.2 Testing for PPP and UIP

Assuming two cointegrating relations and an intercept in the cointegration
space and the data generating process, the VECM in Equation (4.2) may be
re-expressed as

∆yt = αβ′yt−1 + Γ∆yt−i + ΦDt + εt, (4.3)

where α and β are 5 × 2 matrices of adjustment and cointegration coef-
ficients respectively, Γ and Φ are coefficient matrices to be estimated and
Dt = (1,∆gt,∆ct,∆ct−1, d

1
t , d

2
t , d

3
t )
′ is a vector of deterministic and exoge-

nous variables as defined in Table 2. In order for the cointegrating relations
to be identified, the rank condition requires the imposition of at least one
linear restriction on each of the two normalised cointegrating vectors in β.
To this effect, the zero constraints β41 = 0 and β12 = 0 were imposed on the
first and second columns of the cointegration matrix β respectively and each
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cointegrating vector was normalised by setting β11 = β42 = 1. From Section
2.3.4, this is equivalent to imposing exactly identifying linear restrictions
R1 = (0, 0, 0, 1, 0)′ and R2 = (1, 0, 0, 0, 0)′ on the normalised cointegrating
vectors β1 and β2 respectively such that

(
0 0 0 1 0

)


1
β21

β31

β41

β51

 = 0 and
(

1 0 0 0 0
)


β12

β22

β32

1
β52

 = 0.

The resulting normalised and constrained cointegration matrix is therefore

β′ =

[
1 β21 β31 0 β51

0 β22 β32 1 β52

]
,

which ensures that the cointegrating relations are exactly identified.

Now recall that yt = (pSA
t , pUS

t , e
R/$
t , rSA

t , rUS
t )′. Hence the first cointegrating

vector has been normalised on pSA
t with a zero constraint on the coefficient

corresponding to rSA
t . In order to examine whether purchasing power parity

holds in the weakest sense, the coefficient β51 corresponding to rUS
t in the

first cointegrating vector β1 must be constrained to zero. To achieve this,
R1 is augmented by an additional linearly independent column such that

R′
1 β1 = 0

[
0 0 0 1 0
0 0 0 0 1

]
1
β21

β31

β41

β51

 =

(
0
0

)
. (4.4)

Note that this additional restriction implies that the first cointegrating vector
is overidentified since only a single linear restriction on each cointegrating
vector is required for just identification in this case. If the imposition of this
overidentifying restriction is supported by the data and β21 and β31 are close
to −1, this would constitute evidence in favour of the weak form of PPP.
Under the hypothesis that weak PPP holds, the cointegration matrix would
therefore take the form

HWPPP : β′ =

[
1 β21 β31 0 0
0 β22 β32 1 β52

]
,
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where the subscript WPPP stands for weak purchasing power parity. In
order to test for PPP in the strict sense, a further two overidentifying linear
restrictions on the first normalised cointegrating vector β1 are necessary.
Consequently, R1 will now comprise of four linearly independent columns
with

R′
1 β1 = 0

1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1
β21

β31

β41

β51

 =


0
0
0
0

 , (4.5)

such that β21 and β31 are now constrained to −1 and β′1yt = pSA
t − pUS

t −
e

R/$
t corresponds to the strict PPP relation. The strict purchasing power

parity hypothesis may therefore be tested by constraining the normalised
cointegration matrix as

HPPP : β′ =

[
1 −1 −1 0 0
0 β22 β32 1 β52

]
and testing the three overidentifying restrictions for data admissibility. If
the data supports the overidentifying restrictions in Equation (4.5), then

β′1yt = pSA
t − pUS

t − e
R/$
t is I(0) and hence PPP holds in the strictest sense.

Similarly, the second cointegrating vector has been normalised on rSA
t with

the coefficient on pSA
t constrained to zero. The weak form of the uncov-

ered interest parity may therefore be represented by the second normalised
cointegrating vector subject to the following three linear restrictions

R′
2 β2 = 0

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




β12

β22

β32

1
β52

 =

 0
0
0

 , (4.6)

such that β′2yt = rSA
t + β52r

US
t corresponding to the weak UIP relation. If

the overidentifying restrictions on β2 given by Equation (4.6) are supported
by the data and β52 is close to −1, then this would constitute evidence in
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favour of the weak form of the UIP relation. The resulting cointegration
matrix under the hypothesis that weak UIP holds would have the form

HWUIP : β′ =

[
1 β21 β31 0 β51

0 0 0 1 β52

]
,

where the subscript WUIP is an acronym for weak uncovered interest parity.
In order to test for UIP in the strict sense, it is necessary to impose a further
restriction on the second cointegrating vector β2 constraining the coefficient
β52 to −1. This constraint is achieved by augmenting the matrix of linearly
independent restrictions R2 by an additional column such that

R′
2 β2 = 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1




β12

β22

β32

1
β52

 =


0
0
0
0

 . (4.7)

The cointegration matrix under the hypothesis of strict UIP would therefore
have the form

HUIP : β′ =

[
1 β21 β31 0 β51

0 0 0 1 −1

]
.

If the three overidentifying restrictions in Equation (4.7) are supported by
the data, then this would imply that β′2yt = rSA

t − rUS
t is an I(0) process

and hence UIP holds in the strictest sense.

Finally, the hypothesis that the weak forms of PPP and UIP hold jointly may
be tested by considering the empirical evidence in support of Equations (4.4)
and (4.6) as simultaneous overidentifying constraints, leading to a normalised
cointegration matrix of the form

HWPPP ∩HWUIP : β′ =

[
1 β21 β31 0 0
0 0 0 1 β52

]
,

with β21, β31 and β52 close to −1. Similarly, the hypothesis that the strict
forms of PPP and UIP hold jointly may be tested by constraining the coin-
tegration matrix as

HPPP ∩HUIP : β′ =

[
1 1 −1 0 0
0 0 0 1 −1

]
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and testing the simultaneous imposition of the overidentifying restrictions
implied by Equations (4.5) and (4.7) for data admissibility.

The results obtained from testing the above hypotheses in the VECM(1)
given by Equation (4.3) with unrestricted intercepts are presented in Table 8.
The overidentifying restrictions implied underHUIP are clearly not rejected at
any reasonable significance level, confirming the presence of the UIP relation
in its strictest form. On the other hand, HPPP is decisively rejected and even
the weak form of PPP implied under HWPPP lacks support from the data as
an individual hypothesis.

Jointly, the strict forms of PPP and UIP are rejected due to the lack of
evidence in favour of HPPP. However, if the coefficient corresponding to
the rand/dollar exchange rate in the first cointegrating vector is left uncon-
strained under HPPP ∩HUIP, the resulting set of overidentifying restrictions,
denoted by the hypothesis H∗

PPP ∩ HUIP in Table 8, are only marginally
nonsignificant at the 5% level. Moreover, the Monte Carlo experiments of
Gredenhoff and Jacobson indicate that the size of the asymptotic likelihood
ratio test can be substantially upwardly biased when the length of the ob-
served data sequence is small, such that the true p-values are likely to be
larger than those reported here [18]. Consequently, these results do provide
some evidence in favour of the joint hypothesis of strict UIP together with
a weaker form of PPP such as that implied under H∗

PPP ∩ HUIP. In addi-
tion, the p-value of 0.034 corresponding to the test of the joint hypothesis
HWPPP ∩HWUIP may be regarded as supportive of this hypothesis when the
results of Gredenhoff and Jacobson are considered [18]. Hence, although there
is clearly no evidence in favour of PPP as an individual long-run relation,
the data seems to provide some support for PPP and UIP as joint long-run
relations. This finding reinforces the claims of Johansen and Juselius who
stress the importance of modelling both relations simultaneously in a full
system of equations, thereby allowing for interactions in the determination
of prices, interest rates and the exchange rate [30].

4.2.3 Testing for Weak Exogeneity for (α,β)

Since South Africa represents a small economy relative to the United States,
it may be possible to exclude ∆pUS

t and ∆rUS
t as endogenous variables in

the VECM(1) above without adversely affecting inferences concerning the
adjustment coefficients α and cointegration matrix β. If either or both of
these variables are weakly exogenous for (α,β), a more parsimonious partial
system of fewer equations may suffice for testing the PPP and UIP relations.
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Exactly Identified HWPPP HWUIP HWPPP ∩HWUIP

1.00 0.00

−0.36 13.82
(0.98) (16.80)

−0.97 −2.92
(0.36) (6.08)

0.00 1.00

−0.12 −2.60
(0.11) (1.95)





1.00 0.00

−1.29 3.95
(0.18) (6.87)

−0.57 1.15
(0.10) (3.36)

0.00 1.00

0.00 −1.35
(0.66)





1.00 0.00

−0.65 0.00
(0.65)

−0.91 0.00
(0.26)

0.00 1.00

−0.09 −1.25
(0.07) (0.45)





1.00 0.00

−1.33 0.00
(0.17)

−0.58 0.00
(0.08)

0.00 1.00

0.00 −1.24
(0.37)


log L = 789.29 log L = 786.57 log L = 787.54 log L = 784.97

χ2
1 = 5.44 χ2

2 = 3.50 χ2
3 = 8.64

P-value = 0.020 P-value = 0.174 P-value = 0.034

HPPP HUIP HPPP ∩HUIP H∗
PPP ∩HUIP

1.00 0.00

−1.00 13.89
(12.12)

−1.00 −3.27
(6.35)

0.00 1.00

0.00 −2.62
(1.30)





1.00 0.00

−0.53 0.00
(0.76)

−0.94 0.00
(0.30)

0.00 1.00

−0.10 −1.00
(0.09)





1.00 0.00

−1.00 0.00

−1.00 0.00

0.00 1.00

0.00 −1.00





1.00 0.00

−1.00 0.00

−0.61 0.00
(0.12)

0.00 1.00

0.00 −1.00


log L = 779.85 log L = 787.37 log L = 777.16 log L = 783.69

χ2
3 = 18.87 χ2

3 = 3.83 χ2
6 = 24.24 χ2

5 = 11.20
P-value = 0.000 P-value = 0.281 P-value = 0.000 P-value = 0.048

Asymptotic standard errors are given in parentheses

Table 8: Estimated cointegration matrix β with linear restrictions in the
VECM(1) with unrestricted intercepts

68



The variables ∆pUS
t and ∆rUS

t were therefore tested for weak exogeneity
with respect to (α,β) in the VECM(1) given by Equation (4.3) with the
cointegration matrix β restricted according to the hypothesis H∗

PPP ∩HUIP.
In order to test the weak exogeneity of ∆pUS

t for (α,β) in this model, a Wald
test of the following hypotheses was performed

H0 : α2 = 0

H1 : α2 6= 0,

where α2 denotes the second row of α and weak exogeneity is implied under
the null hypothesis. A χ2

2 test statistic of 15.90 was obtained for this hypoth-
esis test, which leads to a firm rejection of the null hypothesis. Consequently,
∆pUS

t cannot be treated as weakly exogenous for (α,β) and must therefore
remain as an endogenous variable in the model. A possible explanation for
this finding is that the performance of the South African economy is to some
extent indicative of general world economic conditions which do exert an
influence on aggregate price levels in the United States.

The variable ∆rUS
t was tested for weak exogeneity with respect to (α,β) by

conducting a Wald test of the following hypotheses

H0 : α5 = 0

H1 : α5 6= 0,

where α5 denotes the fifth row of α. In this case, a χ2
2 test statistic of 1.57 was

obtained with a p-value of 0.457, which clearly does not reject the hypothesis
that ∆rUS

t is weakly exogenous for (α,β). Accordingly, the interest rate in
the United States may be treated as an I(1) exogenous variable, appearing
only in the cointegrating relations and as a lagged differenced covariate in the
VECM(1). The full model given by Equation (4.3) may therefore be reduced
to a partial system of four equations by excluding ∆rUS

t as an endogenous
variable without compromising the efficiency of the estimates of α and β.

4.2.4 The Partial Model

Following the findings of the weak exogeneity tests above, the partial model

∆y∗t = αβ′yt−1 + Γ∆yt−1 + ΦDt + εt, (4.8)

was estimated with unrestricted intercepts, where y∗t = (pSA
t , pUS

t , e
R/$
t , rSA

t )′

and the variables in yt andDt are as defined previously for the full VECM(1)
given by Equation (4.3).
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Johansen’s test statistics and the information criteria for the selection of
the cointegrating rank in this partial model are presented in Tables 9 and 10
respectively. As expected, the results do not differ substantively from those of
the full model. Johansen’s λmax and trace test statistics both indicate a single
cointegrating relation at the 5% significance level, although the evidence in
favour of two cointegrating relations is only marginally nonsignificant at the
10% level. Since Johansen’s test statistics have been shown to be downwardly
biased in small datasets, these results may be construed as evidence in favour
of two long-run relations between the variables in yt [45]. In addition, both
the AIC and HQC favour a cointegrating rank of two, although the more
conservative SBC suggests only one cointegrating relation. Consequently, a
cointegrating rank of two will be specified in the partial model.

The overidentifying restrictions on the 5 × 2 cointegration matrix β repre-
senting the weak and strict forms of PPP and UIP alluded to earlier were
tested for data admissibility in the partial model given by Equation (4.8).
The constrained cointegration matrices and their corresponding likelihood
ratio statistics are presented in Table 11. Once again, UIP is supported by
the data as a long-run relation, even in its strictest form. Furthermore, the
first cointegrating vector in the partial model with β constrained under the
hypothesis HUIP has elements very close to what would be expected of the

H0 H1 λmax 95% CV 90% CV

r = 0 r = 1 45.31 30.71 28.27
r ≤ 1 r = 2 22.14 24.59 22.15
r ≤ 2 r = 3 5.62 18.06 15.98
r ≤ 3 r = 4 4.53 11.47 9.53

H0 H1 Trace 95% CV 90% CV

r = 0 r ≥ 1 77.60 58.63 54.84
r ≤ 1 r ≥ 2 32.29 38.93 35.88
r ≤ 2 r ≥ 3 10.15 23.32 20.75
r ≤ 3 r = 4 4.53 11.47 9.53

Table 9: Johansen’s test statistics for selection of cointegrating rank in the
partial VECM(1) with unrestricted intercepts
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Rank AIC SBC HQC

r = 0 864.06 793.29 835.30
r = 1 878.71 796.15 845.16
r = 2 883.78 792.37 846.64
r = 3 882.59 785.28 843.05
r = 4 882.86 782.60 842.12

Table 10: Information criteria for selection of cointegrating rank in the partial
VECM(1) with unrestricted intercepts

PPP relation. In fact, this model does not reject HWPPP, although it was
firmly rejected in the full model with ∆rUS

t as an endogenous variable. The
strict form of PPP, however, is still not supported as an individual hypothesis
in the partial model.

The partial model also provides sound evidence in favour of weak PPP and
weak UIP as joint long-run relations. The additional restrictions implied
under H∗

PPP ∩HUIP are also well supported in this model. Recall that both
of these hypotheses were previously rejected in the full model at the conven-
tional 5% significance level, albeit only marginally. The joint hypothesis of
strict PPP and strict UIP is, however, rejected in both the full and partial
models.

The aforementioned results pertain to models in which an intercept term is
assumed to be present in both the cointegration space and the data generating
process. The findings of cointegration analyses are, however, known to be
sensitive to intercept specifications. In order to assess the robustness of
the above results to other assumptions regarding the intercept term, the
partial VECM(1) was re-estimated without an intercept term and with an
intercept term restricted to the cointegration space only. The likelihood ratio
statistics associated with each of the hypotheses discussed earlier in each of
these models are presented in Table 12.

The results of the partial VECM(1) with intercepts restricted to the coin-
tegration space are very similar to those obtained earlier with unrestricted
intercepts. Indeed, the same conclusions are reached in both models when
testing all hypotheses at the standard 5% significance level. In contrast, the
model without intercepts rejects all the individual and joint PPP and UIP
hypotheses, with the exception of HWPPP at the 5% significance level. Note
that this implies that the absolute version of strict PPP corresponding to
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Exactly Identified HWPPP HWUIP HWPPP ∩HWUIP

1.00 0.00

−1.03 5.31
(0.41) (8.67)

−0.64 1.32
(0.15) (3.29)

0.00 1.00

−0.04 −1.58
(0.04) (0.91)





1.00 0.00

−1.31 1.54
(0.19) (5.85)

−0.54 2.62
(0.11) (2.99)

0.00 1.00

0.00 −1.08
(0.49)





1.00 0.00

−1.12 0.00
(0.31)

−0.66 0.00
(0.12)

0.00 1.00

−0.03 −1.18
(0.03) (0.39)





1.00 0.00

−1.32 0.00
(0.17)

−0.57 0.00
(0.09)

0.00 1.00

0.00 −1.13
(0.33)


log L = 945.78 log L = 945.08 log L = 943.95 log L = 943.23

χ2
1 = 1.42 χ2

2 = 3.67 χ2
3 = 5.11

P-value = 0.234 P-value = 0.159 P-value = 0.164

HPPP HUIP HPPP ∩HUIP H∗
PPP ∩HUIP

1.00 0.00

−1.00 3.85
(7.89)

−1.00 1.16
(5.29)

0.00 1.00

0.00 −1.36
(0.66)





1.00 0.00

−1.09 0.00
(0.33)

−0.65 0.00
(0.13)

0.00 1.00

−0.03 −1.00
(0.03)





1.00 0.00

−1.00 0.00

−1.00 0.00

0.00 1.00

0.00 −1.00





1.00 0.00

−1.00 0.00

−0.59 0.00
(0.13)

0.00 1.00

0.00 −1.00


log L = 936.38 log L = 943.83 log L = 935.35 log L = 942.16

χ2
3 = 18.81 χ2

3 = 3.90 χ2
6 = 20.87 χ2

5 = 7.24
P-value = 0.000 P-value = 0.272 P-value = 0.002 P-value = 0.203

Asymptotic standard errors are given in parentheses

Table 11: Estimated cointegration matrix β with linear restrictions in the
partial VECM(1) with unrestricted intercepts
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No Intercepts Restricted

Hypothesis d χ2
d P-value χ2

d P-value

HWPPP 1 3.47 0.062 1.67 0.197
HWUIP 2 11.69 0.003 3.80 0.150
HWPPP ∩HWUIP 3 26.83 0.000 5.49 0.139
HPPP 3 19.76 0.000 26.61 0.000
HUIP 3 13.58 0.004 3.96 0.266
HPPP ∩HUIP 6 36.05 0.000 33.88 0.000
H∗

PPP ∩HUIP 5 16.24 0.006 7.53 0.184

d is the number of overidentifying linear restrictions on β

Table 12: Likelihood ratio statistics for tests of linear restrictions on β in the
partial VECM(1) with no intercepts and intercepts restricted to the cointe-
gration space

HPPP in the model without intercepts does not hold over the given time pe-
riod. Furthermore, the pure version of UIP which implies that the interest
rate differential between South Africa and the United States should be a
zero mean I(0) process is firmly rejected in the model without intercepts.
Instead, it would appear necessary to include an intercept term in the coin-
tegrating relations in order to allow the interest rate differential to have a
non-zero mean capturing the collective effects of transactions costs, riskiness
and speculation. Such a non-zero mean is permitted in the VECM(1) with
restricted intercepts as well as in the previous VECM(1) which allowed for
intercepts in both the cointegration space and the data generating process.
In both cases, HUIP is clearly not rejected. The empirical evidence would
therefore seem to justify the inclusion of an intercept term at least in the
cointegration space. Moreover, the findings based on the partial models with
restricted and unrestricted intercepts are coherent.

The estimates of the parameters in the partial VECM(1) with unrestricted
intercepts and β constrained under H∗

PPP ∩HUIP are presented in Table 13.

The two rows corresponding to ξ
(1)
t−1 and ξ

(2)
t−1 include the elements of the load-

ing matrix α, which adjust the endogenous variables in response to lagged
disequilibria in the cointegrating relations. The first cointegrating vector in
this model may be regarded as an imperfect version of relative PPP, where
the cointegrating coefficient on the exchange rate variable is not exactly equal
to −1 due to transactions costs, trade barriers, non-tradable goods and other
market imperfections which distort this relation. The significantly negative
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∆pSA
t ∆pUS

t ∆e
R/$
t ∆rSA

t

ν -0.003 (0.006) 0.005 (0.002) 0.032 (0.036) 2.048‡ (0.629)

ξ
(1)
t−1 -0.017‡ (0.005) -0.003 (0.005) -0.016 (0.026) 1.018† (0.455)

ξ
(2)
t−1 -0.0005 (0.0003) -0.0008‡ (0.0003) -0.002 (0.001) -0.118‡ (0.025)

∆pSA
t−1 0.344‡ (0.074) -0.024 (0.073) -0.435 (0.409) 2.035 (7.220)

∆pUS
t−1 -0.109 (0.086) 0.188† (0.086) -1.203† (0.480) -13.464 (8.461)

∆e
R/$
t−1 0.056‡ (0.016) -0.020 (0.016) 0.176 (0.090) 0.533 (1.589)

∆rSA
t−1 -0.001 (0.0008) 0.0007 (0.0008) -0.001 (0.004) 0.403‡ (0.076)

∆rUS
t−1 -0.002 (0.001) 0.002 (0.001) 0.005 (0.006) 0.046 (0.114)

∆gt -0.017 (0.010) 0.030‡ (0.010) -0.180‡ (0.058) -3.297‡ (1.023)
∆ct 0.008 (0.006) 0.039‡ (0.006) -0.022 (0.035) 0.347 (0.610)

∆ct−1 0.020‡ (0.007) 0.010 (0.007) 0.007 (0.040) 0.489 (0.705)
d1

t -0.0005 (0.002) 0.003 (0.003) -0.011 (0.014) 0.293 (0.242)
d2

t 0.007‡ (0.003) 0.002 (0.002) 0.010 (0.014) 0.164 (0.248)
d3

t 0.005† (0.002) -0.416‡ (0.111) 0.026 (0.014) 0.358 (0.240)

σ̂ 0.010 0.010 0.056 0.993
R2 0.558 0.623 0.242 0.383

χ2
4 (A) 10.06† 10.86† 10.90† 5.55
χ2

1 (F) 1.08 4.99† 7.31‡ 9.23‡

χ2
2 (N) 2.02 220.37‡ 28.77‡ 797.74‡

χ2
1 (H) 10.02‡ 1.38 2.87 0.15

ARCH(2) 0.02 0.89 5.52 9.87‡

ARCH(4) 1.44 10.25† 9.45 10.20†

† and ‡ denote significance at the 5% and 1% levels respectively
Standard errors are given in parentheses

The error correction terms are given as
ξ
(1)
t−1 = pSA

t−1 − pUS
t−1 − 0.59e

R/$
t−1

ξ
(2)
t−1 = rSA

t−1 − rUS
t−1

Model diagnostics
χ2

4 (A): Lagrange multiplier test for residual autocorrelation
χ2

1 (F): Ramsey’s RESET test of functional form
χ2

2 (N): Jarque-Bera test for residual normality
χ2

1 (H): Heteroscedasticity test based on regression of squared residuals on squared fitted values
ARCH(2): χ2

2 statistic for test of second-order autoregressive conditional heteroscedasticity in the residuals
ARCH(4): χ2

4 statistic for test of fourth-order autoregressive conditional heteroscedasticity in the residuals

Table 13: Parameter estimates in the VECM(1) with unrestricted intercepts
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adjustment coefficient for this PPP relation in the ∆pSA
t equation implies

that when relative prices exceed the nominal exchange rate, the general price
level in South Africa adjusts downwards to restore equilibrium as expected.
Note, however, that the negative coefficients corresponding to this relation
in the ∆pUS

t and ∆e
R/$
t equations are not of the expected sign, although they

are statistically nonsignificant. The nonsignificance of the former adjustment
coefficient is not surprising given that prices in a large economy such as the
United States are unlikely to adjust to the PPP relation between itself and
a small economy such as South Africa.

Notice that there is also a statistically significant and positive adjustment
coefficient corresponding to the PPP relation in the South African interest
rate equation. If relative prices exceed the nominal exchange rate, investors
may anticipate a future depreciation (increase) in the nominal rand/dollar
exchange rate. However, this would make South African investments less
attractive relative to foreign investments such that domestic interest rates
may rise in future in order to restore international competitiveness in the
asset market. An alternative explanation for this positive coefficient is that
during the later part of the time period considered, monetary policy in South
Africa dictated an interest rate hike following a period of inflationary pressure
where relative prices are likely to have exceeded the nominal exchange rate.
Consequently, a positive PPP adjustment coefficient might be expected in
the interest rate equation.

The significantly negative UIP adjustment coefficient in the interest rate
equation implies that when the interest rate differential exceeds the risk
premium for investing in South Africa, interest rates in South Africa adjust
downwards to restore equilibrium. Although statistically nonsignificant, the
negative UIP adjustment coefficient in the exchange rate equation suggests
that a higher interest rate in South Africa relative to the United States
will lead to capital inflow into South Africa, which will in turn cause the
rand/dollar exchange rate to appreciate (decrease). Hence, arbitrage in the
asset market restores UIP as expected.

Note also that price levels in the United States adjust significantly to depar-
tures from UIP. In fact, this is the very reason why ∆pUS

t cannot be treated
as weakly exogenous for (α,β). The significantly negative UIP adjustment
coefficient in the ∆pUS

t equation is not entirely unanticipated. High inter-
est rates in South Africa in excess of the country’s risk premium relative to
the United States would lead investors to favour the more attractive South
African economy, inducing capital flows from the United States to South
Africa. However, the small South African economy alone is unlikely to invite
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capital inflows from the United States that are of such a magnitude as to
significantly reduce the US money supply and hence US price levels. It is
instead more plausible that the interest rate in South Africa is acting as a
proxy for those of emerging markets as a whole. Higher returns on invest-
ments in emerging markets could indeed lead to a significant shift in capital
from the United States to the emerging economies, thereby leading to a large
reduction in the money supply and consequently also prices in the United
States.

The residuals of the individual equations comprising the VECM(1) do not
appear to exhibit serious autocorrelation. Although there is some evidence of
serial correlation in the residuals pertaining to the two price equations and the
exchange rate equation at the 5% significance level, it is unlikely that these
violations are severe enough to adversely affect inferences. However, highly
significant non-normality is evident in all equations except the price equation
for South Africa. Whilst the residual distributions of each equation are fairly
symmetric, they exhibit rather severe excess kurtosis in the equations for
∆pUS

t and ∆rSA
t and to a much lesser extent ∆e

R/$
t . The residuals of the ∆pSA

t

equation are significantly heteroscedastic and there is evidence of ARCH
effects in the residuals corresponding to the ∆pUS

t equation and in particular
the ∆rSA

t equation. As mentioned earlier, however, non-normality and ARCH
effects may be anticipated from data collected over several distinct regimes.
It is therefore not surprising that Ramsey’s RESET test of functional form
rejects the null hypothesis of zero mean Gaussian residuals with constant
variance in all equations, except that corresponding to domestic price levels.

4.3 The Markov-Switching VECM

The linear VECM presented above provides empirical evidence in favour of
two cointegrating relations which may be economically identified as the weak
form of PPP and the strict form of UIP. However, the residuals correspond-
ing to the equations in this model clearly indicate that the functional form of
the linear VECM is inappropriate. Indeed, this finding might be anticipated
in light of the significant monetary and exchange rate regime shifts that took
place over the studied time period. Ignoring such regime changes is likely
to dilute the evidence in favour of PPP and UIP as equilibrium conditions.
Consequently, it would seem desirable to incorporate these regime shifts ex-
plicitly in the modelling procedure, which may be achieved by considering a
Markov-switching VECM for these data. In doing so, it is hoped that the
evidence in favour of the various forms of PPP and UIP will be enhanced and
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that the residuals of the resulting model will better satisfy the assumptions
necessary for sound statistical inference.

The partial VECM(1) presented in Equation (4.8) is considered as the point
of departure for the analysis to follow. This previous linear VECM(1) may
be adapted to allow for non-linearities due to regime shifts by rewriting it as
an MS(m)-VECM(1) process of the following form

∆y∗t = ν(st) +α(st)β
′yt−1 + Γ(st)∆yt−1 + Φ(st)Dt + εt, (4.9)

where εt ∼ N (0,Ω (st)). Note that since the unrestricted intercept term
ν(st) is explicit in this formulation, Dt = (∆gt,∆ct,∆ct−1, d

1
t , d

2
t , d

3
t )
′ with

coefficient matrix Φ(st) appropriately redefined. All other parameters are
as previously defined in the VECM(1) given by Equation (4.8), but are now
allowed to depend upon the state st ∈ {1, . . . ,m} at time t. In light of the
economic developments that took place in South Africa over the studied time
period as described in Section 3.1, it was decided to consider a three-regime
and four-regime model for the data. An attempt was also made at fitting a
five-regime model, although the estimation procedure failed to converge to a
solution. Of course, it need not be the case that all the parameters in this
model are regime dependent. In order to determine which parameters may
be regarded as regime invariant, the information criteria presented in Table
14 for m = 3 and m = 4 may be utilised. Both the SBC and HQC prefer the
MSIH model formulation, whilst the AIC favours the most complex MSIAH
specification for both the three-regime and four-regime models. Note, how-
ever, that allowing the coefficient matrices α, Γ and Φ to vary by regime
leads to an enormous increase in the number of parameters to be estimated.
Moreover, the estimated regimes obtained by allowing these parameters to

VECM(1) Parameters AIC SBC HQC

Linear 66 869.23 771.92 829.69
MSI(3) 80 885.83 767.88 837.90
MSIH(3) 100 945.74 798.30 885.83
MSIAH(3) 204 975.73 674.95 853.50
MSI(4) 90 885.16 752.46 831.23
MSIH(4) 120 957.95 781.03 886.06
MSIAH(4) 276 997.66 590.73 832.29

Table 14: Information criteria for Markov-switching model specifications
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vary were not economically meaningful. Consequently, only the intercept
term ν(st) and residual variance-covariance matrix Ω (st) will be regarded as
regime dependent, in line with the recommendations of the SBC and HQC.

A decision must also be made with respect to the number of regimes in
the time period under analysis. Using the information criteria in Table 14,
it is noted that the AIC and HQC favour the MSIH(4)-VECM(1) over the
MSIH(3)-VECM(1), whereas the latter is preferable in terms of the SBC.
After fitting both of these models, it was decided that the regimes obtained
in the estimation of the MSIH(4)-VECM(1) are more consistent with the
economic and political developments that took place in South Africa over the
studied time period than was the case with the MSIH(3)-VECM(1). Indeed,
prior knowledge of this time period suggests the presence of four distinct
monetary and exchange rate regimes as outlined in Section 3.3. Accordingly,
the four-regime model will be adopted, motivated by the data in terms of the
AIC and HQC as well as the known economic events that took place during
the studied time period.

The computer code employed to estimate the MSIH(4)-VECM(1) using the
MS-VAR 1.30 package in Ox 3.00 is given in Appendix D. Note that this soft-
ware package was actually designed to estimate MS-VAR models of which
the MS-VECM is simply a reparameterisation. This fact has two impor-
tant implications for the estimation of an MS-VECM. Firstly, the software
only allows for unrestricted intercepts in the model given by Equation (4.9).
This restriction is, however, not of particular concern since the regime-
dependent intercepts in the cointegration space can easily be recovered from
the unrestricted intercepts ν(st). Secondly, ξ

(1)
t−1 = pSA

t−1 − pUS
t−1 − e

R/$
t−1 and

ξ
(2)
t−1 = rSA

t−1−rUS
t−1 must be specified as exogenous I(0) variables in the model,

which presumes that the processes defining the PPP and UIP relations are in
fact cointegrated conditional on the underlying regimes. Of course, there is
no way to establish this a priori since the regimes themselves are unknown.
However, Krolzig suggests that if ξ

(1)
t−1 and ξ

(2)
t−1 can be shown to be station-

ary in a linear VECM, their inclusion as I(0) variables in the MS-VECM is
likely to be valid [33]. Since the previous modelling procedure established

firm evidence in favour of strict UIP as a long-run relation, treating ξ
(2)
t−1 as an

exogenous I(0) variable would seem justified. On the other hand, the linear
restrictions on the cointegration matrix β necessary to establish strict PPP
were rejected in the linear VECM. However, this does not preclude strict
PPP from holding in the MS-VECM conditional on the underlying regimes.
Indeed, the linear model did provide empirical support for the long-run re-
lation pSA

t−1 − pUS
t−1 − 0.59e

R/$
t−1 and it is hoped that restricting the coefficient
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on the exchange rate to −1 will be permissable in the MS-VECM such that
strict PPP will hold after conditioning on the regimes. Consequently, it will
be assumed for the moment that ξ

(1)
t−1 is an I(0) exogenous variable condi-

tional on the underlying regimes. An attempt will be made to confirm this
assumption post estimation.

4.3.1 Estimated Regimes

The Markov chain governing the regime generating process may be described
by the following estimated transition probability matrix

P =


0.928 0.000 0.000 0.072
0.001 0.764 0.120 0.115
0.000 0.042 0.958 0.000
0.139 0.075 0.000 0.786

 .
The large probabilities on the diagonal indicate that once the chain enters
a particular state, it is likely to stay in that state for some time before
moving to another state. The estimated regimes are therefore persistent, but
not absorbing. This result might be expected of economic regimes which
are defined in terms of distinct policy decisions and frameworks such that
exogenous shocks are unlikely to induce regime shifts. Note that the elements
in P which appear as 0.000 are only zero due to rounding. In fact, none of the
elements in P are exactly equal to zero, such that it is possible to move from
any regime to any other regime. The regime generating process is therefore
said to be irreducible. Furthermore, P has eigenvalues of 1, 0.97, 0.81 and
0.65, which implies that the Markov chain is also ergodic as is required of an
MS-VECM.

The regime classifications for the MSIH(4)-VECM(1) based on the smoothed
regime probabilities defined in Section 2.4.2 and estimated by the EM algo-
rithm are given in Table 15. The smoothed probabilities of being in each
regime at each time point are illustrated in Figure 5. The four estimated
regimes correspond roughly to the 1970s and 2005 to 2007 (regime 1), the
mid 1980s (regime 2), the late 1980s to late 1990s (regime 3) and the late
1990s to 2005 (regime 4). Indeed, these periods would appear to represent
the distinct monetary and exchange rate regimes in South Africa outlined in
Section 3.3.

Regime 1 spans roughly 1972 to the end of 1981, but also includes the last
two years of the studied time period from mid-2005 to 2007. This regime is
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Regime 1 Regime 2 Regime 3 Regime 4

1972:1–1975:3 1982:3–1983:3 1983:4–1984:2 1975:4–1975:4
1976:1–1981:4 1984:3–1986:3 1986:4–1998:2 1982:1–1982:2
2003:3–2003:4 1998:3–1998:4 1999:1–2001:4
2005:3–2007:1 2002:1–2002:1 2002:2–2003:2

2004:1–2005:2

Table 15: Regime classifications in the MSIH(4)-VECM(1)

1975 1980 1985 1990 1995 2000 2005
0.0

0.5

1.0 Smoothed Probabilities of Regime 4

1975 1980 1985 1990 1995 2000 2005
0.0

0.5

1.0 Smoothed Probabilities of Regime 1

1975 1980 1985 1990 1995 2000 2005
0.0

0.5

1.0 Smoothed Probabilities of Regime 2

1975 1980 1985 1990 1995 2000 2005
0.0

0.5

1.0 Smoothed Probabilities of Regime 3

draw_results *  18:57:09 29-Jan-2007

Figure 5: Smoothed probabilities of each regime in the MSIH(4)-VECM(1)
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characterised by a fairly stable nominal rand/dollar exchange rate. Following
the abolishment of the Bretton Woods fixed exchange rate system at the end
of 1971, the rand was pegged to either the US dollar or the pound sterling
until 1979. As a direct consequence, movements in the exchange rate took
the form of discrete step-changes, as is evident from the middle panel of
Figure 1 in Section 3.1. From 2005 to 2007, the currently floating rand/dollar
exchange rate stabilised considerably. This later period may therefore be
regarded as similar to the 1970s in terms of exchange rate stability, which
would appear to motivate its classification as part of regime 1.

Regime 2 covers roughly the period from 1982 to the end of 1986, which
might be regarded as a period of substantial political unrest and uncertainty
in South Africa. The fixed exchange rate system of the 1970s was finally re-
placed with a managed float exchange rate system in the early 1980s. A dual
exchange rate system was in effect until 1983, at which point the exchange
rates were unified for two years before reverting back to the dual exchange
rate system in 1985. The rand depreciated sharply during this regime due to
the gold price decline in 1983 and the debt crisis of 1985. The real exchange
rate was highly volatile during the 1980s, possibly as a result of attempts to
maintain a stable real rand gold price over this period.

Monetary policy also shifted from the liquid asset system of the 1970s to
a cash reserves system of accommodation in regime 2. Interest rates were
extremely volatile during this second regime, as the Reserve Bank juggled be-
tween stimulating domestic demand in an atmosphere of investor uncertainty
and counteracting rising prices, with inflation exceeding 10% throughout the
1980s. Interestingly, the last two quarters of 1998 and the first quarter of
2002 are also classified as regime 2. Indeed, these too were periods char-
acterised by immense uncertainty amongst investors brought about by the
international financial crises which affected emerging markets in the imme-
diately preceding quarters.

The third estimated regime covers the period from 1987 to 1998, which co-
incides roughly with Dr Chris Stals’ term as governor of the South African
Reserve Bank. In contrast to the second regime, this regime is characterised
by a fairly stable real exchange rate. The stability of the real exchange rate
might be attributed to less stringent controls over the real rand gold price
and direct intervention by the Reserve Bank in times of currency crises. The
dual exchange rate system, which was reintroduced in 1985, was in effect
for most of this period before the financial rand was finally terminated in
1995. A series of foreign debt repayments were also made over this period
following the financial sanctions imposed against South Africa in 1985. Af-
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ter temporarily relaxing capital controls in the early 1980s, these controls
were once again tightened for most of this period. Pre-announced monetary
targets were used for the first time from 1986 to be achieved indirectly by ad-
justing interest rates. Nonetheless, high interest rates are a defining feature
of regime 3 for the most part.

A repurchase system of accommodation was employed throughout regime
4, which covers most of the period from 1999 to 2005. This regime also
saw the introduction of a formal inflation-targeting policy in South Africa,
amidst increased liberalisation efforts by the South African Reserve Bank.
Consequently, inflation declined over this period. Interest rates too began
to fall as inflation came under control and as South Africa’s risk profile
improved under the new democratic government. A sharp real depreciation
in the currency was observed in the first half of this regime, although the
real exchange rate recovered substantially between 2002 and 2006.

4.3.2 Testing for Cointegration in the MS-VECM

As mentioned earlier, there is currently no formal procedure for testing for
cointegration in a Markov-switching model. Consequently, the estimated
regimes presented in Table 15 were instead included as exogenous dummy
variables in the linear VECM(1) as follows

∆y∗t = αβ′yt−1 + Γ∆yt−1 + ΦDt + ν +
3∑

i=1

ηiϑit + εt, (4.10)

where

ϑit =

{
1 if st = i
0 otherwise

with coefficient vector ηi for i = 1, 2, 3. Note that the intercept term ν again
appears explicitly in this model formulation such thatDt = (∆gt,∆ct,∆ct−1,
d1

t , d
2
t , d

3
t )
′ in Equation (4.10). The inclusion of the dummy variables ϑ1t,

ϑ2t and ϑ3t in the linear model with an unrestricted intercept ν effectively
allows for a regime-dependent intercept in the cointegration space and the
data generating process. In this way, the cointegrating rank of β and the
validity of the linear restrictions defining the weak and strict forms of the PPP
and UIP relations might be tested within the standard VECM framework
conditional on the estimated regimes. Of course, the VECM(1) in Equation
(4.10) does not allow the residual variance-covariance matrix to depend upon
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the underlying regimes as is the case in the MSIH(4)-VECM(1). Nonetheless,
this procedure should shed some light on whether PPP and UIP hold as long-
run relations in the Markov-switching model.

The cointegrating rank of the VECM(1) with regime dummies given by Equa-
tion (4.10) was tested using Johansen’s λmax and trace test statistics together
with the information criteria. The former are presented in Table 16, whilst
the latter are given in Table 17.

Both the λmax and trace statistics clearly indicate two cointegrating relations
in this model at the 5% significance level. Recall that these statistics only
supported a single cointegrating relation in the partial model without regime
dummies at this significance level. In that case, the hypothesis of two cointe-
grating relations was found to be only marginally nonsignificant at the 10%
level. The VECM(1) with regime dummies would therefore appear to be
more supportive of two cointegrating relations relative to the model without
regime dummies based on Johansen’s statistics for the test of cointegrating
rank.

The AIC favours three cointegrating relations, whilst the SBC now suggests
a cointegrating rank of two. The HQC also provides evidence in favour of
two or three cointegrating relations, with little difference between these two

H0 H1 λmax 95% CV 90% CV

r = 0 r = 1 51.99 30.71 28.27
r ≤ 1 r = 2 33.49 24.59 22.15
r ≤ 2 r = 3 13.85 18.06 15.98
r ≤ 3 r = 4 2.08 11.47 9.53

H0 H1 Trace 95% CV 90% CV

r = 0 r ≥ 1 101.41 58.63 54.84
r ≤ 1 r ≥ 2 49.42 38.93 35.88
r ≤ 2 r ≥ 3 15.93 23.32 20.75
r ≤ 3 r = 4 2.08 11.47 9.53

Table 16: Johansen’s test statistics for selection of cointegrating rank in the
partial VECM(1) with regime dummies
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Rank AIC SBC HQC

r = 0 865.30 776.84 829.35
r = 1 883.29 783.03 842.55
r = 2 894.04 784.93 849.70
r = 3 896.96 781.96 850.23
r = 4 896.00 778.05 848.07

Table 17: Information criteria for selection of cointegrating rank in the partial
VECM(1) with regime dummies

specifications in terms of this criterion. Consequently, a cointegrating rank
of two will once again be specified, which would appear to garner support
from the data as well as being consistent with the economic theories of PPP
and UIP.

Having established the presence of two cointegrating vectors in the VECM(1)
with regime dummies, the weak and strict forms of PPP and UIP were tested
individually and jointly by constraining the cointegration matrix β in the
same manner as was considered for the VECM(1) without regime dummies
and testing these linear restrictions for data admissibility. The results are
presented in Table 18. As a first observation, it should be noted that the p-
values associated with all the tests of the linear restrictions on β considered
in this table are larger than those presented in Table 11 corresponding to
the equivalent model without regime dummies. Hence, the inclusion of the
regime dummies in the VECM(1) leads to an overall improvement in the
empirical evidence in support of all the forms of PPP and UIP considered
here.

More specifically, the VECM(1) with regime dummies does not reject UIP
as an individual long-run relation even in its strictest form, as was the case
in the model without regime dummies. This result is also true of the weaker
form of PPP implied under HWPPP, which is also supported by both models.
Unsurprisingly, weak PPP and weak UIP can therefore not be rejected as
joint equilibrium conditions.

Some support for the strict form of PPP is also evident in the model with
regime dummies. Notice that the overwhelmingly significant χ2

3 statistic of
18.81 obtained when testing HPPP in the VECM(1) without regime dummies
drops considerably when regime dummies are added to a value of 9.34, which
is statistically significant at the 5% level, but not at the 1% level. Moreover,
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Exactly Identified HWPPP HWUIP HWPPP ∩HWUIP

1.00 0.00

−1.28 4.00
(0.10) (3.27)

−0.77 −1.40
(0.05) (1.69)

0.00 1.00

0.01 −1.00
(0.01) (0.28)





1.00 0.00

−1.23 3.63
(0.07) (3.24)

−0.79 −1.22
(0.04) (1.69)

0.00 1.00

0.00 −0.95
(0.27)





1.00 0.00

−1.23 0.00
(0.10)

−0.78 0.00
(0.05)

0.00 1.00

0.00 −0.80
(0.01) (0.20)





1.00 0.00

−1.21 0.00
(0.08)

−0.79 0.00
(0.04)

0.00 1.00

0.00 −0.78
(0.19)


log L = 968.04 log L = 967.89 log L = 967.18 log L = 967.14

χ2
1 = 0.30 χ2

2 = 1.72 χ2
3 = 1.80

P-value = 0.584 P-value = 0.423 P-value = 0.614

HPPP HUIP HPPP ∩HUIP H∗
PPP ∩HUIP

1.00 0.00

−1.00 −0.47
(4.02)

−1.00 2.27
(2.73)

0.00 1.00

0.00 −0.91
(0.27)





1.00 0.00

−1.23 0.00
(0.10)

−0.78 0.00
(0.05)

0.00 1.00

0.01 −1.00
(0.01)





1.00 0.00

−1.00 0.00

−1.00 0.00

0.00 1.00

0.00 −1.00





1.00 0.00

−1.00 0.00

−0.88 0.00
(0.04)

0.00 1.00

0.00 −1.00


log L = 963.37 log L = 966.72 log L = 961.65 log L = 964.64

χ2
3 = 9.34 χ2

3 = 2.63 χ2
6 = 12.77 χ2

5 = 6.80
P-value = 0.025 P-value = 0.453 P-value = 0.047 P-value = 0.236

Asymptotic standard errors are given in parentheses

Table 18: Estimated cointegration matrix β with linear restrictions in the
partial VECM(1) with regime dummies
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Gredenhoff and Jacobson have shown through Monte Carlo experimentation
that the χ2 statistic associated with this likelihood ratio test can be sub-
stantially upwardly biased when the length of the observed data sequence is
small, such that the observed p-value of 0.025 for this hypothesis test is likely
to be an underestimate of the true p-value [18]. Consequently, strict PPP
cannot be firmly rejected as an individual long-run relation in the VECM(1)
with regime dummies.

As was the case in the model without regime dummies, the linear restrictions
implied under H∗

PPP ∩HUIP are not rejected in the model with regime dum-
mies. Furthermore, the only unrestricted cointegrating coefficient β13 corre-
sponding to the exchange rate in the PPP relation is −0.88 in the model with
regime dummies, which is closer to the desired −1 under strict PPP than
the −0.59 obtained in the VECM(1) without regime dummies. Constrain-
ing this coefficient to −1 to obtain HPPP ∩HUIP would therefore seem more
plausible in the latter model. Recall that this hypothesis of strict PPP and
strict UIP as joint long-run relations was decisively rejected in the previous
VECM(1) without regime dummies. Indeed, this is not the case in the model
with regime dummies. The likelihood ratio test of HPPP∩HUIP in the model
given by Equation (4.10) yielded a p-value of 0.047. At the 5% significance
level, the joint hypothesis of strict PPP and strict UIP is therefore only
marginally rejected, although it should be borne in mind that the use of a
5% significance level is merely a “convenient convention” [14]. Furthermore,
the simulations of Gredenhoff and Jacobson suggest that the true p-value of
this test is likely to be larger than that reported here such that it may very
well exceed the conventional 0.05 cut-off [18]. It may therefore be concluded
that the strict forms of PPP and UIP do exist jointly as long-run relations
conditional on the underlying regimes. Failure to condition on the regimes,
however, leads to an outright rejection of HPPP ∩HUIP.

4.3.3 Model Parameter Estimates

The parameter estimates of the MSIH(4)-VECM(1) are given in Table 19.
Comparing the long-run adjustment coefficients in the MS-VECM with those
obtained previously in the linear VECM given in Table 13 is enlightening.
Firstly, note that when relative prices exceed the nominal exchange rate,
the adjustment coefficients in the MS-VECM imply that domestic prices
fall, US prices rise and the nominal rand/dollar exchange rate depreciates to
restore PPP. The signs of the PPP adjustment coefficients in the price and
exchange rate equations are therefore as expected. Both the PPP adjustment
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∆pSA
t ∆pUS

t ∆e
R/$
t ∆rSA

t

ν̂(st = 1) 0.011 (0.009) 0.034‡ (0.008) 0.203‡ (0.052) -0.433 (0.737)
ν̂(st = 2) 0.021† (0.009) 0.029‡ (0.007) 0.251‡ (0.059) -0.068 (0.940)
ν̂(st = 3) 0.013 (0.008) 0.028‡ (0.007) 0.202‡ (0.047) 0.294 (0.671)
ν̂(st = 4) 0.004 (0.010) 0.031‡ (0.008) 0.240‡ (0.058) -0.024 (0.826)

ξ
(1)
t−1 -0.007 (0.006) 0.012‡ (0.005) 0.115‡ (0.032) -0.404 (0.463)

ξ
(2)
t−1 -0.001‡ (0.0003) -0.001‡ (0.0002) -0.0002 (0.001) -0.113‡ (0.020)

∆pSA
t−1 0.333‡ (0.049) 0.004 (0.046) -0.124 (0.273) 3.042 (4.055)

∆pUS
t−1 -0.110 (0.073) 0.040 (0.077) -0.663† (0.309) -11.650† (4.658)

∆e
R/$
t−1 0.037‡ (0.013) -0.003 (0.009) 0.229‡ (0.071) 0.641 (1.088)

∆rSA
t−1 0.0003 (0.001) 0.0003 (0.0004) 0.005 (0.004) 0.496‡ (0.057)

∆rUS
t−1 -0.001 (0.001) 0.002‡ (0.001) 0.004 (0.004) -0.019 (0.062)

∆gt -0.030‡ (0.011) 0.011 (0.009) -0.069 (0.039) -1.614‡ (0.604)
∆ct 0.018‡ (0.005) 0.048‡ (0.004) -0.036 (0.023) 0.111 (0.355)

∆ct−1 0.029‡ (0.006) 0.018‡ (0.005) 0.030 (0.024) 0.475 (0.369)
d1

t 0.001 (0.002) 0.003† (0.001) -0.001 (0.009) 0.108 (0.134)
d2

t 0.009‡ (0.002) 0.003† (0.001) 0.016 (0.009) -0.079 (0.138)
d3

t 0.001 (0.002) -0.001 (0.001) 0.012 (0.009) -0.141 (0.151)

σ̂(st = 1) 0.013 0.014 0.031 0.479
σ̂(st = 2) 0.012 0.003 0.105 2.427
σ̂(st = 3) 0.007 0.005 0.034 0.508
σ̂(st = 4) 0.006 0.010 0.063 0.601

R2 0.510 0.603 0.249 0.329

χ2
4 (A) 11.51† 3.57 6.23 2.91
χ2

2 (N) 2.96 12.92‡ 5.98 0.48
χ2

1 (H) 1.29 0.14 0.01 2.07
ARCH(2) 0.27 1.46 0.19 0.17
ARCH(4) 0.41 4.68 0.98 2.17
† and ‡ denote significance at the 5% and 1% levels respectively
Standard errors are given in parentheses

The error correction terms are given as
ξ
(1)
t−1 = pSA

t−1 − pUS
t−1 − e

R/$
t−1

ξ
(2)
t−1 = rSA

t−1 − rUS
t−1

Model diagnostics based on standardised residuals
χ2

4 (A): Lagrange multiplier test for residual autocorrelation
χ2

2 (N): Jarque-Bera test for residual normality
χ2

1 (H): Heteroscedasticity test based on regression of squared residuals on squared fitted values
ARCH(2): χ2

2 statistic for test of second-order autoregressive conditional heteroscedasticity in the residuals
ARCH(4): χ2

4 statistic for test of fourth-order autoregressive conditional heteroscedasticity in the residuals

Table 19: Parameter estimates in the MSIH(4)-VECM(1)
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coefficients in the ∆pUS
t and ∆e

R/$
t equations are statistically different from

zero in this model. Recall that in the linear VECM, the PPP adjustment
coefficient was only statistically significant in the ∆pSA

t equation, whilst the

nonsignificant adjustment coefficients in the ∆pUS
t and ∆e

R/$
t equations were

of the incorrect sign.

Both the linear and Markov-switching vector error correction models yield
a highly significant, negative UIP adjustment coefficient in the interest rate
equation. This finding confirms economic theory, which suggests that domes-
tic interest rates should adjust downwards when the interest rate differential
exceeds the relative risk premium. Significantly negative UIP adjustment
coefficients are also observed in both the price equations. Indeed, higher in-
terest rates in South Africa will restrict the purchasing power of consumers
and the resulting drop in demand should ease inflationary pressure in the
country. Furthermore, if South African interest rates are higher than those
in the United States after taking into account expected depreciation and
country-specific risk, South Africa will attract foreign investment from the
United States thereby leading to a reduction in the US money supply. Prices
in the United States may therefore be expected to fall, particularly if the
South African interest rate is considered as a proxy for those of emerging
economies as a whole. Note that the increased demand for South African
investments would also put pressure on the rand/dollar exchange rate to ap-
preciate (decrease), which would appear to motivate the negative, although
statistically nonsignificant, UIP adjustment coefficient in the exchange rate
equation.

The regime-dependent intercepts in the cointegration space are also of sub-
stantive interest. Since the MSIH(4)-VECM(1) was estimated with unre-
stricted intercepts, the intercepts in the cointegration space must be derived
analytically as

Ξ∗ = (α′α)
−1
α′Ξ,

with Ξ = (ν(st = 1),ν(st = 2),ν(st = 3),ν(st = 4)) and Ξ∗ = (ν∗(st = 1),
ν∗(st = 2),ν∗(st = 3),ν∗(st = 4)), where ν∗(st = i) is the vector of intercepts
in the cointegration space for regime i = 1, 2, 3, 4. Solving for Ξ∗ in the
MSIH(4)-VECM(1) yields

Ξ∗ =

[
1.77 2.17 1.74 2.07

−2.49 −7.14 −8.84 −7.20

]
,

where the first row includes the intercepts in the PPP relations and the
second row includes the intercepts in the UIP relations for each of the four
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regimes. Hence, the estimated relative PPP and UIP relations conditional
on the underlying regimes are given as follows.

PPP UIP

Regime 1 E
R/$
t = 5.85× P SA

t /PUS
t rSA

t − rUS
t = 2.49

Regime 2 E
R/$
t = 8.72× P SA

t /PUS
t rSA

t − rUS
t = 7.14

Regime 3 E
R/$
t = 5.72× P SA

t /PUS
t rSA

t − rUS
t = 8.84

Regime 4 E
R/$
t = 7.94× P SA

t /PUS
t rSA

t − rUS
t = 7.20

The relative PPP equations indicate a real depreciation in the rand/dollar
exchange rate from regime 1 to regime 2. Indeed, this would appear to have
been the case based on the historical evidence outlined in Section 3.1. The
gold price decline of 1983 and the capital outflows due to political uncertainty
during regime 2 led to the sharp depreciation of the exchange rate observed
here.

The mean real exchange rate appears to have recovered somewhat during
regime 3 from 1987 to 1998, as less emphasis was placed on maintaining a
stable real rand gold price. This result is hardly surprising given that the
real exchange rate reached record highs during the previous regime on the
back of major capital withdraws from the politically turbulent South African
economy. Hence, despite major depreciations and appreciations in the real
exchange rate during regime 3, the level of the real exchange rate was on
average lower than that of the previous regime.

Finally, the intercept in the first cointegrating vector implies a depreciation
in the real exchange rate from regime 3 to regime 4, where the latter regime
covers roughly the period from 1999 to 2005. Indeed, the real exchange rate
did depreciate heavily from 1999 to 2002 due to the decline in mineral exports,
although the currency has appreciated in more recent times. It is therefore
unsurprising that the last two years of the time period considered, that is
2006 and 2007, are classified as regime 1, rather than regime 4. Moreover,
the real exchange rate in regime 1 is lower than the real exchange rate in
regime 4, implying a real appreciation in the currency in the later years of
the studied time period as expected.

Although the intercept term in the UIP equation does to some extent account
for imperfect asset substitutability and transactions costs, its interpretation
as the risk premium sought by investors in the South African asset market
seems natural in this context. Indeed, the political uncertainty associated
with regime 2 would have led investors to demand a high risk premium in
this regime relative to regime 1. This presumption is confirmed by the mean
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interest rate differential which rises dramatically from regime 1 to regime
2. The uncertainty experienced during this tumultuous regime is further
reflected in the large standard error of the residuals associated with this
regime in the interest rate equation in Table 19. Recall that interest rates
were raised substantially in 1985 to almost 22% in response to inflationary
pressures and then more than halved in the subsequent year to stimulate
domestic demand as investors withdrew from South Africa. Hence, this high
standard error is not unexpected.

The risk premium demanded by foreign investors continued to rise from
regime 2 to regime 3 in light of the additional political uncertainty prior
to the elections in 1994. Subsequently, South Africa’s risk profile has im-
proved somewhat in the wake of the country’s first democratic government
and the adoption of more stable monetary and fiscal policies. The coun-
try’s improved risk profile is reflected in the lower risk premium demanded
in regime 4 relative to regime 3. Once again, it should be noted that the
years 2006 and 2007 are actually classified as regime 1, which has a very
low mean interest rate differential relative to the other three regimes. Conse-
quently, the results of the Markov-switching model indicate that South Africa
is perceived as a less risky investment environment post 1994 and that such
perceptions have improved considerably in recent years. The real exchange
rate and interest rate differential are plotted in Figure 6 with the estimated
regimes superimposed.

1975 1980 1985 1990 1995 2000 2005
-10

-5

0

5

10

15 Regime 1
Regime 2

Regime 4
Regime 3

Interest Rate Differential 
Real Exchange Rate 

Regimes2  21:49:40 28-Jan-2008

Figure 6: Real exchange rate and interest rate differential with estimated
regimes superimposed
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4.3.4 Model Diagnostics

The actual and fitted values obtained for each of the four variables in the
MSIH(4)-VECM(1) are given in Figure 7. The corresponding residuals are
illustrated in Figure 8. The residual plots on the left in Figure 8 display the
unstandardised prediction errors associated with the model. Note that the
variance of these residuals is assumed to differ between regimes such that
heteroscedasticity and ARCH effects might be expected in examining these
graphs. Non-constant variance is particularly notable in the case of the
unstandardised residuals associated with the interest rate equation, where
greater variability is observed in the mid 1980s and again in 1998 relative to
the rest of the series. Indeed, the estimated standard deviation of these resid-
uals in regime 2 is 2.427, which is much larger than the standard deviations
of 0.479, 0.508 and 0.601 obtained for regimes 1, 3 and 4 respectively.

The standardised residuals on the right hand panel of Figure 8 were obtained
by normalising the residuals with respect to their regime-specific standard
deviations. As such, these residuals should be homoscedastic over the entire
time period under analysis. Examination of the time series plots does not
reveal any immediate concern for the violation of this condition. In order to
test this assumption more formally, the squared fitted values were regressed
on the squared standardised residuals to obtain the χ2

1 statistics presented in
Table 19. The null hypothesis of homoscedasticity cannot be rejected for all
four equations. Furthermore, the test statistics associated with the ARCH
tests in Table 19 indicate no evidence of second-order or fourth-order au-
toregressive conditional heteroscedasticity in the residuals. The significant
ARCH effects detected particularly in the residuals of the interest rate equa-
tion in the linear VECM(1) have therefore been appropriately captured by
the Markov-switching residual variance-covariance matrix.

Table 19 also provides the test statistic for the Jarque-Bera test of normal-
ity for the standardised residuals in each equation. Note that by specifying
regime-dependent residual variances in the model, the unstandardised residu-
als are implicitly assumed to be non-normal, arising instead from a mixture of
four Gaussian distributions with zero means, but different variances. The sig-
nificant non-normality of the residuals in all but the domestic price equation
in the linear model may therefore have been expected a priori in the pres-
ence of such regime-dependent residual variability. In fact, non-normality
was found to be most severe in the residuals associated with the interest
rate equation in the linear VECM and, unsurprisingly, the residuals corre-
sponding to this same equation in the Markov-switching model exhibit the
most notable shifts in residual variance between regimes. After accounting
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Figure 7: Fitted values according to MSIH(4)-VECM(1)

1975 1985 1995 2005

-0.02

0.00

0.02

Residuals in ∆pt
SA Equation

1975 1985 1995 2005
-2

0

2

Standardised Residuals in ∆pt
SA Equation

1975 1985 1995 2005
-0.03

0.00

0.03

0.06
Residuals in ∆pt

US Equation

1975 1985 1995 2005

-2.5

0.0

2.5

Standardised Residuals in ∆pt
US Equation

1975 1985 1995 2005

-0.2

0.0

0.2
Residuals in ∆et

R/$ Equation

1975 1985 1995 2005

-2.5

0.0

2.5

Standardised Residuals in ∆et
R/$ Equation

1975 1985 1995 2005
-5

0

5

Residuals in ∆rt
SA Equation

1975 1985 1995 2005

-2

0

2

Standardised Residuals in ∆rt
SA Equation

GiveWin Graphics  09:37:09 15-Dec-2006

Figure 8: Residuals obtained in the MSIH(4)-VECM(1)
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for regime-dependent residual variability, the standardised residuals pass the
Jarque-Bera test for normality in all equations except that pertaining to US
price levels. Further examination of the empirical density of the standardised
residuals associated with the ∆pUS

t equation given in Figure 9 reveals that
the distribution of residuals is only sightly leptokurtic relative to the normal
density. These residuals were found to have an excess kurtosis of 1.14, which
is not serious enough to adversely affect statistical inferences based on this
model. The QQ plots presented in Figure 9 further confirm that the residuals
are satisfactorily normal.

Figure 9 also includes plots of the autocorrelation functions (ACF) and par-
tial autocorrelation functions (PACF) of the standardised residuals in each
equation. Examination of these plots does not suggest any drastic auto-
correlation amongst the residuals. The Lagrange multiplier tests for serial
correlation presented in Table 19 confirm this observational conclusion for
all equations except that corresponding to domestic prices, where autocorre-
lation is found to be statistically significant at the 5% level. The autocorre-
lations (AC), partial autocorrelations (PAC) and Ljung-Box Q statistics for
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Figure 9: Diagnostic plots for the standardised residuals in the MSIH(4)-
VECM(1)
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the residuals of this equation are given up to lag 12 in Table 20 [11]. It is
noted that the moderately large partial autocorrelations at lags three and
four produce significant Q statistics in subsequent lags. However, these par-
tial autocorrelations are not large enough to warrant concern. Indeed, none
of the Q statistics are significant at the 1% level. The partial autocorrelations
for the residuals of each of the other three equations were also examined and
found to be nonsignificant in all cases.

Overall, the properties of the residuals from the Markov-switching model are
far more satisfactory than those of the linear VECM, suggesting that the
appropriate treatment of regime shifts is necessary for valid statistical infer-
ences. In addition, the MSIH(4)-VECM(1) is preferred to its linear counter-
part in terms of all the three information criteria presented in Table 14. The
test statistic for the likelihood ratio test comparing the linear and Markov-
switching models is χ2

54 = 285.45, which firmly rejects the null hypothesis
of linearity, even when the upper bound of Davies is invoked [8]. Hence, it
would appear that significant non-linearities induced by regime shifts are a
pertinent feature of these data and should therefore be incorporated appro-
priately in the modelling procedure.

Lag AC PAC Q Statistic P-value∗

1 0.006 0.006 0.01 0.939
2 -0.061 -0.061 0.54 0.763
3 0.205 0.206 6.67 0.083
4 0.185 0.184 11.70 0.020
5 0.006 0.034 11.71 0.039
6 -0.049 -0.075 12.07 0.060
7 0.076 0.000 12.94 0.074
8 0.172 0.137 17.43 0.026
9 0.065 0.105 18.07 0.034
10 -0.021 0.002 18.14 0.053
11 0.036 -0.041 18.35 0.074
12 -0.035 -0.145 18.54 0.100

* Test of null hypothesis that there is no autocorrelation up to
lag i against the alternative hypothesis that at least one auto-
correlation coefficient is statistically different from zero

Table 20: Ljung-Box Q statistics for residuals of ∆pSA
t equation in MSIH(4)-

VECM(1)
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5 Conclusions

In this paper, an attempt was made to establish firm empirical evidence
in favour of PPP and UIP as long-run relations when South Africa and
the United States are considered as trading partners. Two forms of these
equilibrium conditions were defined. Strict purchasing power parity is given
by

pSA
t − pUS

t − e
R/$
t + µ(1) = ξ

(1)
t , (5.1)

where pSA
t , pUS

t and e
R/$
t are aggregate price levels in South Africa, aggregate

price levels in the United States and the nominal rand/dollar exchange rate

respectively after taking natural logarithms. The series ξ
(1)
t is stationary with

a zero mean if PPP holds. If µ(1) = 0, then Equation (5.1) corresponds to the
absolute version of purchasing power parity. On the other hand, the relative
version of strict PPP is defined by Equation (5.1) when µ(1) 6= 0, which may
be expected a priori when the coverage and composition of reference baskets
of commodities differ between countries.

Transactions costs, tariff and non-tariff trade barriers, the presence of non-
tradable goods in commodity bundles and market-specific pricing are some
of the reasons why even the relative version of strict PPP may not hold in
practice. Consequently, a weaker form of PPP was defined as

pSA
t − β

(1)
1 pUS

t − β
(1)
2 e

R/$
t + µ(1) = ξ

(1)
t ,

where the coefficients β
(1)
1 and β

(1)
2 may deviate from unity due to the afore-

mentioned market frictions.

The strict form of the uncovered interest parity is given by

rSA
t − rUS

t − µ(2) = ξ
(2)
t ,

where rSA
t and rUS

t are the returns on deposits bearing the same risk and with
the same time to maturity in South Africa and the United States respectively.
The series ξ

(2)
t is a white noise process if UIP holds. The uncovered interest

parity, in its purest sense, requires that µ(2) = 0, but the presence of trans-
actions costs, country-specific risk premia and speculative effects imply that
the interest rate differential is likely to be non-zero in practice. Furthermore,
this strict form of UIP requires that the exchange rate does not exhibit a
trend over the time period under analysis. If this condition is violated, the
weaker form of UIP given as

rSA
t − β

(2)
1 rUS

t − µ(2) = ξ
(2)
t
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is more likely to hold, where the coefficient β
(2)
1 may deviate from unity.

The paper commenced by adopting the standard VECM approach in order
to ascertain whether the weak and strict forms of PPP and UIP are sup-
ported by the data. Quarterly data were employed from the first quarter
of 1972 to the first quarter of 2007. A partial VECM(1) with four equa-

tions corresponding to ∆pSA
t , ∆pUS

t , ∆e
R/$
t and ∆rSA

t was constructed after
establishing the weak exogeneity of ∆rUS

t with respect to the cointegrating
relations and adjustment coefficients in the model. This model did indeed
yield some evidence in favour of PPP and UIP as long-run relations. The
overidentifying restrictions on the cointegration matrix necessary to establish
the weak forms of PPP and UIP could not be rejected individually or jointly.
Furthermore, the strict form of UIP could also not be rejected in this model.
On the other hand, strict PPP was firmly rejected, both as an individual
relation and as a joint relation together with strict UIP.

These findings were established in a VECM(1) with unrestricted intercepts.
It should be noted, however, that the results are dependent upon whether
or not an intercept term is included in the model. Excluding the intercept
altogether led to a firm rejection of both the weak and strict forms of PPP
and UIP, both as individual and joint long-run relations. The only exception
in this regard was the weak form of PPP, although the evidence in support
of this condition as an individual long-run relation was hardly convincing.
This finding is akin to rejecting the absolute version of PPP and the pure
form of UIP which assumes perfect asset substitutability. On the other hand,
permitting an intercept term confined to the cointegration space leads to the
same set of conclusions with respect to the PPP and UIP relations as those
outlined above for the model with unrestricted intercepts. An intercept term
in the cointegration space or in the cointegration space and the data gener-
ating process would therefore appear to be warranted, suggesting that only
relative PPP and the UIP relation with a non-zero interest rate differential
are empirically relevant.

The conventional VECM approach to testing for PPP and UIP was subse-
quently adapted to allow for regime shifts in the data. Indeed, the time
period under review is characterised by a number of monetary and exchange
rate regime changes. It was proposed that these regime shifts lead to per-
sistent changes in the mean natural logarithm of the real exchange rate µ(1)

and the mean interest rate differential µ(2), thereby undermining the ability
of the standard VECM approach to establish PPP and UIP as long-run rela-
tions over the entire time period under analysis. A Markov-switching VECM
was therefore considered, wherein the parameters of the usual VECM are
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allowed to depend upon underlying regimes which are modelled by a hidden
Markov chain. A four-regime model with regime-dependent intercepts and
residual variance-covariance matrix was deemed most appropriate based on
both the data through the information criteria and the historical evolution
of monetary and exchange rate policy in South Africa.

The estimation of the hidden state at each time point is an enlightening
by-product of this model specification. The four estimated regimes obtained
cover roughly the 1970s as well as 2005 to 2007, the mid 1980s, the late 1980s
to late 1990s and the late 1990s to 2005. These regimes were found to be
economically meaningful with respect to the developments in monetary and
exchange rate policy that took place in South Africa over the studied time
period. The first regime defines a period of exchange rate stability with the
rand pegged to either the US dollar or pound sterling throughout the 1970s.
The second regime, which covers the mid 1980s, was a period of much polit-
ical uncertainty in the country. As a result, the rand depreciated sharply on
the back of large capital outflows. There was also a shift in monetary pol-
icy from a system of commercial bank accommodation based on liquid asset
requirements during the first regime to a cash reserves system of accommo-
dation in the second regime. The third regime coincides approximately with
the period in which Dr Chris Stals served as governor of the South African
Reserve Bank. During this regime, emphasis was placed on achieving a sta-
ble real exchange rate, often at the expense of monetary targets. Finally, the
last regime from 1999 to 2005 is typified by greater political stability and a
firm inflation-targeting policy.

Since there is as yet no formal procedure for testing for cointegration in
a Markov-switching model, the estimated regimes were added as dummy
variables to the previous linear VECM(1) and cointegration tests performed
within this familiar framework. The results were extremely positive, despite
the fact that this model does not account for the regime-dependent residual
variance structure assumed in the Markov-switching model. The evidence in
support of the weak and strict forms of PPP and UIP, both as individual
and joint long-run relations, was in all cases more statistically assertive. The
weak forms of PPP and UIP were once again established as individual and
joint equilibrium conditions, whilst strict UIP could not be rejected as an
individual long-run relation. Although strict PPP is rejected as an individual
hypothesis at the 5% significance level, this decision is borderline at best with
non-rejection of strict PPP at the 1% significance level. Moreover, strict PPP
and strict UIP cannot be rejected as joint long-run relations in the VECM(1)
with regime dummies. This result confirms the promptings of Johansen and
Juselius who first proposed that if PPP is a valid description of international
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price dependence, information on this relation can be found in both the goods
and asset markets [30]. Explicitly accounting for regimes in the modelling
procedure would therefore appear to dramatically improve the evidence in
support of the PPP and UIP relations.

The inclusion of a Markov-switching intercept in the cointegration space also
has economically informative implications. First and foremost, large changes
in this intercept between regimes suggest reasons why it may be difficult or
impossible to establish the necessary cointegrating relations over the entire
time period. Secondly, in the context of PPP and UIP, the regime-dependent
intercepts in these cointegrating relations have distinct economic interpreta-
tions. In the case of the log-linear representation of the PPP relation given
by Equation (5.1), a simple monotonic transformation of the intercept term
yields the real exchange rate. Based on the regime-dependent intercepts in
the cointegration space, the real exchange rate was shown to have depreci-
ated from regime 1 to regime 2, recovering in regime 3 and then depreciating
again in regime 4. These movements in the real exchange rate were found to
be consistent with that expected based on the economic and political devel-
opments that took place over the studied time period. Clearly, such changes
in the mean real exchange rate will prohibit cointegration over the entire time
period under analysis. However, if the real exchange rate is stationary within
distinct regimes, as was found to be the case in this paper, then relative PPP
will still hold conditional on the underlying regimes.

A regime-dependent interest rate differential in the UIP relation will also
compromise evidence in favour of this relation over the entire time period. If
this intercept is interpreted as a risk premium, then UIP can only hold when
the relative riskiness of the two countries under consideration is constant.
Since this is not the case when comparing South Africa with the United
States from 1972 to 2007, it cannot be anticipated that UIP will hold over
this time period. However, introducing a regime-dependent intercept into
this relation allows for changes in the risk premium across regimes. In this
study, the risk premium was found to be lowest in the first regime, rising in
regimes 2 and 3 and then declining in regime 4. Indeed, this result is to be
expected given the social unrest associated with regime 2 and the political
uncertainty which characterises regime 3 ahead of the elections in 1994. An
improvement in South Africa’s risk profile is observed in regime 4 in the wake
of the country’s transition to a democratic society. Note too that since regime
1 includes the period from 2005 to 2007, it would appear that the perceived
riskiness of South Africa as an investment hub has improved somewhat in
these recent years.
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The Markov-switching model was uniformly preferred to its linear counter-
part in terms of the likelihood ratio test and all the information criteria
considered. Furthermore, the properties of the residuals of the MSIH(4)-
VECM(1) were far more satisfactory than those obtained in the linear model.
Indeed, the residuals of the latter model exhibited significant non-normality
and ARCH effects which appear to be remedied in the Markov-switching
model.

This paper therefore demonstrates the importance of incorporating regime
shifts appropriately into the modelling procedure adopted in testing for PPP
and UIP. The regime-dependent forms of relative PPP and UIP implied by
the “conditional cointegration” alluded to above appear to garner more sup-
port from the data than the standard definitions of these theories. In addi-
tion, the estimated regimes and regime-dependent parameters shed further
light on the empirical problem at hand. The effects of changes in monetary
and exchange rate policies should therefore not be discounted when modelling
the PPP and UIP relations.

Further research into the theoretical properties of the Markov-switching vec-
tor error correction model is still necessary. In particular, formal tests of the
cointegrating rank and the imposition of overidentifying linear restrictions on
the cointegrating vectors have yet to be adapted for the Markov-switching
model. Additionally, an option to restrict the intercept term to the cointe-
gration space only in the Markov-switching model could be advantageous. It
would also be interesting to consider how well this model performs on other
datasets and time frames where regime changes are known to exist. Indeed,
the success of cointegration tests in establishing firm evidence in favour of
PPP and UIP is known to vary greatly between studies [32]. At the very
least, however, this paper has demonstrated that accounting for the mone-
tary and exchange rate regime shifts observed in South Africa between 1972
and 2007 leads to a marked improvement in the empirical evidence in support
of PPP and UIP over this period.
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A Parameter Estimation in the VECM

The vector error correction model is given as

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + ΦDt + εt for t = 1, 2, . . . , T (A.1)

where εt are identically and independently distributed N (0,Ω) random vec-
tors and {α,β,Γ1, . . . ,Γp−1,Φ,Ω} are freely varying parameters as defined
in the main text [27].

For the discussion to follow, it is useful to introduce the notation Z0t = ∆yt,
Z1t = yt−1 and let Z2t =

(
∆yt−1, . . . ,∆yt−p+1,Dt

)′
with associated coeffi-

cient matrix Ψ = (Γ1, . . . ,Γp−1,Φ). Z0t and Z1t are therefore k dimensional
vectors, Z2t is a k(p − 1) + d dimensional vector and accordingly Ψ is a
k× [k (p− 1) + d] dimensional matrix. In this notation, the VECM in Equa-
tion (A.1) becomes

Z0t = αβ′Z1t + ΨZ2t + εt for t = 1, 2, . . . , T. (A.2)

Equation (A.2) represents a non-linear regression model since it involves the
product of α and β′. The parameters Ψ may vary freely and no prior im-
position or assumption is made about the rank of Π = αβ′ or equivalently
the number of cointegrating relations. In this sense, the model is said to be
unrestricted [43].

The likelihood function is given as

L (α,β,Ψ,Ω) =
T∏

t=1

(2π)−k/2 |Ω|−1/2×

exp

{
−1

2
(Z0t −αβ′Z1t −ΨZ2t)

′
Ω−1 (Z0t −αβ′Z1t −ΨZ2t)

}

which leads to the log likelihood

lnL (α,β,Ψ,Ω) =
−kT

2
ln 2π − T

2
ln |Ω|

− 1

2

T∑
t=1

(Z0t −αβ′Z1t −ΨZ2t)
′
Ω−1 (Z0t −αβ′Z1t −ΨZ2t) .
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The first order conditions for estimating Ψ may be found by differentiating
this log likelihood with respect to Ψ and setting this derivative equal to zero
to produce

T∑
t=1

(
Z0t −αβ′Z1t − Ψ̂Z2t

)
Z ′

2t = 0. (A.3)

where Ψ̂ is the maximum likelihood estimate of Ψ. Defining the product
moment matrices as

M ij = T−1

T∑
t=1

ZitZ
′
jt for i, j = 0, 1, 2,

Equation (A.3) may be rewritten as

M 02 −αβ′M 12 − Ψ̂M 22 = 0

such that
Ψ̂ (α,β) = M 02M

−1
22 −αβ′M 12M

−1
22 . (A.4)

Now consider the regression of ∆yt on the lagged differences ∆yt−1, . . . ,
∆yt−p+1 and Dt or equivalently Z0t on Z2t given as

Z0t = Θ02Z2t + ηt

where ηt
iid∼ N (0,V 02) with variance-covariance matrix V 02 [43]. The maxi-

mum likelihood estimates for the regression parameters Θ02 may be derived
from the log likelihood

L (Θ02,V 02) =
T∏

t=1

(2π)−k/2 |V 02|−1/2×

exp

{
−1

2
(Z0t −Θ02Z2t)

′ V −1
02 (Z0t −Θ02Z2t)

}

lnL (Θ02,V 02) =
−kT

2
ln 2π − T

2
ln |V 02|

− 1

2

T∑
t=1

(Z0t −Θ02Z2t)
′ V −1

02 (Z0t −Θ02Z2t)
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Taking the derivative with respect to Θ02 and equating this derivative to
zero produces the normal equations

T∑
t=1

(
Z0t − Θ̂02Z2t

)
Z ′

2t = 0

and hence, using the previous notation, the maximum likelihood estimate

Θ̂02 = M 02M
−1
22 .

Finally, define the residuals obtained in this regression as

R0t = Z0t − Θ̂02Z2t

= Z0t −M 02M
−1
22 Z2t.

Next, consider the regression of yt−1 on the lagged differences ∆yt−1, . . . ,
∆yt−p+1 and Dt or simply Z1t on Z2t

Z1t = Θ12Z2t + ς t

with ς t
iid∼ N (0,V 12) [43]. In a similar vein, it may be shown that the

maximum likelihood estimate for the regression parameters Θ12 is given by

Θ̂12 = M 12M
−1
22

so that the residuals in this regression are

R1t = Z1t −M 12M
−1
22 Z2t.

Rearranging terms in the VECM given as Equation (A.2), it is noted that

εt = Z0t −αβ′Z1t −ΨZ2t for t = 1, 2, . . . , T.

Replacing Ψ with its maximum likelihood estimate in the above expression
yields the residual estimate

ε̂t = Z0t −αβ′Z1t −
(
M 02M

−1
22 −αβ′M 12M

−1
22

)
Z2t

= Z0t −M 02M
−1
22 Z2t −αβ′

(
Z1t −M 12M

−1
22 Z2t

)
= R0t −αβ′R1t.
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Thus, the parameters Ψ are eliminated in the regression of the residuals

R0t = αβ′R1t + ε̂t. (A.5)

since the log likelihood function

lnL (α,β,Ω) = −kT
2

ln 2π − T

2
ln |Ω|

−
∑
t=1

T (R0t −αβ′R1t)
′
Ω−1 (R0t −αβ′R1t)

does not feature Ψ [27]. This method is known as reduced rank regression,
as detailed in Anderson [2].

Given β, it is straightforward to estimate α and Ω from this likelihood.
First, define

Sij = T−1

T∑
t=1

RitR
′
jt for i, j = 0, 1.

Then, it can be easily shown that

α̂ (β) = S01β (β′S11β)
−1

(A.6)

Ω̂ (β) = S00 − S01β (β′S11β)
−1
β′S10

= S00 − α̂ (β) (β′S11β)
−1
α̂ (β)′ . (A.7)

Substituting the maximum likelihood estimators for α and Ω into the likeli-
hood function, one can express the likelihood in terms of β only

Lmax (β) =
T∏

t=1

(2π)−k/2 |Ω̂|−1/2 exp−1

2
tr
[
Ω̂
−1

(R0t − α̂β′R1t)×

(R0t − α̂β′R1t)
′]

= (2π)−kT/2 |Ω̂|−T/2 exp−1

2

T∑
t=1

tr
[
Ω̂
−1(
R0tR

′
0t − α̂β′R1tR

′
0t

−R0tR
′
1tβα̂

′ + α̂β′R1tR
′
1tβα̂

′)]
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= (2π)−kT/2 |Ω̂|−T/2 exp−T
2

tr
[
Ω̂
−1(
S00 − S01β (β′S11β)

−1
β′S10

− S01β (β′S11β)
−1
β′S′

01 + S01β (β′S11β)
−1
β′S′

01

)]
= (2π)−kT/2 |Ω̂|−T/2 exp−T

2
tr
[
Ω̂
−1(
S00 − S01β (β′S11β)

−1
β′S10

)]
= (2π)−kT/2 |Ω̂|−T/2 exp−T

2
tr
[
Ω̂
−1

Ω̂
]

= (2πe)−kT/2 |Ω̂|−T/2.

Hence,

L−2/T
max (β) ∝ |Ω̂ (β) | = |S00 − S01β (β′S11β)

−1
β′S10|.

Now consider the following determinant∣∣∣∣ S00 S01β
β′S10 β′S11β

∣∣∣∣ = |S00||β′
(
S11 − S10S

−1
00 S01

)
β| (A.8)

= |β′S11β||S00 − S01β (β′S11β)
−1
β′S10| (A.9)

applying the identity∣∣∣∣ Σ11 Σ12

Σ21 Σ22

∣∣∣∣ = |Σ11||Σ22 −Σ21Σ
−1
11 Σ12| = |Σ22||Σ11 −Σ12Σ

−1
22 Σ21|.

From Equations (A.8) and (A.9), it therefore follows that

L−2/T
max (β) ∝ |S00 − S01β (β′S11β)

−1
β′S10|

∝ |S00| ×
|β′
(
S11 − S10S

−1
00 S01

)
β|

|β′S11β|
. (A.10)

The likelihood function is maximised when the last factor in Equation (A.10)
is minimised with respect to β. This maximisation of the likelihood function
may be achieved by noting the following result in linear algebra [27].

Result 1 Let M be symmetric and positive semi-definite and N symmetric
and positive definite. Then the function

f(X) =
|X ′MX|
|X ′NX|
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is maximised amongst all k× r matrices by X̂ = (υ1, . . . ,υr) with maximum∏r
i=1 λi, where λi and υi are solutions to the eigenvalue problem

|λN −M | = 0,

which has k eigenvalues ordered such that λ1 ≥ λ2 ≥ . . . ≥ λk > 0 with
corresponding eigenvectors υ1,υ2, . . . ,υk.

The following results hold:

NV Λ = MV

V ′NV = I

V ′MV = Λ

where V = (υ1, . . . ,υk) and Λ = diag (λ1, . . . , λk).

Note that X̂A is also a maximising argument for f(X) for any non-singular
r × r matrix A.

Minimising |β′
(
S11 − S10S

−1
00 S01

)
β|/|β′S11β| is equivalent to maximising

its reciprocal, that is

f(β) =
|β′S11β|

|β′
(
S11 − S10S

−1
00 S01

)
β|
.

Maximising this function may be achieved by means of the aforementioned
algebraic result and solving the eigenvalue problem

|ψ(S11 − S10S
−1
00 S01)− S11| = 0 (A.11)

for the eigenpairs (ψi,υi). From the mathematical result earlier, f(β) will
clearly attain a maximum value of

∏r
i=1 ψi when β = (υ1, . . . ,υr).

Multiplying Equation (A.11) through by −ψ−1 yields∣∣ψ−1S11 −
(
S11 − S10S

−1
00 S01

)∣∣ = 0

and, putting λ = ψ−1(ψ − 1), the eigenvalue problem may be restated as∣∣λS11 − S10S
−1
00 S01

∣∣ = 0
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with eigenpairs (λi,υi). Therefore, expressed in terms of λ, f(β) = |β′S11β|/
|β′
(
S11 − S10S

−1
00 S01

)
β| will attain a maximum value of

∏r
i=1(1 − λi)

−1

when β = (υ1, . . . ,υr). Hence it follows that

arg min
β̂ ∈ β

|β̂′
(
S11 − S10S

−1
00 S01

)
β̂|

|β̂′S11β̂|
= (υ̂1, . . . , υ̂r)

and

minL−2/T
max ∝ |S00|

|β̂′
(
S11 − S10S

−1
00 S01

)
β̂|

|β̂′S11β̂|

∝ |S00|
r∏

i=1

(1− λ̂i).

The space spanned by the eigenvectors corresponding to the r largest eigen-
values, denoted sp({υ̂1, . . . , υ̂r}), is referred to as the cointegration space
sp(β̂). For 0 < r < k, this space will clearly include any linear combination
or scalar multiple of these r eigenvectors and will therefore require further
restrictions in order to uniquely identify the cointegrating relations. In the
case where r = 0, sp(β̂) = ∅ and consequently Π = 0 as before. At the other
extreme, when r = k, the cointegration space is the set of all k dimensional
vectors Rk so that any linear combination of the variables in yt is stationary;
that is, yt ∼ I(0). Thus all possible cases from r = 0 through to r = k are
dealt with by solving a single eigenvalue problem [27].

Now suppose that the cointegrating relations are uniquely identified as

β = (H1ϕ1, . . . ,Hrϕr) , (A.12)

where H i is a k × (k − gi) matrix indicating which elements in the ith
cointegrating vector βi vary without restriction and ϕi is a k−gi dimensional
vector of freely varying parameters associated with βi. Note that this implies
that gi restrictions have been imposed on the ith cointegrating vector, where
gi ≥ r − 1 for generic identification.

The free parameters ϕ1, . . . ,ϕr associated with each of the r cointegrating
vectors in the VECM may be estimated by a switching algorithm comprising
an iterative sequence of reduced rank regressions

R0t = α1ϕ
′
1H

′
1R1t + . . .+αrϕ

′
rH

′
rR1t + ε̂t,
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obtained by substituting Equation (A.12) into Equation (A.5) and decom-
posing α into its k dimensional column vectors α1, . . . ,αr. For fixed values
of ϕ2, . . . ,ϕr or equivalently β2, . . . ,βr, the above equation is simply a re-
duced rank regression of R0t on ϕ′

1H
′
1R1t corrected for α2ϕ

′
2H

′
2R1t, . . . ,

αrϕ
′
rH

′
rR1t. Performing this regression yields an estimate of ϕ1 and β1 =

H1ϕ1 This procedure is then repeated, fixing ϕ1,ϕ3, . . . ,ϕr or equivalently
β1,β3, . . . ,βr and estimating ϕ2 and hence also β2 through a reduced rank
regression of R0t on ϕ′

2H
′
2R1t corrected for α1ϕ

′
1H

′
1R1t,α3ϕ

′
3H

′
3R1t, . . . ,

αrϕ
′
rH

′
rR1t. Running this algorithm until convergence will produce the

maximum likelihood estimates of the cointegrating relations under the spec-
ified restrictions [27].

Whilst the estimates of the cointegrating vectors β̂ obtained in the unre-
stricted model may be used as starting values, this is generally not recom-
mended since the ordering of the unrestricted eigenvectors may not corre-
spond to the ordering given by H1, . . . ,Hr. Instead, it is preferable to find
an initial value for β̂i which is closest to sp(H i) by taking linear combina-
tions of the unrestricted estimates. This initial value is found by solving the
eigenvalue problem

|λβ̂′β̂ − β̂′H i (H
′
iH i)

−1
H ′

iβ̂| = 0

for the r eigenvalues λ1, . . . , λr and eigenvectors υ1, . . . ,υr and choosing β̂υ1

as the starting value for βi = ϕiH i [31].

After estimating β in this manner, it is possible to return to Equation (A.6)
and estimate α. Finally, with α̂ and β̂ in hand, one can estimate Ω and Ψ
by Equations (A.7) and (A.4) respectively [43].
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B Properties of Markov Chains

Suppose st ∈ {1, . . . ,m} is a finite first-order Markov process with transition
probability matrix P. Let

ϑ (st = i) =

{
1 if st = i
0 otherwise

be an indicator variable for i = 1, . . . ,m and define

ξt =

 ϑ(st = 1)
...

ϑ(st = m)

 .

Hence ξt represents the unobserved state of the system. Note that all relevant
information about the future of a Markovian process is included in the present
state such that

Pr[ξt+n|ξt, ξt−1, . . . ;yt,yt−1, . . .] = Pr[ξt+n|ξt], (B.1)

where the past and additional variables such as yt include no relevant infor-
mation beyond the current state. The assumption of a first-order Markov
process is not especially restrictive, since a higher-order Markov chain can
be reparameterised as a higher dimensional first-order Markov process [34].
Furthermore, it is assumed that the Markov chain is homogenous or possesses
a stationary transition mechanism so that the probability in Equation (B.1)
depends only on the time interval n, but not on the time t. It therefore fol-
lows that the n-step transition probability given above may be re-expressed
as

Pr[ξt+n|ξt] = Pr[ξn|ξ0]

in the case of a homogenous Markov chain [7].

Since ξt consists of binary variables, it follows that

E[ξt+1|ξt = ιi] =

 Pr[ξt+1 = ι1|ξt = ιi]
...

Pr[ξt+1 = ιm|ξt = ιi]

 =

 Pr[st+1 = 1|st = i]
...

Pr[st+1 = m|st = i]

 ,

where ιi denotes the ith column of the identity matrix. Note that this condi-
tional expectation is simply the ith row of the transition probability matrix
P which, together with the Markovian property of Equation (B.1), implies

E[ξt+1|ξt, ξt−1, . . .] = P′ ξt.
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From this last equation, it is possible to express the regime generating process
as a first-order vector autoregression of the form

ξt+1 = P′ ξt + ηt+1. (B.2)

with error term ηt+1 at time t+1. By recursive substitution, it can be shown
that

ξt+n = P′n ξt + P′n−1 ηt+1 + . . .+ P′ ηt+n−1 + ηt+n

and, taking expectations, the n-period ahead forecast for the Markov chain
may be established as

E[ξt+n|ξt, ξt−1, . . .] = P′n ξt. (B.3)

Hence, the probabilities associated with the realisation of each regime in n
periods time, given that regime i is currently observed, are collected in the
ith column of P′n [19].

B.1 Recurrence and Transience

The states of a Markov chain may be classified into distinct types according
to their limiting behaviour. Suppose a chain is initially in state i and let f

(n)
ii

denote the probability that the next occurrence of state i is at time n; that
is, f

(1)
ii = pii and

f
(n)
ii = Pr[sn = i ∩ st 6= i, t = 1, . . . , n− 1|s0 = i] for n = 2, 3, . . .

Given that the chain starts in state i, the infinite sum

fi =
∞∑

n=1

f
(n)
ii

represents the probability that state i will eventually be re-entered. If the
ultimate return to state i is a certain event, then fi = 1 and the state is
said to be recurrent. On the other hand, if there is a positive probability
that the state will never be re-entered, then fi < 1 and the state is called
transient. In the case of a recurrent state, the probabilities f

(n)
ii sum to unity

over n and hence f
(n)
ii may be regarded as the probability mass function of

the recurrence time n, with the mean recurrence time of state i given as

Ei[n] =
∞∑

n=1

nf
(n)
ii .
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If the mean recurrence time is infinite, the state is said to be null recurrent.
In contrast, if the state is expected to reoccur in finite time, the state is
called positive recurrent [7].

At this point, it is worthwhile reviewing the Decomposition Theorem of
Markov chains, as presented in Cox and Miller [7].

Theorem 1 The states of an arbitrary Markov chain may be divided into
two sets (one of which may be empty), one set being comprised of all the
recurrent states and the other set comprising all the transient states. The
recurrent states may be further decomposed into unique closed sets. Within
each closed set, all states can be reached from every other state and they are
all of the same type and period. A state in one closed set cannot, however,
be reached from a state in another closed set.

As an example, consider the following transition probability matrix

P = C1
C2
C3


1 0
0 1

0 0 0

0 P1 0 0
0 0 P2 0
A B C D

 .

The first two rows represent absorbing states, which persist indefinitely once
entered. C1 and C2 represent two closed sets of recurrent states with transi-
tion matrices P1 and P2 respectively. C3 represents the transient states. The
matrices B and C include the transition probabilities from the transient
states to the recurrent sets C1 and C2 respectively. The matrix D includes
the transition probabilities within the transient states, whilst A includes the
transition probabilities from the transient states to the absorbing states [7].

B.2 Periodicity

Suppose that when a chain starts in state i, subsequent occupations of state
i can only occur at times t, 2t, 3t, . . . where t is an integer greater than one.
Such a state is said to be periodic with period t and implies that p

(n)
ii = 0

except when n is a multiple of t, where p
(n)
ii denotes the ith diagonal element

of Pn [7]. The period of state i is defined as the largest common devisor of

the set {n > 0 : p
(n)
ii > 0}. On the other hand, a state i is defined as aperiodic
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if p
(n)
ii > 0 for all n sufficiently large or, equivalently, if the state has a period

of one [6].

B.3 Irreducibility

Consider the Markov chain {st : t = 1, 2, . . .} and define the first hitting time
of state i as

τi = inf{t ≥ 0 : st = i},

where inf ∅ = +∞ by convention. For two states i and j, state i is said to
lead to state j, written i→ j, if Pr[τj <∞|s0 = i] > 0. Hence, state i leads
to state j if state j can be reached from state i in finite time. Additionally, if
both i leads to j and j leads to i, then states i and j are said to communicate,
denoted i ↔ j. If state i communicates with state j for all states i, j ∈
{1, 2, . . . ,m}, then the Markov chain is called irreducible, otherwise it is a
reducible chain [6].

An irreducible chain forms a single closed set and all its states are of the
same type. If a chain is irreducible, it is therefore also possible to refer to
the entire chain as being recurrent, periodic and so on as the case might
be. Furthermore, since a finite Markov chain cannot consist only of transient
states and cannot include any null recurrent states, an irreducible finite chain
is necessarily positive recurrent [7]. This result is particularly relevant in
the context of Markov-switching models where a finite number of regimes is
assumed.

An m state Markov chain is reducible if there exists a way to label the states
such that the transition probability matrix is of the form

P =

[
B 0
C D

]
, (B.4)

where B is a square matrix of dimension 1 ≤ k < m. In this case, the states
corresponding to B clearly form a closed set from which the remaining states
cannot be reached. Observe that if P is lower block-triangular, then so is Pn

for all n. Hence, once such a process enters a state i ≤ k, there is no
possibility of ever returning to one of the states k + 1, k + 2, . . . ,m [19].
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B.4 Ergodicity

A Markov chain comprised of only positive recurrent and aperiodic states is
said to be ergodic. It therefore follows that in the case of a finite Markov
chain, a necessary requirement for ergodicity is irreducibility. If an irreducible
finite Markov chain is in addition aperiodic, then it is ergodic.

Interestingly, the ergodicity of a finite Markov chain may be established by
examining the eigenvalues of the transition probability matrix. Recall that
a transition probability matrix is necessarily square and can therefore be
reduced to a lower block-triangular matrix of the form

P =


P11 0 0 · · · 0
P21 P22 0 · · · 0
...

...
...

...
Pm1 Pm2 Pm3 · · · Pmm

 (B.5)

by a suitable relabeling of the states, where the matrices Pii on the diagonal
are square and irreducible [7]. Now since

|P−λI| =
m∏

i=1

|Pii−λI|,

it follows that the spectrum of the eigenvalues of P is equal to the union of the
spectra of the irreducible matrices P11, . . . ,Pmm [20]. Consequently, one need
only consider the properties of the eigenvalues of irreducible, non-negative
matrices in this context. In particular, the Perron-Frobenius Theorem for ir-
reducible, non-negative matrices will prove useful. Selected results stemming
from this theorem are presented below. The reader is referred to Cox and
Miller [7] for a more complete account and Debreu and Herstein [10] for the
proof.

Theorem 2 Suppose A ≥ 0 and irreducible. Then

1. A has a real positive eigenvalue λ1 with the following properties:

(a) λ1 has a corresponding eigenvector whose elements are strictly pos-
itive

(b) If λ is any other eigenvalue of A, then |λ| ≤ λ1
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(c) λ1 ≤ max
i

∑
j aij, λ1 ≤ max

j

∑
i aij

2. if A has t eigenvalues equal in modulus to λ1, these eigenvalues are all
different. If t > 1, then A can be reduced to the following cyclic form

A =


0 A12 0 · · · 0
0 0 A13 · · · 0
...

...
...

...
0 0 0 At−1,t

At1 0 0 · · · 0


by a permutation applied to the rows and columns of A. The sub-
matrices on the main diagonal are square.

Now consider the transition probability matrix P, which may be rewritten
in the lower block-triangular form of Equation (B.5) such that the eigenval-
ues of each square matrix on the diagonal satisfy the results of the Perron-
Frobenius Theorem above. Part 1c of this theorem places an upper bound of
unity on the maximum eigenvalue of a transition probability matrix P, since
the column sums of the irreducible matrices Pii along the diagonal of P in
Equation (B.5) must be less than or equal to unity (strictly equal to one in
the case of P11). Additionally, since P1 = 1, it follows that any transition
probability matrix P must have an eigenvalue of one with a corresponding
eigenvector proportional to 1. These results, together with Part 1b of the
Perron-Frobenius Theorem, imply that every transition probability matrix
must have at least one eigenvalue equal to unity in modulus with all other
eigenvalues lying within the unit circle [7].

Next, note that since

|P′ − λI| = |(P− λI)′| = |P− λI| ,

P′ shares the same spectrum as P and every eigenvalue in the spectrum of
P has the same algebraic multiplicity when regarded as an eigenvalue of P′

[20]. Hence, P′ will have a unit eigenvalue with an associated eigenvector,
say π, such that P′π = π with π appropriately scaled so that 1′π = 1.
It follows that P′2 π = P′ π = π and by induction P′n π = π. Hence, if
the initial distribution of the states is π, this distribution will persist for
all subsequent time periods. The eigenvector π corresponding to the unit
eigenvalue of P′ therefore represents the stationary distribution of the states
[7]. However, it should be noted that π is not necessarily unique, since P may
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have more than one unit eigenvalue. In order to ensure that the stationary
distribution of the states is in fact unique, one must therefore restrict the
algebraic multiplicity of the unit eigenvalue of P to one. Together with the
restriction that the elements of π sum to unity, π will then represent a unique
stationary distribution.

Moreover, since π is the eigenvector corresponding to the largest eigenvalue
of P′, it follows from Part 1a of the Perron-Frobenius Theorem that the
elements of π are strictly positive. Now suppose that state j of a finite
Markov chain is transient. Then it must be the case that p

(n)
ij → 0 as n→∞

for all i so that state j is eventually exited. However, this would imply that
the jth element of π equals zero, since P′nπ = π [13]. Hence, the existence
of a positive stationary distribution ensures that no states are transient and
therefore P cannot be reduced to the form given by Equation (B.4), where
the sub-matrix C is assumed to include at least one element greater than
zero. The case where C = 0 would result in two closed sets with transition
matricesB andD respectively. However, P would then have at least two unit
eigenvalues, since B1 = 1 and D1 = 1. This case is therefore excluded by
the restriction imposed on the algebraic multiplicity of the unit eigenvalue of
P. Consequently, a transition probability matrix with a single unit eigenvalue
cannot be reduced to the form given by Equation (B.4) for any non-negative
sub-matrix C. Such a transition probability matrix is therefore irreducible.

Now consider an irreducible Markov chain; that is, a chain with exactly one
eigenvalue of P equal to unity and all other eigenvalues on or within the unit
circle. Part 2 of the Perron-Frobenius Theorem implies that if P has exactly
t eigenvalues on the unit circle, then the states can be partitioned into t
mutually exclusive and exhaustive subsets S1, . . . , St such that a one-step
transition from a state in Si can only lead to a state in Si+1 (if i = t, then let
t + 1 = 1). Hence the period of an irreducible Markov chain is given by the
number of eigenvalues of P which have unit modulus [7]. If t > 1, the Markov
chain is periodic with period t. On the other hand, if t = 1, then the Markov
chain is of period one and is therefore aperiodic. It follows that a sufficient
condition for ergodicity in a Markov chain is that the transition probability
matrix P has exactly one unit eigenvalue with all other eigenvalues less than
one in modulus [19].

In order to examine the consequences of ergodicity, consider first the following
result from linear algebra.
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Result 2 LetA be a k×k matrix with n ≤ k distinct eigenvalues λ1, λ2, . . . , λn.
Then there exists a non-singular matrix H such that

HAH−1 = Λ =

 Λ1 0
. . .

0 Λn

 or A = H−1ΛH

where

Λi =


λi 1 0 · · · 0

0 λi 1
...

0 0 λi
. . . 0

...
. . . . . . 1

0 · · · · · · 0 λi

 (B.6)

is a square matrix of dimension ri equal to the algebraic multiplicity of the
ith distinct eigenvalue. If the algebraic multiplicity of λi is unity, then Λi

reduces to the scalar λi.

This decomposition of A is known as the Jordan canonical form.

It can be further shown that

Λt
i =


λt

i

(
t
1

)
λt−1

i · · ·
(

t
ri−1

)
λt−ri+1

i

0 λt
i · · ·

(
t

ri−2

)
λt−ri+2

i
...

. . .
...

0 0 · · · λt
i

 . (B.7)

Now suppose a finite Markov chain is ergodic with transition probability
matrix P. Then, the Jordan canonical decomposition of P is given by

P = HΛH−1

where

Λ =


1 0

Λ2

. . .

0 Λn

 .
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The columns ofH are the eigenvectors of P and the Λi matrices are as defined
by Equation (B.6) with diagonal elements strictly less than one in modulus
[7]. This result will prove useful in examining the limiting behaviour of Pn

since clearly
Pn = HΛnH−1.

Since the first diagonal element of Λ is unity and the eigenvalues correspond-
ing to each of the Λi matrices are less than one in modulus, it follows from
Equation (B.7) that Λn converges to a matrix with a first diagonal element
of one and zeros elsewhere as n→∞. Hence,

lim
n→∞

Pn = xy′

where x is the first column ofH and y′ is the first row ofH−1. Now the first
column of H is the eigenvector of P corresponding to the unit eigenvalue,
which was shown to be proportional to 1 so that x ∝ 1. Furthermore, the
transpose of the first row of H−1 is simply the eigenvector of P′ associated
with its unit eigenvalue, since

PH = HΛ

H ′ P′ = ΛH ′

P′H ′−1 = H ′−1Λ.

Hence, y = π with 1′π = 1 and therefore

lim
n→∞

Pn ∝ 1π′. (B.8)

From the earlier discussion on the properties of a Markov chain, it was noted
that Pn represents the transition probabilities after n periods, the rows of
which must therefore sum to unity [19]. Consequently, the proportionality
sign in Equation (B.8) can be replaced with an equality such that

lim
n→∞

Pn = 1π′.

From the previous discussion on the n-period ahead forecast of a Markov
chain, it therefore follows that

lim
n→∞

p(n) = lim
n→∞

P′n p(0) = π1′p(0) = π,
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for any initial probability distribution vector p(0). It has thus been demon-
strated that π is not only a stationary distribution, but also the limiting
distribution of the states of an ergodic Markov chain. In this case, the ele-
ments of π are referred to as ergodic probabilities.

Note that in Equation (B.3), p(0) = ξt so that the system was assumed to
be in a specific state at time t with probability one. Letting n →∞ in this
equation, π may therefore be regarded as the expected state of the world in
the infinite future which, under the assumption of ergodicity, is invariant to
the initial state. Hence, a finite ergodic chain settles down in the long run
to a condition of statistical equilibrium independent of the initial conditions
[7]. This result is a remarkable property of ergodic chains.

Note that although an irreducible finite chain will possess a stationary distri-
bution, irreducibility in itself is not sufficient to ensure that this distribution
is also limiting. In particular, the n-step transition probability matrix Pn of
an irreducible periodic chain cannot converge to any fixed limit as the chain
jumps from one subset of states to another indefinitely [19]. Ergodicity is
therefore a stronger assumption than irreducibility for finite Markov chains.
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C Parameter Estimation in the MS-VAR

Model

The Expectation-Maximisation (EM) algorithm is an iterative maximum like-
lihood estimation technique which has gained momentum in a number of ap-
plication areas in recent years. In the time series context, the EM algorithm
has proved useful in estimating the parameters of observed processes which
depend upon unobserved stochastic variables or states. Its adoption in the
estimation of regime-switching regressions should therefore seem unsurpris-
ing.

The Markov-switching vector autoregressive model has three sets of param-
eters which require estimation. For given states ξt and lagged endogenous
variables Y t−1 = (y′t−1,y

′
t−2, . . . ,y

′
1,y

′
0, . . . ,y

′
1−p)

′, let p(yt|ξt,Y t−1) be the
conditional probability density function of the observed data yt at time
t = 1, . . . , T . Now suppose yt can be described by the MS-VAR model

yt = ν(st) + Π1(st)yt−1 + Π2(st)yt−2 + . . .+ Πp(st)yt−p + εt,

with innovations εt|st = i ∼ N (0,Ωi). Then the conditional distribution of
yt will itself be multivariate Gaussian, given as

p(yt|ξt = ιi,Y t−1) = (2π)−k/2|Ωi|−1/2 exp−1

2
(yt − µit)

′ Ω−1
i (yt − µit)

(C.1)
with

µit = E[yt|ξt = ιi,Y t−1] = ν(st = i) +

p∑
j=1

Πj(st = i)yt−j.

Define θi as a vector which stacks all the parameters ν,Π1, . . . ,Πp, vech(Ω)
describing the observed time series in regime i, where the vech operator
stacks the columns of the square matrix Ω, starting each column at its di-
agonal element [22]. Collect the parameters for each regime in the vector
θ = (θ′1, . . . ,θ

′
m)′. The parameter vector θ therefore fully defines the gen-

erating process of the observed data. However, since the true regime at any
point in time is unknown, it is insufficient to only estimate θ. It is of course
also necessary to estimate the parameters in the model of the regime gener-
ating process. Recall from Equation (B.2) that the Markov-switching regime
generating process may be expressed as a first-order vector autoregression
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with parameters ρ = vec(P) and ξ0 representing the transition probabili-
ties and initial state vector respectively, where the vec operator stacks the
columns of P [22]. Consequently, the MS-VAR model is fully specified by
both the regime generating parameters and those parameters governing the
observed data, which may be assembled in a single vector λ = (θ′,ρ′, ξ′0)

′ [34].

C.1 The E-Step: Estimation of the Regimes

The expectation step in the EM algorithm is concerned with the determina-
tion of the sequence of true state vectors {ξt : t = 1, . . . , T} given an observed
time series of T observations Y T and known parameters λ = (θ′,ρ′, ξ′0)

′ of
the MS-VAR model. The algorithm must therefore be initialised by speci-
fying starting values θ(0) and ρ(0) for θ and ρ respectively, whilst the pa-
rameter vector ξ0 may be avoided initially by specifying starting values for
Pr[ξ1 = ιi|Y 0] for i = 1, . . . ,m, where Y 0 = (y′0, . . . ,y

′
1−p)

′.

At the outset, each state vector ξt is estimated by

ξ̂t|t = E[ξt|Y t] =

 Pr[ξt = ι1|Y t]
...

Pr[ξt = ιm|Y t]

 ,

conditioning on the observed data up to and including time point t. Since
each element of ξt is binary, ξ̂t|t has a dual interpretation. On the one hand,

ξ̂t|t may interpreted as the conditional mean of ξt and is therefore an unbiased
estimator of the true state vector ξt based on the observed data up to and
including time point t. On the other hand, since the elements of ξ̂t|t sum

to unity, ξ̂t|t may be regarded as the conditional probability mass function
from which the regime at time t arises. The probabilities included within
ξ̂t|t are referred to as filtered probabilities and may be derived analytically by
applying Bayes’ rule to obtain

Pr[ξt|Y t] ≡ Pr[ξt|yt,Y t−1] =
p(yt|ξt,Y t−1) Pr[ξt|Y t−1]

p(yt|Y t−1)
. (C.2)

Noting that

p(yt|Y t−1) =
∑
ξt

p(yt|ξt,Y t−1) Pr[ξt|Y t−1]
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and
Pr[ξt|Y t−1] =

∑
ξt−1

Pr[ξt|ξt−1] Pr[ξt−1|Y t−1],

where Pr[ξt|ξt−1,Y t−1] = Pr[ξt|ξt−1] follows from the assumed Markovian
nature of the regime generating process, Equation (C.2) may be rewritten as

Pr[ξt|Y t] =
p(yt|ξt,Y t−1) Pr[ξt|Y t−1]∑
ξt
p(yt|ξt,Y t−1) Pr[ξt|Y t−1]

(C.3)

=

∑
ξt−1

p(yt|ξt,Y t−1) Pr[ξt|ξt−1] Pr[ξt−1|Y t−1]∑
ξt

∑
ξt−1

p(yt|ξt,Y t−1) Pr[ξt|ξt−1] Pr[ξt−1|Y t−1]
. (C.4)

Starting at time t = 1, Equation (C.3) is immediately operational, since
p(y1|ξ1,Y 0) is fully specified by Equation (C.1) with parameters θ(0) and
initial values are also assumed for Pr[ξ1|Y 0]. Thereafter, the filtered prob-
abilities can be determined by solving Equation (C.4) sequentially for t =
2, 3, . . . , T . On the first run of the algorithm, the transition probabilities
Pr[ξt|ξt−1] in this equation are included in the starting vector ρ(0). The re-
quired filtered probabilities Pr[ξt−1|Y t−1] are the solutions to Equation (C.4)
from the previous iteration. Proceeding in this manner from t = 1 through
to t = T will thus produce the desired sequence of filtered probabilities
{ξ̂t|t : t = 1, . . . , T} [34].

The aforementioned filter recursions produce estimates of {ξt : t = 1, . . . , T}
based on information up to and including time point t. This procedure
is clearly a limited information technique since it neglects the information
Y t+1.T = (y′t+1, . . . ,y

′
T )′ included in the observed time series in inferences

about ξt at each time point t < T . A more desirable estimator of the
unobserved regimes would therefore be

ξ̂t|T = E[ξt|Y T ] =

 Pr[ξt = ι1|Y T ]
...

Pr[ξt = ιm|Y t]

 ,

which incorporates all the information included in the observed time series
in inferences about ξt. The probabilities in ξ̂t|T are referred to as smoothed
probabilities and may be derived in terms of the filtered probabilities as
follows
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Pr[ξt|Y T ] =
∑
ξt+1

Pr[ξt|ξt+1,Y T ] Pr[ξt+1|Y T ]

=
∑
ξt+1

Pr[ξt|ξt+1,Y t] Pr[ξt+1|Y T ]

=
∑
ξt+1

Pr[ξt|Y t] Pr[ξt+1|ξt]

Pr[ξt+1|Y t]
Pr[ξt+1|Y T ]

=
∑
ξt+1

Pr[ξt|Y t] Pr[ξt+1|ξt]∑
ξt

Pr[ξt+1|ξt] Pr[ξt|Y t]
Pr[ξt+1|Y T ]. (C.5)

The second step above follows since

Pr[ξt|ξt+1,Y T ] ≡ Pr[ξt|ξt+1,Y t,Y t+1.T ]

=
p(Y t+1.T |ξt, ξt+1,Y t) Pr[ξt|ξt+1,Y t]

p(Y t+1.T |ξt+1,Y t)

= Pr[ξt|ξt+1,Y t],

where p(Y t+1.T |ξt, ξt+1,Y t) = p(Y t+1.T |ξt+1,Y t) is a Markov property of
the regime generating process.

The smoothed probabilities {ξ̂t|T : t = 1, . . . , T} may therefore be found
by iteratively solving Equation (C.5) backward from t = T − 1 through to
t = 1 and using the already calculated filtered probabilities together with
the smoothed probability vector from the previous iteration. The smoothing
algorithm is initialised with the final filtered probability vector ξ̂T |T , which
is of course equivalent the smoothed probability vector since t = T [34].

The above algorithm, known as the BLHK filter and smoother after its de-
velopers Baum, Lindgren, Hamilton and Kim, delivers unbiased estimates
{ξ̂t|T : t = 1, . . . , T} of the unobserved regimes {ξt : t = 1, . . . , T} based
on all the information included in the observed time series, assuming the
parameters λ = (θ′,ρ′, ξ′0)

′ are known. Of course, the parameters in λ are
not known and are therefore assigned (arbitrary) starting values in order to
initialise the algorithm. The scientific estimation of these parameters was not
possible at the outset since at least some of the parameters in λ are assumed
to be dependent on unobserved regimes. The expectation step of the EM al-
gorithm, however, produces estimates of these unobserved regimes. Treating
these estimates as the true state of the world, at least momentarily, enables
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the maximum likelihood estimation of λ. This estimation is the focus of the
M-step in the EM algorithm, which is considered next.

C.2 The M-Step: Estimation of the Model Parameters

The maximisation step in the EM algorithm is, as the name would suggest,
concerned with the maximisation of the (log-) likelihood function with respect
to the model parameters λ. This likelihood function conditional on the
observations Y T may be expressed as

L(λ|Y T ) = p(Y T |λ)

=
∑

ξ

p(Y T , ξ|λ)

=
∑

ξ

p(Y T |ξ,θ) Pr[ξ|ρ, ξ0],

with state vector ξ = ξT ⊗ ξT−1⊗ . . .⊗ ξ1. Since the elements of each of the
true state vectors in {ξt : t = 1, . . . , T} are binary, this Kronecker product
will produce a vector with zero elements in all but one of its rows. The
non-zero element will be unitary and the position of this element within the
vector ξ uniquely determines the states at all time points. The summation is
therefore taken over all possible combinations of states in the observed time
frame.

The above formulation of the likelihood function is relevant in that it illus-
trates that the likelihood can be factorised into two terms, where one term
depends solely on the parameters θ of observed time series and the other de-
pends exclusively on the Markov chain parameters ρ and ξ0 associated with
the regime generating process. From the properties of Markov processes,
these two terms may be expressed as

p(Y T |ξ,θ) =
T∏

t=1

p(yt|ξt,Y t−1,θ)

and

Pr[ξ|ρ, ξ0] =
T∏

t=1

Pr[ξt|ξt−1,ρ].
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The maximum likelihood estimates of the parameters are found by max-
imising the likelihood function L(λ|Y T ) with respect to λ subject to the
adding-up restrictions

P1 = 1

1′ξ0 = 1

and non-negativity constraints

ρ ≥ 0, ξ0 ≥ 0,Ωii.j ≥ 0,

for i = 1, . . . , k and states j ∈ {1, . . . ,m}.

If the non-negativity restrictions can be ensured, then the maximum likeli-
hood estimator of λ is given by the first-order condition of the constrained
log-likelihood function

lnL∗(λ|Y T ) = lnL(λ|Y T )− κ′1(P1− 1)− κ2(1
′ − 1),

where κ1 and κ2 are the Lagrange multipliers associated with the adding-up
restrictions on ρ and ξ0 respectively. The normal equations for each of the
three distinct parameter sets θ,ρ and ξ0 included in λ are then given by the
set of simultaneous equations

∂ lnL(λ|Y T )

∂θ′
= 0

∂ lnL(λ|Y T )

∂ρ′
− κ′1(1′ ⊗ I) = 0

∂ lnL(λ|Y T )

∂ξ′0
− κ21

′ = 0.

Closed form expressions for the maximum likelihood estimators of θ,ρ and
ξ0 may be found by solving the above set of equations, the details of which
are given in Krolzig [34]. The dependence of these solutions on the unob-
served regimes ξt is resolved by substituting in the regime estimates obtained
through the smoothing algorithm of the previous expectation step. The M-
step thereby produces a set of maximum likelihood estimates λ̂ for the model
parameters.

The above discussion has described only a single iteration of the EM algo-
rithm. Subsequent iterations proceed by updating the filtered and smoothed
probabilities in the E-step using the estimated parameter vector λ̂ from the
previous M-step in place of the true, but unknown parameter vector. The
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updated regime estimates are then substituted into the normal equations
in the M-step to obtain a new set of maximum likelihood estimates for λ
[35]. The algorithm continues to iterate through the expectation and max-
imisation steps in this manner until the gain in likelihood is negligible and
convergence is achieved.
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D Computer Code for MS-VECM

The following computer code estimates the MSIH(4)-VECM(1) referred to
in Section 4.3 using the MS-VAR 1.30 package in Ox 3.00. The code has
largely been adapted from Krolzig [35].

#include <oxstd.h>

#import <C:\ProgramFiles\OxMetrics4\Ox\packages\msvar130>

main() {

decl time=timer();

decl msvar = new MSVAR();

msvar->IsOxPack(FALSE);

msvar->Load("C:\Data.xls");

msvar->SetOptions(TRUE,TRUE,TRUE);

// settings (StdErrors, DrawResults, Save)

msvar->SetPrint(TRUE,TRUE);

// all results are printed

msvar->SetEmOptions(1e-6, 5000, 10);

// EmAlg specification (tolerance, max iters, MSteps)

decl M=4; // number of regimes

decl p=1; // number of lags

decl fModel=MSIH; // model type

// ENDOGENOUS VARIABLES:

msvar->Select(Y_VAR,{"DLNPPISA", 0, p, "DLNPPIUS", 0, p,

"DLNEXCH", 0, p, "DTBILLSA", 0, p});

// EXOGENOUS VARIABLES:

msvar->Select(X_VAR,{"DTBILLUS", 1, p, "DLNGOLD", 0, 0,

"DLNOIL", 0, 1, "SC1", 0, 0, "SC2",

0, 0, "SC3", 0, 0, "PPP", 1, 1,

"UIP", 1, 1});

// INITIAL VALUES FOR REGIMES:

msvar->Select(S_VAR,{"REGIME", 0 ,0});

msvar->SetSample(1972,1,2007,1); // time period

msvar->SetModel(fModel, M);
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print(msvar->Estimate());

println("\nIsConverged=",msvar->IsConverged());

// STANDARD ERRORS:

println("\nStandard errors:");

msvar->StdErr();

println("\nStandard errors:");

msvar->PrintStdErr();

println("\nVariance-covariance matrix:");

print(msvar->GetCovar());

msvar->PrintCovar();

// GRAPHICS:

msvar->DrawResults();

SaveDrawWindow("results.gwg");

msvar->DrawErrors(TRUE);

SaveDrawWindow("errors.gwg");

msvar->DrawFit();

SaveDrawWindow("fitted.gwg");

msvar->DrawModelAnalysis();

SaveDrawWindow("analysis.gwg");

msvar->CycleDating();

// REGIME PROBABILITIES:

println("\nSmoothed regime probabilities:");

println("%10.4f", msvar->GetProbSt()’);

// RESIDUALS:

decl resid = msvar->GetU();

println("Residuals:");

print(resid’);

delete msvar;

print("\n\n****\ttime passed: ", timespan(time),

"\t****\n");

}
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